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Most popular emergence prediction models require species-specific population-based pa-

rameters to modulate thermal/hydrothermal accumulation. Such parameters are frequently

unknown and difficult to estimate. Moreover, such models also rely on hardly available and

difficult to estimate soil site-specific microclimate conditions, which in turn depend on soil

heterogeneity at a field spatial level. On the other hand, modern agriculture benefits from

easily available real-time information, in particular on-line meteorological data generated

by forecasts and automatic local weather stations. In this context, Artificial Neural Networks

(ANN) provide a flexible option for the development of predictionmodels, especially to study

species which show a highly distributed emergence pattern along the year. In this work, an

ANN approach based on easily obtainable meteorological data (daily minimum and

maximum temperatures; daily precipitation) is proposed for weed emergence prediction.

Relative Daily Emergence (RDE), expressed as a proportion of the total emergence, was the

adopted output variable. Field emergence data recorded on a weekly basis were used to

generate RDE patterns through linear interpolation. Results for three study cases from the

Semiarid Pampean Region of Argentina (Lolium multiflorum, Avena fatua and Vicia villosa),

which show irregular and time-distributed field emergence patterns, are reported. In all

cases, ANN model selection was based on the Root Mean Square Error of the test set which

showed better consistency than other typical Information Theory performance metrics. The

combination of large ANN with a Bayesian Regularization Algorithm generated satisfactory

estimations based on the RMSE values for independent Cumulative Emergence data.
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1. Introduction

Sigmoidal Regression Models (SRM) based on thermal or

hydrothermal-time, adequately represent weed emergence

patterns under certain ecological environments, such as in

temperate regions with non-severe soil moisture restrictions

(Gonzalez-Andujar, Chantre, Morvillo, Blanco, & Forcella,

2016). Conversely, weed emergence prediction under arid or

semiarid environments with highly variable soil thermal and

moisture conditions represents a challenging task due to the

occurrence of irregular, time-distributed field patterns.

Despite this fact, some SRM models have been successfully

developed and validated (Royo-Esnal, Garcı́a, Torra, Forcella,

& Recasens, 2015).

In general, weed emergence modelling approaches require

the implementation of thermal or hydrothermal indexes.

Such indexes are based on soil microclimatic variables (soil

temperature andwater potential) which are in turn dependent

onmany site-specific variables (e.g. soil texture, surface cover,

seed burial depth). Indexes construction depends on: (i) the

assumption that emergence rates are proportional to the

amount by which soil temperature and soil water potential

exceed a given threshold value (Bradford, 2002); (ii) the esti-

mation of site-specific soil microclimate variables using spe-

cific software (e.g. Soil Temperature and Moisture Model)

(Spokas & Forcella, 2009). In addition, species-specific

thresholds or cardinal parameters (i.e. base temperature and

base water potential for seed germination/emergence) are

generally obtained under laboratory-controlled conditions

based on certain statistical principles (Bradford, 2002): (i) in-

dependence between threshold parameters and soil micro-

climatic variables (soil temperature and water potential); and

(ii) a normal distribution of thermal/hydrothermal-time

among individuals of a given seed population. Alternatively,

these cardinal parameters can also be obtained through field

trials and modelling (Royo-Esnal, Torra, Conesa, Forcella, &

Recasens, 2010; Royo-Esnal et al., 2015).

In the Semiarid Pampean Region of Argentina (SPRA),

Avena fatua L. and Loliummultiflorum Lam. are among themost

conspicuous and invasive weed species in winter cereal crops.

Both species present time-distributed multiple emergence

cohorts per year, thus hindering the implementation of

traditional SRM. In the southern area of the region under

study, Vicia villosa Roth. is considered a problematic volunteer

weed in winter cereals crop rotations, showing a “double-

safety” seed dormancy mechanism (physical þ physiological

dormancy) (Renzi, Chantre, & Cantamutto, 2014) which regu-

lates field emergence flushes. Recently, Renzi, Chantre, and

Cantamutto (2018) made a considerable effort to develop and

validate a field emergence model for V. villosa by integrating:

(i) physical dormancy release dynamics, (ii) physiological

dormancy release and germination thermal requirements, (iii)

hydro-time requirements for germination, and (iv) pre-

emergence growth.

In this regard, mechanistic or population-based models

should be considered a valuable tool for the description of

basic ecophysiological processes underlying seedling emer-

gence (Boddy, Bradford, & Fischer, 2012; Chantre, Batlla,

Sabbatini, & Orioli, 2009; Colbach & M�ezi�ere, 2013). Although
such models are desirable from an explanatory biological

process-based framework, their development and validation

are usually very time consuming. As suggested by Grundy

(2003), such models lack of the simplicity and flexibility that

would be required for practical IntegratedWeed Management

Support Systems (IWMSS), which weather-based models do

offer.

Based on previously exposed statements, it is clear that

current weed emergence modelling is in some extent driven

by a precise-and-deterministic view of a highly uncertain and

complex ecological problem resulting from the interaction of

weed biology and soil variables. In addition, bioecological

limitations arise as seed dormancy processes and germination

requirements of various weed species remain to be elucidated

(Batlla& Benech-Arnold, 2010) in order to bridge the ecological

knowledge gap for accurate weed emergence prediction.

Recently, Gonzalez-Andujar et al. (2016) highlighted the

importance of a new generation of modelling approaches

based on Soft Computing Techniques (SCT) to tackle the lim-

itations of conventional nonlinear regression models. It was

concluded in that work that SCT provide higher flexibility as

well as better predictive accuracy in many cases.

SCT (unlike conventional or hard computing) are capable of

dealing with complex biological systems because do not

require strict mathematical definitions, thus providing a bet-

ter rapport with reality (Das, Kumar, Das, & Burnwal, 2013).

Among them, for example, Artificial Neural Networks (ANN)

as modelling framework and Genetic Algorithms (GA) as

optimization engines, have been applied in most fields of

science and technology (Gen & Cheng, 2000; Paliwal & Kumar,

2009), and also in many fields of agriculture (Matsumura,

Gaitan, Sugimoto, Cannon, & Hsieh, 2015; Pi et al., 2015). For

example, Pi et al. (2015) proposed an ANN-GA combinedmodel

for the prediction of optimal sowing time and cultivars se-

lection across different regions of China working with the

grass Poa pratensis L.

ANN and GA have also been applied in weed research

(Burgos-Artizzu, Ribeiro, Tellaeche, Pajares, & Fern�andez-

Quintanilla, 2010; Burks, Shearer, Heath, & Donohue, 2005;

Dyrmann, Karstoft, & Midtiby, 2016). However, soft

computingmodelling for weed emergence prediction remains

largely unexplored (Gonzalez-Andujar et al., 2016). Haj Seyed

Hadi and Gonzalez-Andujar (2009) compared GA with

nonlinear regression for fitting emergence data of six weed

species of Spanish cereal crops showing that the former often

provided a better fit due to a higher capability to deal with ill-

defined optimisation issues. Blanco et al. (2014) proposed a GA

approach for A. fatua emergence prediction based on the

disaggregation of dormancy release and germination/pre-

emergence growth processes. Previously, Chantre et al.

(2012) developed an ANN model using both thermal-time

and hydro-time variables as independent explanatory vari-

ables for the biosystem under study in the SPRA. The same

approach proved adequate for A. fatua emergence prediction

in different temperate regions of the United States, Canada

and south Australia (Chantre et al., 2012, 2014).

In previously mentioned studies, soft computing based

models have proven to yield better prediction capacity than

classical univariate hydrothermal-time based nonlinear

regression models. However, some caveats were detected by
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the authors and further revised by Gonzalez-Andujar et al.

(2016): (i) increasingly complex ANN architectures show a

tendency to overfit cumulative emergence data, thus gener-

ating instability problems for accurate output variable esti-

mation; (ii) significant level of expertise and programming

skills are required to develop such models. These issues

require further research to facilitate the applicability of soft

computing models for weed emergence prediction within

IWMSS by farmers and technicians.

Nowadays, agricultural practices offer real-time informa-

tion, in particular on-line meteorological data provided by

automatic local weather stations and forecasts. Management

decision making from both, economic and environmental

perspectives can benefit from the available real-time infor-

mation used for predictive purposes (van Evert et al., 2017). In

this context, soft computing in general, and ANN in particular,

provide a flexible approach for real-time weed emergence

prediction model development.

The aim of this work was to develop and validate a flexible

and general ANN modelling framework for weed emergence

prediction using easily available meteorological data (i.e. daily

field temperature and precipitation), without the necessity of

soil microclimatic derived indexes or previous knowledge on

species-specific biology. The proposed ANN modelling

framework utilise daily minimum and maximum air tem-

perature and precipitation as meteorological input variables.
2. Materials and methods

2.1. Field experimental data

Lolium multiflorum and A. fatua emergence data were collected

at weekly intervals at the Experimental Field of the Agricul-

tural Experimental Station INTA-Bordenave (37�500S;
63�010W), located in Buenos Aires province, Argentina. L.

multiflorum and A. fatua data periods were 2008e2016 and

2007e2015, respectively. Vicia villosa emergence data were

also collected on a weekly basis at the Experimental Field of

Agricultural Experimental Station INTA-Hilario Ascasubi
Fig. 1 e Theoretical Relative Daily Emergence (RDE) of a given weed

curve (b). In (a) the dotted line represents the estimated RDE obta

line represents the predicted RDE. In (b) the dotted line represen

the predicted CE distribution.
(39º220S, 62º390W), Buenos Aires province, Argentina, in 2008,

2010 and 2013e2015. In all cases the counting initiated on

January the first and lasted the whole year.

Experiments were conducted on an undisturbed field in

order to emulate a non-tillage field scenario (without crop

presence). Destructive seedling counting was performed on

three quadrats (1 m2 each) randomly distributed on the field.

Meteorological data were registered by automatic on-line

stations (EMA Davis, Mercobras S.A.) located in the experi-

mental fields.

2.2. Artificial Neural Networks input variables

In the current modelling approach, the direct use of easily

available real-time weather data is proposed. Specifically,

ANN input variables were: (i) calendar day (d), (ii) daily mini-

mum air temperature (Tmin), (iii) daily maximum air temper-

ature (Tmax), and (iv) daily precipitation amount (Pp).

2.3. Artificial Neural Networks output variable

The Relative Daily Emergence (RDE) was the adopted output

variable of the proposed modelling approach. RDE is calcu-

lated as:

RDEd ¼ EdP365
i¼1

Ei

d ¼ 1; :::365 (1)

where Ed is the number of plants emerged each day. As field

emergence data were collected at weekly intervals (40 points/

year), the first step for the calculation of the output variable

consisted on the estimation of the RDE values in the days be-

tween the counts (Fig. 1(a), dotted line). This way, a larger set

of data points (365 points/year instead of 40 points/year) were

utilised for modelling purposes.

In order to generate these missing data, a point-by-point

(i.e. day-by-day) interpolation routine was implemented with

GraphPad Prism software (2015). In this way, each input data

set (d, Tmin, Tmax, Pp)matched a given value of RDE. Finally, the

output variable of the model is the predicted RDE (Fig. 1(a)).
species (a) and its corresponding Cumulative Emergence (CE)

ined by a day-by-day interpolation routine, while the solid

ts weekly observed CE data, while the solid line represents

https://doi.org/10.1016/j.biosystemseng.2018.03.014
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However, it should be kept in mind that in practice less

than 365 points/year were used for modelling purposes since

once the weed field emergence period is finished many zero

emergence data points do not provide any valuable informa-

tion. For example, in Fig. 1(a) it could be observed that field

emergence extends until mid-November and subsequent zero

data points were chopped off from the data sets.

2.4. Cumulative emergence prediction

In order to generate a more intuitive and practical interpre-

tation of the emergence dynamics, for visualization purposes,

RDE patterns (Fig. 1(a)) were also represented as predicted Cu-

mulative Emergence (CE) (Fig. 1(b)). Cumulative emergence

curveswere generated by summing RDE values from the onset

till the end of the season:

CEd ¼
Xd

i¼1
RDEi d ¼ 1; :::365 (2)

2.5. Artificial Neural Networks modelling

ANN are well known modelling tools for inputeoutput data

correlation. Many sources provide good coverage on the topic

(e.g. Livingstone, 2008). For a brief introduction, a three-layer

feed-forward ANN is shown (Fig. 2). The theoretical model

has: (i) two input variables (x1, x2) connected each to a given

receptor neuron of an entrance layer, (ii) an intermediate

eight-neuron layer, and (iii) an output variable (y).

As observed in Fig. 2, each neuron of the entrance layer

receives a given input variable (x1, x2) and broadcasts its value
Fig. 2 e ANN architecture with three layers (entrance,

intermediate and exit layer). x1 and x2 represent the input

variables (each neuron of the first layer receives a given

input variable); a hidden layer with eight nodes (e.i.

processing units), and a unique exit neuron that produces

the final response (output variable). f(.) represents the

activation functions of the neurons; vij are the connection

weights between input-hidden layer neurons; wj are the

connection weights between hidden and output layer

neurons; v0j is the bias of each hidden neuron j; while w0 is

the output neuron bias; zj is the output signal of each

hidden neuron. y stands for the output variable.
to each neuron of the hidden layer. Each neuron computes an

activation function and generates an outcome (z1, …, z8)

which is further transmitted to the output layer neuronwhich

finally yields the network output (y). The output signal of each

neuron in the hidden layer (zj) is calculated as:

zj ¼ f

 X
i¼1;2

vijxi þ v0j

!
j ¼ 1; :::; 8 (3)

while the output of the network is given by:

y ¼ f

0@X
j¼1;8

wjzj þw0

1A (4)

where f(.) represents the transfer (activation) function; vij are

the weights of the connections between the input and the

intermediate neurons; v0j is the bias on neuron wj represent

the weights of the connections between the intermediate and

output neurons and w0 is the bias on the output neuron.

In this contribution, hyperbolic tangent sigmoid transfer

functions (Eq. (5)) were implemented, both in the intermediate

and in output layers' nodes. Such function generates an

outcome in the range [�1, 1] (Beale, Hagan, & Demuth, 2011):

Y ¼ 2
1þ expð � 2XÞ � 1 (5)

In this work, a feed-forward ANN with three layers was

implemented (Fig. 2). For each case study, several ANN ar-

chitectures (with different number of neurons in the inter-

mediate layer) were investigated. Input/output data was

normalised to fall in the range [-1, 1] to improve network's
performance (Maier & Dandy, 2001). The Neural Network

Toolbox of MatLab software (Beale et al., 2011) was used for

programming the ANN.

A Bayesian Regularization Algorithm was used for training

the models due to its excellent generalization capability

(Burden & Winkler, 1999). This algorithm has shown some

advantages compared to standard back-propagation tech-

niques. As reviewed by Burden and Winkler (2009), the algo-

rithm: (i) generate robust models with less chances of

overtraining and overfitting (by incorporating a pruning

method within the optimisation algorithm); (ii) do not require

a validation set, thus all available data might be used to

generate the model. The latter is a very important issue

mainly when data is scarce or expensive to obtain.

2.6. Model analysis

Typical measures for model selection were investigated to

assess the goodness-of-fit of the developed models. Specif-

ically, the following Information Theory criteria were calcu-

lated in each case: Akaike's Information Criterion (AIC),

Bayesian Information Criterion (BIC) and Network Information

Criterion (NIC). Root Mean Square Error (RMSE) measures were

considered to evaluate the approximation of the training set.

The following typical definitions are adopted. SSE is the

training error that is minimised by the objective function:

SSE ¼
XT
i¼1

�
yi � byi

�2
(6)

https://doi.org/10.1016/j.biosystemseng.2018.03.014
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where T is the number of data points and yi and byirepresent

observed and predicted data of the training set, respectively.

Therefore:

MSE ¼ SSE
T

(7)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
(8)

Specifically, the AIC and BIC were calculated according to

Qi and Zhang (2001):

AIC ¼ logðMSEÞ þ 2 logðmÞ
T

(9)

BIC ¼ logðMSEÞ þ logðmÞlogðTÞ
T

(10)

The Network Information Criterion (NIC) was calculated as

follows (Amari, 1993):

NIC ¼ logðMSEÞ þm
T

(11)

where m is the total number of parameters of the model.

Additionally, the number of effective parameters (h) meaning

the total amount of parameters (i.e. weights þ biases) actually

used for training the ANN is also reported.

Finally, the predictive capability of the developed models

was based on the RMSE of the test set. In the caseswheremore

than one test set is available, the RMSE Testglobal value was

informed, which represents the average among the available

test sets.

2.7. Training and test sets

For the three study cases, available data were randomly

divided into training and test sets resembling a 3:1 proportion

as close as possible. Therefore, for L. multiflorum andA. fatua, a

total of seven years of experimental data were used for

training while the remaining two years were used for testing.

For the case of V. villosa a 4:1 split was utilised.
Table 1 e ANNmodels with increasing number of neurons for L
number of effective parameters, NIC ¼ Network Information Criter
Information Criterion; RMSE ¼ Root Mean Square Error; RDE is the
Cumulative Emergence.

Model m h NIC AIC BIC

ANN5 31 29 �2.63 �2.64 �2.64

ANN10 61 56 �2.64 �2.67 �2.67

ANN15 91 83 �2.73 �2.77 �2.77

ANN20 121 118 �2.75 �2.81 �2.81

ANN25 151 145 �2.77 �2.84 �2.83

ANN30 181 177 �2.85 �2.93 �2.93

ANN35 211 194 �2.77 �2.87 �2.87

ANN40 241 231 �2.88 �2.99 �2.99

ANN45 271 251 �2.89 �3.02 �3.01

ANN50 301 287 �2.93 �3.07 �3.07

ANN55 331 310 ¡3.02 ¡3.17 ¡3.1
3. Results

Several ANN architectures were evaluated using NIC, AIC, BIC

and RMSE measures for each weed species. In the following

subsections a detail of the developed models is provided with

a brief analysis of the performance criteria in each case.

3.1. Lolium multiflorum

Information theory criterions (NIC, AIC, BIC) showed a

monotonic increment in goodness of fit as the number of

model parameters increased, thus selecting for the largest

investigated model (ANN55) (Table 1, bold highlighted). A

correspondence between these indexes and RMSE train values

was also observed (Table 1, underlined) as both, the total and

effective number of parameters increased. However, RMSE

test values (both global and individual of predicted vs

observed cumulative emergence data) indicated ANN25 as the

best model for the analysed data set (Table 1, gray cell). The

capability of ANN25 to closely represent L. multiflorum relative

field emergence patterns during both tested years (Fig. 3(a)

and (b)) could be easily tracked by their corresponding cu-

mulative emergence patterns (Fig. 3(c) and (d)).

3.2. Avena fatua

NIC, AIC and BICmetricsmonotonically increased goodness of

fit with the number of parameters (Table 2, bold highlighted).

The largest investigated model (ANN70) showed the lowest

RMSE train values (Table 2, underlined). As observed for L.

multiflorum, the lowest global RMSE test was obtained at

ANN65 (Table 2, gray cell). RDE and CE dynamics for both

tested years are shown in Fig. 4.

3.3. Vicia villosa

ANN35 showed the lowest RMSE test (Table 3, gray cell; Fig. 5).

The feasibility of the selected model could be envisioned
oliummultiflorum. m ¼ total number of model parameters, h ¼
ion; AIC ¼ Akaike’s Information Criterion; BIC ¼ Bayesian
predicted Relative Daily Emergence; CE is the predicted

RMSE

RDE CE

Train Test2013 Test2015 Testglobal

0.048 0.091 0.189 0.145

0.046 0.110 0.154 0.133

0.041 0.062 0.116 0.092

0.039 0.049 0.064 0.057

0.038 0.036 0.048 0.042

0.034 0.065 0.062 0.063

0.037 0.071 0.050 0.062

0.032 0.067 0.057 0.063

0.031 0.091 0.054 0.076

0.029 0.083 0.052 0.070

7 0.026 0.079 0.048 0.066

https://doi.org/10.1016/j.biosystemseng.2018.03.014
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Fig. 3 e Relative Daily Emergence patterns (a, b) and cumulative emergence curves (c, d) for Lolium multiflorum for both test

years, 2013 and 2015. Dotted lines represent observed data while solid line stands for ANN25 predictions.

Table 2 e ANN models with increasing number of neurons for Avena fatua.

Model m h NIC AIC BIC RMSE

RDE CE

Train Test2008 Test2011 Testglobal

ANN5 31 28 �2.93 �2.94 �2.94 0.034 0.092 0.185 0.147

ANN10 61 55 �2.95 �2.98 �2.97 0.032 0.088 0.173 0.138

ANN15 91 81 �2.93 �2.97 �2.97 0.033 0.083 0.164 0.130

ANN20 121 111 �2.98 �3.03 �3.03 0.031 0.074 0.142 0.113

ANN25 151 132 �2.96 �3.03 �3.03 0.031 0.074 0.139 0.112

ANN30 181 146 �2.96 �3.03 �3.03 0.030 0.075 0.153 0.121

ANN35 211 189 �2.98 �3.07 �3.07 0.029 0.069 0.118 0.097

ANN40 241 196 �2.98 �3.08 �3.08 0.029 0.067 0.108 0.090

ANN45 271 259 �3.08 �3.20 �3.19 0.025 0.051 0.049 0.050

ANN50 301 282 �3.06 �3.19 �3.19 0.025 0.056 0.074 0.066

ANN55 331 308 �3.09 �3.23 �3.23 0.024 0.049 0.029 0.040

ANN60 361 336 �3.13 �3.28 �3.28 0.023 0.051 0.036 0.044

ANN65 391 371 �3.15 �3.32 �3.31 0.022 0.036 0.029 0.033

ANN70 421 409 ¡3.24 ¡3.42 ¡3.42 0.019 0.050 0.031 0.042

m ¼ total number of model parameters, h ¼ number of effective parameters, NIC ¼ Network Information Criterion; AIC ¼ Akaike's Information

Criterion; BIC ¼ Bayesian Information Criterion; RMSE ¼ Root Mean Square Error; RDE is the predicted Relative Daily Emergence; CE is the

predicted Cumulative Emergence.
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Fig. 4 e Relative Daily Emergence patterns (a, b) and cumulative emergence curves (c, d) for Avena fatua for both test years,

2008 and 2011. Dotted lines represent observed data while solid line stands for ANN65 predictions.

Table 3 e ANN models with increasing number of neurons for Vicia villosa.

Model m h NIC AIC BIC RMSE

RDE CE

Train Test2015

ANN5 31 27 �2.06 �2.10 �2.10 0.089 0.237

ANN10 61 53 �2.06 �2.14 �2.14 0.085 0.226

ANN15 91 76 �2.04 �2.16 �2.16 0.083 0.211

ANN20 121 107 �2.11 �2.26 �2.26 0.073 0.219

ANN25 151 133 �2.21 �2.41 �2.40 0.062 0.149

ANN30 181 164 �2.26 �2.50 �2.50 0.056 0.135

ANN35 211 192 �2.33 �2.61 �2.61 0.049 0.067

ANN40 241 197 �2.33 �2.65 �2.64 0.047 0.088

ANN45 271 231 �2.38 �2.74 �2.74 0.042 0.067

ANN50 301 257 ¡2.39 �2.79 �2.79 0.040 0.081

ANN55 331 255 �2.37 ¡2.81 ¡2.81 0.039 0.095

ANN60 361 242 �1.60 �2.08 �2.07 0.091 0.214

m ¼ total number of model parameters, h ¼ number of effective parameters, NIC ¼ Network Information Criterion; AIC ¼ Akaike's Information

Criterion; BIC ¼ Bayesian Information Criterion; RMSE ¼ Root Mean Square Error; RDE is the predicted Relative Daily Emergence; CE is the

predicted Cumulative Emergence.
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Fig. 5 e Relative Daily Emergence pattern (a) and cumulative emergence curve (b) for Vicia villosa for test year 2015. Dotted lines

represent observed data while solid line stands for ANN35 predictions.
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straightforwardly by comparison with the outcomes obtained

by the mechanistic modelling approach developed by Renzi et

al. (2018) for the same data set (RMSE test ¼ 0.05). Similarly, to

the previous cases, all information indexes and the RMSE train

value, points out more complex architectures (Table 3, bold/

underlined highlighted).
4. Discussion

Previous versions of ANN models (Chantre et al., 2012, 2014)

suffered of over-fitting issues producing unrealistic re-

ductions in the CE dynamics, mainly when large architectures

were tested. Such modelling drawback was not observed in

these experiments.

The inclusion of estimations of daily emergence in the

training set (totalising a maximum of 365 inputeoutput data

points), rather than simply using the weekly available field

data (40 inputeoutput data points) probably had the larger

effect on smoothing the CE profiles. The impact of using daily

emergence (RDE) instead of cumulative emergence (CE) as

output variable (punctual vs. integrated information) is also

considered influential in this behaviour but its extent requires

further investigation.

The preferred criteria for ANN model selection was in all

cases the global RMSE test (predicted vs. observed cumulative

emergence data). Such index showed a clear local minimum

among increasingly complexmodels allowing for an adequate

balance between complexity and parsimony. Conversely,

goodness of fit measures (AIC, BIC, NIC and RMSE train)

showed a monotonically increasingly behaviour as the size of

the model increased. Therefore, they did not allow for a clear

model selection criterion. Our results agree with Qi and Zhang

(2001) as neither Information Theory (penalty-based in-

sample criteria) nor no-penalty-related training measures

(RMSE train) proved adequate for model selection. In addition,

as stated by these authors and further corroborated by

Chantre et al. (2012), goodness of fit measures are not always

consistent with the best performances in out-sample data

(RMSE test). This could be considered an ‘expected outcome’

since no universal information metric could be defined for
model selection (Aho, Derryberry, & Peterson, 2014; Burnham

& Anderson, 2003). This behaviour, named by Breiman (2001)

as the ‘Rashomon Effect’, occurs when different models are

crowded together and they have about the same training or

test errors.

In any case, for prediction purposes, and especially for

ANN based predictive tools, themain objective is to achieve an

adequate predictive capacity irrespective of model's
complexity. As highlighted by Breiman (2001), the goal of

predictive modelling is to obtain accurate information. In this

context, and from a practical point of view, obtained ANN

models closely represented time-distributed and irregular

emergence patterns of the three selected weed species.

However, it should be mentioned that although ANN are

powerful tools fordata interpolation theyhave little explanatory

capabilities, basically limited to point out which input variables

have the largest relative contribution to the output/s of the

system (see Olden & Jackson, 2002). Therefore, phenomenolog-

ical conclusions could hardly be drawn from the ANN structure

and its parameters. Additionally, suchmodelling approach also

lack of extrapolation power. Therefore, their use for current

decision making should be carefully considered if limited

amounts of data for training and validation/test are available.

Nevertheless, besides the “modest” sized models proposed

in this work, current programming and computational tech-

nology allow the development of “really large” neural networks

(hundreds of neurons) giving rise to the so-called “deep

learning” paradigm aimed at dealing with “big data” (Chen &

Lin, 2014; van Evert et al., 2017). Such technology, which is

easily available and economically affordable, boosts the

application of soft computing techniques to develop, in a sys-

tematic fashion, models of agronomical interest making use of

the large volume of agrometeorological data produced on a

daily basis. Therefore, future work should aim tomaximise the

data processing capability and extensive flexibility of ANN.
5. Conclusions

The presentedmodelling procedure using “large” ANN showed

reliable predictions for three complex weed species. The main

https://doi.org/10.1016/j.biosystemseng.2018.03.014
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strength of the proposed approach is the absence of specific

underlying modelling assumptions and the direct use of

commonly available field meteorological data. Unlike most of

the available weed emergencemodels, the proposedmodelling

approach is able to establish functional relationships between

easily available meteorological information and field emer-

gence data without the necessity of soil microclimatic derived

indexes (i.e. thermal/hydrothermal-time) or species-specific

population-based knowledge (i.e. threshold or cardinal pa-

rameters for germination/emergence). These features suggest

the potential practical use of this modelling framework for

decision-making support in weed management. However,

further work should be carried out to draw categorical conclu-

sions on the models' validity based on a larger pool of data.
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AIC Akaike's Information Criteria

BIC Bayesian Information Criterion

ANN Artificial Neural Network(s)

NIC Network Information Criterion

SSE Sum of Square Error

MSE Mean Square Error

RMSE Root Mean Square Error

SRM Sigmoidal Regression Models

IWMSS Integrated Weed Management Support Systems

SCT Soft Computing Techniques

Parameters/Variables

d calendar day

CE Cumulative emergence

E Emergence

m number of model parameters

Pp Precipitation

RDE Relative Daily Emergence

Tmin Minimum air temperature

Tmax Maximum air temperature

T number of data points

x1, x2 ANN inputs

zi ANN hidden layer outputs

Y ANN output

vi, wi ANN weights

y observed databy predicted data
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