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Abstract
We study ‘ the excitation of plasmons due to the incidence of a fast charged particle that
passes through a single-wall carbon nanotube. We use a quantized hydrodynamic model, in
which the σ and π electron systems are depicted as two interacting fluids moving on a
cylindrical surface. Calculations of the average number of the excited plasmons and the
corresponding energy loss probability for the swift electrons are compared with several
experimental results for electron energy loss spectra recorded using transmission electron
microscopes. We are able to identify the π and σ + π plasmon peaks and elucidate the origin
of various spectral features observed in different experiments.

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of plasmon excitations in carbon nanotubes is
of prime interest for a variety of applications, e.g. in the
context of their optical response. These excitations are
efficiently probed by using charged particles, as in the electron
energy loss spectroscopy (EELS) technique performed with
a transmission electron microscope (TEM). There is a
considerable body of literature, both theoretical [1–9]
and experimental [10–15], dedicated to the study of
plasmon excitations in single-walled and multi-walled carbon
nanotubes, both isolated and assembled in bundles or
other configurations. However, there are some observations
that remain unexplained or have not been completely
elucidated. For example, the exact role of surface plasmons

in spectral features observed for losses at high energy remains
unclear [13].

Considering the geometry of single-walled carbon
nanotubes (SWCNTs) and the characteristics of their
electronic structure, the excitation of plasmons is conveniently
described by a two-fluid formulation of the hydrodynamic
model [6]. In this formulation, σ and π electrons are treated
as two-dimensional (2D) fluids constrained to the same
cylindrical surface. The electrostatic interaction between the
fluids gives rise to splitting of their plasmon frequencies into
two groups of distinct energies, usually referred to as ‘σ + π ’
(high energy) and ‘π ’ (low energy) plasmons. Moreover, a
quantized version of the hydrodynamic model [8] enables
one to calculate the average number of plasmons excited in
different modes by a fast charged particle impinging on an
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SWCNT. This formulation also provides a relatively simple
way to evaluate the energy loss probability density that may be
directly compared with the spectra recorded in various EELS
experiments on SWCNTs.

In [8] we used the quantized hydrodynamic model
to perform qualitative analysis of the spectra of plasmon
excitations in SWCNTs due to fast electrons moving along
the trajectories that are external to the nanotubes. It should
be noted that those spectra are characterized by narrow
spectral features due to the neglect of plasmon damping,
which is inherent to the quantization approach. In this work
we make several extensions of this model that allow us
to make quantitative comparison with several experimental
spectra [11–13] where characteristic plasmon peaks exhibit
substantial broadening. Besides the inclusion of electron
trajectories that traverse the nanotube with an arbitrary impact
point, we thoroughly analyze the parameters involved in the
formulation of the hydrodynamic model in order to determine
their values for which calculations reproduce the principal
features of the experimental spectra. In particular, we include
the effect of plasmon damping that amounts to broadening of
the theoretical spectra and we reconsider the role of plasmon
restoring frequencies that reflect the band structure effects for
the σ and π electrons.

The paper is structured as follows. In section 2 we briefly
comment on the parameterization of the hydrodynamical
model used to describe the excitation of plasmon modes in
SWCNTs. In section 3 we summarize the basic formulas used
for calculation of the average number of plasmons excited by
an incident charged particle and its energy loss probability
density. In section 4 we compare the calculated energy loss
spectra with experimental data from the literature and analyze
their main features. Finally, we state our concluding remarks
in section 5.

2. Plasmon modes within the hydrodynamic model

We use the quantized 2D two-fluid hydrodynamical model
for describing the excitation of plasmons in carbon
nanotubes, which was presented in [8]. In that paper, we
applied a quantization procedure [16] to the semiclassical
hydrodynamic model [6] to describe the excitation of
plasmons5 by charged particles within an interaction-picture
framework where the Coulomb potential from the external
electron excites various modes in the plasmon field. This
formulation allows us to obtain the energy lost by the incident
particle in terms of the average number of plasmon modes
excited.

The hydrodynamical model provides an analytical
expression for the dispersion relation, ω±,m,k, for plasmon
modes that appear on a cylindrical surface containing the
interacting σ and π electrons fluids, defined by

ω2
±,m,k =

ω2
σ + ω

2
π

2
±

√(
ω2
σ − ω

2
π

2

)2

+14. (1)

5 In the SWCNT geometry and within the 2D hydrodynamic model, the only
collective excitations are surface plasmons.

Here, ων are the plasmon frequencies of the non-interacting
ν = σ and ν = π fluids, and 1 accounts for the interaction
between them. These quantities are defined by the geometry
of the system and depend on the usual angular modes m =
0,±1,±2, . . . , and the longitudinal wavenumber k. The
coupling of the two fluids yields two branches of modes:
the high energy modes (obtained with the ‘+’ sign in
equation (1)) are the so-called ‘σ + π ’ modes, which exhibit
wide dispersion as a function of both k and m, whereas the low
energy modes (obtained with the ‘−’ sign), or π plasmons,
exhibit less dispersion.

One of the features of the model proposed for describing
the dispersion ω±,m,k is the inclusion of restoring frequencies
ων,r, which take into account the band structure of the
valence electrons that constitute each fluid. For instance,
σ electrons are known to have a semiconductor/dielectric
band structure with a band gap of about ≈10 eV. That is,
σ electrons need to absorb a minimum amount of energy
h̄ωσ,r larger than ≈10 eV to participate in any collective
oscillation. On the other hand, π electrons have a semimetal
(with zero gap) or semiconductor (with a band gap of ≈2 eV)
structure, depending on the geometry and chirality of the
nanotube. Hence, h̄ωπ,r may take a value from zero to a
few electronvolts. In our previous work [8], we took as a
first approximation the values ωπ,r = 0 and h̄ωσ,r = 16 eV,
following the work of Barton and Eberlein [17] and Gorokhov
et al [18] who suggested these values for the π and σ

electrons of a C60 molecule. We note that using these values
for restoring frequencies in equation (1) gives a dispersion
relation that accurately describes the available experimental
results [10, 14, 15], as shown in [8].

On the other hand, recent studies on graphene [19]
showed that a finite value for the restoring frequency of
the π electrons (around 4 eV) and a lower value for the σ
electrons (around 13 eV) are suitable for describing the energy
loss spectra in monolayered and multilayered graphene. In
the present work we adopt the set of values obtained for
graphene in [19], h̄ωσ,r = 13.08 eV and h̄ωπ,r = 4.06 eV,
as these values seem to be a priori in better agreement with
the positions of plasmon peaks observed in the experiments
on SWCNTs [11–13]. We note that using these values
for restoring frequencies in equation (1) gives a dispersion
relation, shown in figure 1(a), that also exhibits quite good
agreement with the experimental results [10, 14, 15]. One
of the most interesting features of plasmons in nanoscopic
systems is the sensitivity of their characteristic frequencies
to variations in the geometry. Figure 1(b) illustrates the
dispersion relation (1) for the first two modes (m = 0 and m =
1) and for both branches (π and σ + π ) for different values
of the nanotube’s radius R. As one can see, the frequencies
allowed in the m = 0 mode do not vary significantly with
R, but the m = 1 (and higher) modes are very sensitive
to its variation, especially in the region with low k, which
gives the principal contribution to the plasmon excitation
spectra.
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Figure 1. Dispersion relation ωjmk as a function of k, using the
graphene values for the restoring frequencies ωπ,r = 4.06 eV and
ωσ,r = 13.08 eV. (a) Modes m = 0, 1, . . . , 4 are compared with the
experimental dispersions from Pichler et al [10] (circles) and
Kramberger et al [14, 15] (diamonds and squares) for a nanotube
with R = 7 Å. (b) Dispersion of the modes m = 0 and m = 1 for
several nanotube radii R.

3. Excitation of plasmons and the energy loss
probability

The quantization procedure applied to the hydrodynamical
model allows us to evaluate the average number of plasmons
µjmk excited in a mode {j,m, k}, where j stands for ±, on
an SWCNT of radius R by an incident electron following an
arbitrary trajectory as follows [8]:

µjmk = Cjmk |V̆ext(R;m, k, ωjmk)|
2. (2)

The factor Cjmk contains information regarding the available
modes of the plasmon field, and is obtained as

Cjmk =
n0

A
D2

jmk

2m∗

m2

R2 + k2

ωjmk
, (3)

where n0 and m∗ are the total number density and the mean
effective mass of the σ and π fluids, respectively, A is the
area of the cylindrical surface occupied by the fluids, and
Djmk is a function which takes values in the interval [−1, 1]
and depends on plasmon frequencies of the non-interacting
fluids and on the coupling between them (see [8] for details).
The interaction with the incident electron is included through
V̆ext(R;m, k, ω), which is a Fourier–Bessel transform of the
Coulomb potential created by a point charge e moving on

a general trajectory, given by r0(t) = (r0(t), φ0(t), z(t)) in
cylindrical coordinates. We have

V̆ext(R;m, k, ω) =
∫
∞

−∞

dt eiωtṼext(R;m, k, t), (4)

where

Ṽext(R;m, k, t) = −e2Z R gmk(R, r0(t)) e−imφ0(t)−ikz0(t) (5)

with gmk(r, r′) = 4π Im(|k|r<)Km(|k|r>) being the cylindrical
Green function, in which r< = Min(r, r′) and r> =
Max(r, r′), whereas Im and Km are the modified Bessel
functions of the first and second kind, respectively.

In this work we are interested in comparing our results
with the energy loss spectra obtained with a TEM using the
EELS technique, with the electron beam typically accelerated
at ≈100 keV or more. Since the total energy losses due
to plasmon excitation are small (namely, less than 50 eV),
we may consider that the electrons follow straight-line
trajectories without deflection. Moreover, we restrict our
calculations to the trajectories that are perpendicular to the
nanotube’s axis, which is the most usual experimental setting.
Hence, we may write the coordinates of the incident electron
as

r0(t) =
√

r2
min + (vt)2,

φ0(t) = arctan
(

vt

rmin

)
,

z0(t) = 0,

(6)

where rmin is the minimum distance to the tube’s axis (or
impact parameter).

While the integral in equation (4) may be evaluated
analytically for external trajectories with rmin ≥ R, as shown
in [8], in the case of trajectories traversing the nanotube we
obtain from (4)

V̆ext(R;m, k, ωjmk) = −8πe2R[Km(|k|R) f±jmk

+ Im(|k|R) h±jmk], (7)

where

f±jmk =

∫ t0

0
dt Im(|k|

√
r2

min + (vt)2) cos(ωjmkt − mφ0(t)), (8)

h±jmk =

∫
∞

t0
dt Km(|k|

√
r2

min + (vt)2)

× cos(ωjmkt − mφ0(t)), (9)

with t0 =
√

R2 − r2
min/v defining the instants±t0 at which the

electron crosses the nanotube wall. Thus, the average number
of plasmons excited in a given mode, µjmk, is given by

µjmk = (8π)2e4 R2Cjmk|Km(|k|R) f±jmk + Im(|k|R) h±jmk|
2.

(10)

Since we consider only the perpendicular trajectories,
µjmk is an even function of k. In the case where the electron
crosses the nanotube through its axis, µjmk is also an even

3
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Figure 2. Average number of plasmons µjm, integrated over k, for an SWCNT of radius R = 7 Å, excited by an electron passing through
the nanotube’s axis (rmin = 0).

function of m. In the latter case, the angle φ0(t) is defined as

φ0(t) =


−
π

2
, t < 0,

+
π

2
, t ≥ 0.

In figure 2 we plot the integrated average number of
plasmons excited in the mode {j,m}, µjm =

∫
∞

−∞
µjmk dk, as

a function of the incident electron speed v for a trajectory
passing through the axis of a 7 Å radius nanotube. It is
interesting to compare the complex behavior of different
modes with those observed in [8] for external trajectories.
In the present case, there are multiple oscillations in which
the predominance of even and odd modes alternates with
varying speed. The period of these oscillations tends to
increase at larger values of the impact parameter rmin,
until they completely disappear when the trajectory becomes
entirely external to the nanotube. Similar oscillations were
also observed in cylindrical wires [20] and even in planar
surfaces [21], suggesting that under certain conditions on the
projectile speed and nanotube radius some modes may be
virtually suppressed.

With the above definition of the average number of
plasmons excited by an energetic electron following a
straight-line trajectory through or near a nanotube, we may
obtain the probability density for such an electron losing a
given amount of energy ε as

P(ε) =
∑
j m k

µjmkδ(ε − h̄ωjmk)

=

∑
m

L

2π

∫
∞

−∞

dk
∑
j=±

Cjmkδ(ε − h̄ωjmk)

× |V̆ext(R;m, k, ε/h̄)|2. (11)

We note that P(ε) is proportional to the intensity of spectra
recorded in the EELS experiments.

Notice that the δ-function in (11) selects, for each {j,m}
mode, a value of k for which the allowed energy h̄ωjmk equals
the energy loss ε considered. This gives rise to spectra with
narrow but asymmetric peaks, since the dispersion relation
in figure 1 shows that ωjmk increases monotonically with k.
In order to facilitate comparison with experimental spectra,
where narrow peaks are broadened due to intrinsic plasmon
damping, as well as due to extrinsic experimental factors, we
calculate P(ε) by introducing an empirical damping rate γ .
Accordingly, we substitute the delta function δ(ε − h̄ωjmk) in
equation (11) by the Lorentzian of the form [22]

δ(ε − h̄ωjmk) −→
γ /π

(ε − h̄ωjmk)2 + γ 2 . (12)

We note that this kind of broadening of the plasmon
spectra naturally arises in the semiclassical version of the
hydrodynamic model where the effects of damping are taken
into account at the outset in the formulation of the model [8].
However, a precise value of γ is not well defined and,
moreover, γ could take different values for each of the fluids.
However, we consider, as a first approximation, the same
value of γ for both the σ and π electron fluids, and take h̄γ =
3 eV in close agreement with the value adopted in a recent
application of the hydrodynamic model to graphene [19].

4. Energy loss spectra: results and discussion

In this section we show and analyze the energy loss spectra,
calculated using the formalism of the previous section.
Many basic features of the energy loss process due to
plasmon excitation are more clearly seen in the undamped
spectra calculated with γ = 0. Hence, we first analyze the
characteristics of P(ε) calculated from equation (11) with
different geometrical parameters rmin and R, and then we
proceed to include finite damping to compare with the
experimental spectra found in the literature.

4
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Figure 3. Calculated spectra with different values of rmin, the
minimum distance from the particle’s trajectory to the axis of a
nanotube of radius R = 7 Å for incident electrons with energy
E0 = 100 keV. Ticks in the upper axis indicate the values of ω±,m,0
for each mode.

In figure 3 we plot the dimensionless product εP(ε)
to facilitate discussion of the energy loss probability with
zero damping for a 100 keV electron passing perpendicularly
through a 7 Å nanotube at different impact parameters
rmin. The upper scale in this figure indicates the energy
values corresponding to the different m modes at k = 0
according to figure 1, which serves to identify the m values
corresponding to each peak in the energy spectra. We note
that the contributions of higher m modes (m > 2) are
almost completely suppressed for external trajectories, but
are enhanced for penetrating trajectories, reaching maximum
values when the electron passes through the nanotube center.
Moreover, relative contributions of different modes change
when rmin varies between the nanotube center and the
nanotube wall. For instance, considering the σ + π modes at
rmin = 0, contributions from the odd modes (m = 1, 3, 5, . . .)
are heavily suppressed with respect to the neighboring even
modes, whereas the m = 1 (or the dipole) mode dominates the
spectrum for external trajectories. This behavior of various m
modes is related to the oscillations observed in the average
number of plasmons, shown in figure 2.

Also of interest is the variation of spectrum when
the nanotube radius R changes. We plot in figure 4,
in correspondence with the dispersion relations shown in
figure 1, the calculated spectra for electron trajectories that
are tangential to the walls of nanotubes of various radii.
Again considering the σ + π modes, one notices that the
positions of the asymmetric peaks corresponding to the m = 0
mode remain unaffected by the change in R, whereas the
positions of the peaks due to the m = 1, 2, . . . modes move
to lower energies with increasing R. This behavior of spectral
contributions of various modes is in accord with the behavior
of the dispersion relations shown in figure 1(b). It is worth
mentioning that one can show that the positions of the sharp
jumps on the left hand sides of all the m = 0 peaks in figure 4
are determined by the restoring frequency of the σ electrons,
h̄ωσ,r ≈ 13 eV, whereas the distance of the jumps in the

Figure 4. Calculated spectra with different values of the nanotube’s
radius R, for incident electrons with energy E0 = 100 keV, on the
trajectories passing at rmin = R.

m = 1 peaks from h̄ωσ,r (i.e., their energy differences) are
approximately given by h̄πe2nσ /(Rωσ,r) ≈ 30 R−1 eV Å,
where nσ ≈ 114.7 nm−2 is the equilibrium surface density
of σ electrons.

4.1. Comparison with experimental spectra

We have selected, among the various experimental works
[10–15] reporting on the energy loss spectra of carbon
nanotubes in different configurations and geometries, those
by Reed and Sarikaya [11], Stöckli et al [12], and Stéphan
et al [13] because they correspond to isolated SWCNTs and
the spectra were taken under similar conditions. Figures 5–7
show the results of our calculations of P(ε), in units of eV−1,
while the experimental data are renormalized (with different
factors) to be commensurate with the theoretical values.

Reed and Sarikaya recorded several spectra correspond-
ing to SWCNTs, both in isolated and in bundled samples.
In particular, a free-standing nanotube with a 12 Å diameter
was studied with two different positions of the electron
beam: traversing the nanotube and passing remotely. The
authors fitted their spectra using a sum of Lorentzian functions
in order to obtain the energy losses corresponding to the
excitation of plasmons and some intra-band transitions.

Stöckli et al reported spectra obtained from an R = 6.1 Å
SWCNT and an R = 6.7 Å SWCNT, which were supposedly
crossed by the incident beam through their axes. The spectra
showed peaks around the energy losses corresponding to the
σ + π plasmon. However, no peak was observed for the
plasmon of low energy, probably because it was hidden by
the zero-loss peak. In that work, the authors also compared
their results with the spectra calculated from a semiclassical
hydrodynamical model, for which they considered a single
fluid with the plasma parameters taken from the bulk graphite
data.

Stéphan et al studied single-walled and multi-walled
carbon nanotubes of different sizes and recorded the energy
loss spectra for 100 keV electrons at grazing trajectories
(i.e., with the impact parameter equal to the radius of each

5
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Figure 5. Comparison of calculated spectra with experimental spectra reported by Reed and Sarikaya [11], corresponding to an SWCNT of
6 Å radius and two impact parameters: (a) rmin = 0 and (b) rmin = 24 Å . Thin dashed line: energy loss probability distribution P(ε) in units
of eV−1 with zero damping (γ = 0). Smooth colored lines: probability distribution with finite damping (γ = 3 eV) for various values of the
momentum transfer cutoff kc. Dashed line with circles: experimental data. The remaining parameters are: beam energy E0 = 100 keV, and
restoring frequencies ωπr = 4.06 eV, ωσ r = 13.08 eV.

Figure 6. Comparison of calculated spectra with experimental spectra reported by Stöckli et al [12] (black dashed line with circles) for
SWCNTs of radii R = 6.1 Å and R = 6.7 Å, with the electron beam impinging perpendicularly at the nanotubes. Two impact parameters are
considered, rmin = 0 (red line) and rmin = 3 Å (green line). The remaining parameters are: beam energy E0 = 100 keV, restoring
frequencies ωπr = 4.06 eV, ωσ r = 13.08 eV, and the momentum transfer cutoff kc = 1 Å

−1
.

nanotube). In particular, they recorded the spectra for a
6 Å SWCNT and an 11 Å SWCNT, and compared their results
with calculations based on a semiclassical dielectric model for
the bulk dielectric function of graphite.

In principle, the above experimental studies detected
peaks at characteristic energy losses that may be identified
with the π and σ + π plasmons. The peak at low energy,
when visible, is easily distinguished around 5 eV, which may
be explained by a confluence of the multiple peaks with
m = 0, 1, 2, . . . , seen in the idealized spectra of figures 3
and 4, which is caused by the intrinsic plasmon damping and
the low dispersion of the π modes seen in figure 1. On the

other hand, more variability and more structure is observed
in experiments for the high energy, σ + π plasmon modes.
There is a general agreement among the authors that there
are at least two features, labeled I and II, occurring at a
lower energy of ≈14–15 eV and a higher energy of ≈19 eV,
respectively. Those features are tentatively ascribed to surface
plasmon excitations, depending on the size of the nanotubes
considered [13]. Table 1 gives a synthesis of the characteristic
energies observed by different authors.

We have calculated the energy loss probability density for
comparison with the experimental spectra by considering in
each case the radii and the impact parameters as reported by

6
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Figure 7. Comparison of calculated spectra with experimental spectra reported by Stéphan et al [13], for nanotubes with the radii 6 Å (left
panel) and 11 Å (right panel) and the beam passing at tangential trajectories (rmin = R). We used a fixed restoring frequency of
ωπ,r = 4.06 eV for π electrons, and varying restoring frequency for σ electrons: ωσ,r = 13.08 eV (red continuous line), 12 eV (green
dashed line) and 11 eV (blue dash–dotted line). Black dashed line with circles: experimental data.

Table 1. Comparison of the σ + π plasmon energies identified by
different authors in their EELS experiments. I and II identify the
lower and higher peak/shoulder observed.

Reference R (Å) Energy (eV)

Reed and Sarikaya [11] 6 I 13–15
II 17–19

Stöckli et al [12] 6.1 I 14
II 19.5

6.7 I 13.5
II 19

Stéphan et al [13] 6 I 15
II 19

11 I 15
II —

the authors of the cited works. In these calculations we have
adopted a damping parameter that has the same value of h̄γ =
3 eV for both fluids. In addition, we have introduced a cutoff
in the longitudinal momentum transfer, kc, in the integral of
equation (11), above which single-particle excitations start
to dominate over the collective excitations. This restriction
influences the shape of the spectra by suppressing higher
energy peaks observed in figure 3 that correspond to the
modes excited with larger momentum transfers. A reasonable
value for this parameter is kc ∼ 1 Å

−1
.

In figure 5 we compare the calculated spectra with the
measurements by Reed and Sarikaya, obtained with the beam
passing through the axis of a 6 Å radius nanotube and at
a distance of about 24 Å from it. We display the results
of calculations with different values of kc in order to show
the variability of the theoretical spectrum, especially for
penetrating trajectories. Also included is the corresponding
zero-damping spectrum calculated with no momentum cutoff,

which is useful for identifying the contributions of different
m modes. The penetrating trajectory calculations (with rmin =

0) show great variability with kc, especially in view of the
rapid suppression of the m = 2 mode at low kc values. The
figure shows that the broad peak centered at ≈16.5 eV in the
spectra recorded by Reed and Sarikaya may be attributed to
the contribution of the broad m = 0 feature and the much
less prominent m = 1 mode, while the small shoulder at
≈22 eV corresponds to the excitation of the m = 2 mode.
The relative contribution of the modes is not satisfactorily
reproduced by the theoretical spectrum at kc = 1 Å

−1
. In that

respect we observe that, although the position of the electron
beam reported by the authors is rmin = 0, it is possible that
the finite size of the beam spot influences the results, with
some electron trajectories passing at a considerable distance
from the nanotube axis and contributing to the spectrum with
different weights of the m > 0 modes, as shown in figure 3.

The issue of the observed suppression of the higher
m modes in comparison with theoretical spectra may also
be tackled by postulating a cutoff value in the angular
momentum, mc, beyond which collective oscillations around
the nanotube circumference dissipate into single-particle
excitations. For example, Barton and Eberlein [17] found a
cutoff of `c = 3 for the spherical angular plasmon modes on a
C60 molecule. Further comments on the weights coming form
different m modes in the losses at high energy are given below,
in our analysis of the spectra measured by Stöckli et al.

Regarding the external trajectory, we observe that the
calculated spectra are less sensitive to the value of kc (hence
only the results with kc = 0.1 and 1 Å

−1
are shown). Clearly,

the peak of the experimental spectrum corresponds to the
m = 0 contribution, while the m = 1 contribution at≈17.5 eV
is less visible in the experimental spectrum. (Also, notice that

7
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the probability density at this large value of rmin is about 5
times smaller than the corresponding values at penetrating
trajectories.)

We further present in figure 6 a comparison with the
data recorded by Stöckli et al, corresponding to two SWNTs
of similar radii, R = 6.1 Å (figure 6(a)) and R = 6.7 Å
(figure 6(b)). The raw spectra measured by these authors are
very noisy, and were treated with a high frequency filter to
facilitate the identification of certain features between≈14 eV
and ≈22 eV for both nanotubes. One may infer from the
paper by Stöckli et al that the electron beam, which traverses
the nanotubes perpendicularly and is centered on their axes,
covers more than a half of each nanotube’s diameter, assuming
the spot size of about 5 Å. Hence, it is reasonable to consider
that the electrons of the beam cross the nanotube with impact
parameters in a range from rmin = 0 to rmin ≈ 2.5–3 Å. Taking
this into account, we have included in figure 6 the results of
calculations for trajectories with rmin = 0 (thick red lines)
and trajectories with rmin = 3 Å (thick green lines). As one
can see, while the position of different contributions from
the modes m = 0, 1, 2, . . . may be associated with features
observed in the experimental spectra, the general shape and
the relative contribution of these modes are better reproduced
by the off-center trajectories in both nanotubes.

It should be mentioned that Stöckli et al have also
compared their data with their own calculations based on a
hydrodynamic model, and analyzed the spectra on the basis
of their numerical results. In particular, since they considered
only the excitation of σ + π plasmons and did not include
any restoring terms, the dispersion relation for their m = 0
mode vanishes in the k→ 0 limit, in contrast with what we
obtain by using finite restoring frequencies. This fact makes
their m = 0 contribution negligible above energy losses of
about 10 eV, while our approach yields a large contribution
from that mode right above the threshold given by h̄ωσ,r.
As a consequence, they identify the peak at ≈14 eV in the
experimental spectra with the m= 1 mode, while we postulate
that the broad feature seen between 14 and 19 eV is largely
due to a mixture of contributions from the m = 0 and 1
modes. A sharp test for proving our assertion is based on the
experimental observation that the position of the feature at
≈14 eV practically does not vary with the nanotube radius,
while the position of the feature below ≈20 eV associated
with the m = 1 mode is shifted to a somewhat higher energy
in the thinner nanotube. While this argument is qualitatively
supported by the discussion of theoretical spectra in figure 4,
the energy resolution of the experimental data is not sufficient
for full quantitative validation.

Finally, in figure 7 we analyze the data recorded by
Stéphan et al [13]. These spectra were taken also at 100 keV,
with an electron probe having a 0.5 nm diameter, and with
electron trajectories being perpendicular to the nanotubes and
presumably tangential to their walls. The spectra include
a loss region at low energy, with a clearly identifiable
contribution of the π plasmon at around 5.1 eV. This peak
is relatively well reproduced by our model and it does not
undergo much change in going from the 6 Å nanotube to the
11 Å nanotube, in accordance with the spectra in figure 4.

Regarding the losses at high energy, the experimental data
present a marked peak at around 15 eV, which is broader
for the thinner nanotube. At this energy, as seen in figure 3,
the dominant modes are m = 0 and 1, so we may assert
that the distance between them (i.e., the difference of the
energies of these modes) governs the width of the peak that is
shown in the calculated spectra. We recall from figure 4 that
the distance between these modes decreases with increasing
nanotube radius, while the position of the m = 0 contribution
remains unchanged.

We also include in figure 7 calculations made with
different values of the restoring frequency ωσ,r, in order to
show the dependence of the position of the σ + π plasmon
peak on this parameter. It can be seen that the plasmon peak
energy is very sensitive to ωσ,r and it shifts by an amount
on the same order as the variation in the restoring frequency.
Since the value of this empirical parameter is related to,
but not unequivocally determined by, the energy gap, ωσ,r
may vary with the dimension and chirality of the nanotube
considered.

5. Conclusions

We have implemented a calculation of the energy loss
spectra due to plasmon excitation for fast electrons passing
through a single-walled carbon nanotube, thereby extending
the methodology of a quantized two-dimensional, two-fluid
hydrodynamic model developed in a previous work for
remote external trajectories [8]. This methodology allows
calculation of the average number of excited plasmons and the
corresponding probability density of the energy loss with zero
damping, which provide valuable information on the role of
various plasmon modes in the spectra and their dependence
on geometric factors such as the electron beam impact
parameter and the nanotube radius. We have further compared
our results with the experimental spectra recorded by three
different groups using electron energy loss spectroscopy
with a transmission electron microscope. In an attempt to
elucidate the origins of different features in those spectra,
we have included a finite value for the plasmon damping
rate, introduced a maximum momentum transfer for incident
electrons, and modified the values of the restoring frequencies
for the σ and π electron systems in accord with recent
implementation of the hydrodynamic model for graphene.

The π plasmon peak, located around 5 eV, is easily
identified and well reproduced by the calculations, in
consistency with the very good performance shown by the
present model in describing the corresponding dispersion
relation [8]. The relatively compact structure of the π plasmon
peak and its stability against change in the nanotube radius are
explained by a confluence of the contributions due to different
angular modes of order m = 0, 1, 2, . . . , which exhibit weak
dispersion.

On the other hand, the high energy σ + π plasmon peak
shows more structure in both the experimental spectra and our
calculations, presumably because of the broader dispersion of
its angular modes and a more pronounced sensitivity to the
nanotube radius than in the case of the π plasmon. We were
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able to obtain a reasonable qualitative agreement between the
calculations and the experimental spectra and, in particular,
we identified structures around 13 and 19 eV in those spectra
as being attributable to the angular modes with m = 0 and 1
of the σ + π plasmon.

Hence, we may conclude that the inclusion of restoring
frequencies in the hydrodynamic model, combined with
different weights of the principal angular modes that depend
on geometric factors, yields an explanation of the loss
features at high energy in the spectra, without the need
to invoke bulk properties of graphite for single-walled
carbon nanotubes [13]. However, quantitative details of the
experimental spectra are difficult to reproduce because the
calculated spectra are found to be very sensitive to different
parameters of the model. In particular, the finite size of
the incident electron beam spot seems to greatly affect
the calculated spectra for trajectories passing through the
nanotube, and we shall tackle this aspect of the model in future
work.
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Wang Y-N 2004 Interactions of fast ions with carbon
nanotubes: two-fluid model Phys. Rev. B 70 195418

[7] Gumbs G and Balassis A 2005 Comparison of the stopping
power of plasmons and single-particle excitations for
nanotubes Phys. Rev. B 71 235410

[8] Mowbray D J, Segui S, Gervasoni J, Mišković Z L and
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2011 High-energy plasmon spectroscopy of freestanding
multilayer graphene Phys. Rev. B 84 155416

[20] Gervasoni J L and Arista N R 2003 Plasmon excitations in
cylindrical wires by external charged particles Phys. Rev. B
68 235302

[21] Denton C, Gervasoni J L, Barrachina R O and Arista N R
1998 Plasmon excitation by charged particles moving near
a solid surface Phys. Rev. A 57 4498–511

[22] Lucas A A, Benedek G, Sunjic M and Echenique P M 2011
Theory of highly charged ion energy gain spectroscopy of
molecular collective excitations New J. Phys. 13 013034

9

http://dx.doi.org/10.1103/PhysRevB.47.6617
http://dx.doi.org/10.1103/PhysRevB.47.6617
http://dx.doi.org/10.1103/PhysRevB.52.4677
http://dx.doi.org/10.1103/PhysRevB.52.4677
http://dx.doi.org/10.1103/PhysRevB.53.10225
http://dx.doi.org/10.1103/PhysRevB.53.10225
http://dx.doi.org/10.1080/13642819908218320
http://dx.doi.org/10.1080/13642819908218320
http://dx.doi.org/10.1103/PhysRevB.66.235419
http://dx.doi.org/10.1103/PhysRevB.66.235419
http://dx.doi.org/10.1103/PhysRevB.70.195418
http://dx.doi.org/10.1103/PhysRevB.70.195418
http://dx.doi.org/10.1103/PhysRevB.71.235410
http://dx.doi.org/10.1103/PhysRevB.71.235410
http://dx.doi.org/10.1103/PhysRevB.82.035405
http://dx.doi.org/10.1103/PhysRevB.82.035405
http://dx.doi.org/10.1063/1.3626460
http://dx.doi.org/10.1063/1.3626460
http://dx.doi.org/10.1103/PhysRevLett.80.4729
http://dx.doi.org/10.1103/PhysRevLett.80.4729
http://dx.doi.org/10.1103/PhysRevB.64.195404
http://dx.doi.org/10.1103/PhysRevB.64.195404
http://dx.doi.org/10.1063/1.1469685
http://dx.doi.org/10.1063/1.1469685
http://dx.doi.org/10.1103/PhysRevB.66.155422
http://dx.doi.org/10.1103/PhysRevB.66.155422
http://dx.doi.org/10.1103/PhysRevLett.100.196803
http://dx.doi.org/10.1103/PhysRevLett.100.196803
http://dx.doi.org/10.1002/pssb.200879602
http://dx.doi.org/10.1002/pssb.200879602
http://dx.doi.org/10.1103/PhysRevB.63.165401
http://dx.doi.org/10.1103/PhysRevB.63.165401
http://dx.doi.org/10.1063/1.461065
http://dx.doi.org/10.1063/1.461065
http://dx.doi.org/10.1016/S0375-9601(96)00707-4
http://dx.doi.org/10.1016/S0375-9601(96)00707-4
http://dx.doi.org/10.1103/PhysRevB.84.155416
http://dx.doi.org/10.1103/PhysRevB.84.155416
http://dx.doi.org/10.1103/PhysRevB.68.235302
http://dx.doi.org/10.1103/PhysRevB.68.235302
http://dx.doi.org/10.1103/PhysRevA.57.4498
http://dx.doi.org/10.1103/PhysRevA.57.4498
http://dx.doi.org/10.1088/1367-2630/13/1/013034
http://dx.doi.org/10.1088/1367-2630/13/1/013034

	Plasmon excitation in single-walled carbon nanotubes probed using charged particles: comparison of calculated and experimental spectra
	Introduction
	Plasmon modes within the hydrodynamic model
	Excitation of plasmons and the energy loss probability
	Energy loss spectra: results and discussion
	Comparison with experimental spectra

	Conclusions
	Acknowledgments
	References


