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Abstract 

Background: Time-varying dynamics is one of the main issues for achieving safe blood glucose control in 

type 1 diabetes mellitus (T1DM) patients. In addition, the typical disturbances considered for controller 

design are meals, which increase the glucose level, and physical activity (PA), which increases the subject’s 

sensitivity to insulin. In previous works the authors have applied a linear parameter-varying (LPV) control 

technique to manage unannounced meals. 

Methods: A switched LPV controller that switches between 3 LPV controllers, each with a different level of 

aggressiveness, is designed to further cope with both unannounced meals and postprandial PA. Thus, the 

proposed control strategy has a “standard” mode, an “aggressive” mode, and a “conservative” mode. The 

“standard” mode is designed to be applied most of the time, while the “aggressive” mode is designed to 

deal only with hyperglycemia situations. On the other hand, the “conservative” mode is focused on 

postprandial PA control. 

Results: An ad hoc simulator has been developed to test the proposed controller. This simulator is based 

on the distribution version of the UVA/Padova model and includes the effect of PA based on Schiavon.1 The 

test results obtained when using this simulator indicate that the proposed control law substantially reduces 

the risk of hypoglycemia with the conservative strategy, while the risk of hyperglycemia is scarcely affected. 

Conclusions: It is demonstrated that the announcement, or anticipation, of exercise is indispensable for 

letting a mono-hormonal artificial pancreas deal with the consequences of postprandial PA. In view of this 

the proposed controller allows switching into a conservative mode when notified of PA by the user. 
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There has been an intense research activity in the last 

decades to produce an artificial pancreas (AP) that may help 

type 1 diabetes mellitus (T1DM) patients. Automatic 

feedback control of blood glucose levels has been an active 

research topic since the 1970s,2 and with the development 

of the continuous glucose monitoring (CGM),3 it has gained 

momentum only in recent years.4-7 In addition, very recently 

it has been tested in an outpatient setting.8-12 An important 

issue to be considered here is the possibility that an AP 

could help patients in their everyday life by reducing the 

need for self-management strategies. 

The typical disturbances considered for controller design 

are meals, which increase the glucose level, and physical 

activity (PA), which increases the subject’s sensitivity to 

insulin. Recently, models of PA have been developed in 

Schiavon,1 Breton,13 Dalla Man et al,14 Jacobs et al,15 Ben 

Brahim et al,16 Schiavon et al,17 and references therein. 

These models could be included in a simulator to test the 

performance of different control algorithms under PA. The 

general idea is to produce similar results with this 

disturbance in the glucose-insulin regulation, that is, 

eliminate the need of PA anticipation. In this respect, an 

automatic insulin adjustment via continuous subcutaneous 

insulin infusion (CSII) at the start of PA seems to be a 

reasonable decision. Therefore, several works focused on 

detecting PA have been presented.18-20 Furthermore, 

multiple clinical studies have shown that the chances of 
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experiencing hypoglycemia decrease when adjusting the 

insulin injection at the beginning of PA.21-23 However, it is 

worth mentioning that none of them refer to postprandial 

PA, which is the main topic of this article. PA 

approximately 2 hours after a meal seems to be a worst case 

situation, because even if the insulin infusion is reduced, or 

the pump is switched off, there is still high insulin on board 

(IOB), which under PA (that increases insulin sensitivity) 

will increase the risk of hypoglycemia. In Turksoy et al,24 

an adaptive control with unannounced meals and exercise is 

presented. The PA in some of those cases could be 

considered as postprandial, but either the PA was initiated 

too soon or far after the meal, or the patient had low IOB 

during exercise, or he/she ate after completion of PA. In 

those situations where the PA was performed approximately 

2 hours after a meal and with an insulin bolus injected at the 

mealtime, the patient had to be rescued with a snack. As 

stated in Riddell et al,25 one of the factors affecting blood 

glucose fluctuations during PA are the amount of insulin 

and food in the body at the time of the activity. 

Previous work by the authors using time-varying 

controllers, that have been tested in silico, were presented in 

Colmegna et al.26 In addition, in Colmegna and Sánchez-

Peña,27 similar results were achieved in a linear parameter-

varying (LPV) controller framework. An extension of this 

latter proposal is an approach that switches between a 

selection of multiple LPV controllers that have been 

designed for different objectives. In Colmegna et al,28 the 

authors have applied that strategy to regulate the blood 

glucose level in response to unannounced meals by 

switching between 2 LPV controllers. One controller is 

dedicated to dealing with large and persistent 

hyperglycemic excursions as in the postprandial stage, and 

the second controller is responsible for glucose control at all 

other times. The switch is triggered via an estimator that 

detects persistent high glucose values. This is similar to the 

proposal in Gondhalekar et al.29 

In this article, the strategy is to extend these results to 

patients performing late postprandial PA by generating a 

third LPV controller that is more conservative. Here, late 

postprandial is defined as approximately 2 hours after a 

meal. The possibility of estimating the appearance of PA is 

also explored, so that exercise anticipation is unnecessary. 

Unfortunately, as is demonstrated later, this is not possible, 

at least in mono-hormonal (insulin) control and under 

postprandial PA. PA affects glucose differently and may 

induce either hyperglycemia or hypoglycemia. The type of 

PA is a key (aerobic or anaerobic) and the amount of 

available insulin and its delayed peak of action is the other 

major contribution. Most of the time after the meal the 

patient has a larger amount of “free” insulin that allows 

glucose uptake by the muscles. No matter how fast the 

estimator detects the presence of PA, a hypoglycemia 

episode is likely to occur in mono-hormonal control. This 

happens when the exercise is initiated in the (late) 

postprandial period and the controller reacts according to 

the estimator output, or, in an open-loop setting, with no 

basal attenuation or pump suspension approximately 1 hour 

prior to the PA.17,30 It is worth noting that hypoglycemia 

episodes have been detected even in healthy subjects during 

postprandial exercise.31 Hence, (late) postprandial PA needs 

to be anticipated to avoid PA induced hypoglycemia. 

Despite this limitation, the notion of switched LPV control 

can still be used, but with a controller purposefully 

designed for such a situation and triggered by the user. 

The article is organized as follows. The next section 

presents the methods based on the PA model, details the 

inherent problems which appear in postprandial PA, and 

also includes the controller design based on a previous work 

by the authors. Numerical simulations with the new 

switched LPV controller are provided in the third section. A 

discussion of these results and future research directions are 

presented in the fourth section, and conclusions are drawn 

in the fifth section. 

Methods 

PA Model 

Although there are several works that aim toward providing 

better understanding of the effect of exercise on glucose 

physiology, modeling PA is still an open problem. Glucose 

excursions during and after exercise do not only depend on 

the type of PA, but also on many other factors such as 

duration of diabetes, gender and fitness level. In Breton13 

and Dalla Man et al,14 a mathematical model that links heart 

rate (HR) with PA was developed. However, in van Bon et 

al,30 no correlation could be demonstrated between the 

increase in HR and the decrease in glucose concentrations 

during moderate-intensity exercise. 

A well-known effect related to PA is the increase in 

insulin sensitivity. In Schiavon et al,31 that effect was 

quantified during moderate exercise in 4 periods of 15 

minutes each separated by a 5-minute rest, in the 

postprandial state. In this work, that result is included in the 

FDA-accepted metabolic simulator as reported in Schiavon1 

and Schiavon et al.17 Therefore, the model parameter mxV  

that represents the insulin sensitivity is modified as follows: 
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with 3.29  , mxrV  the subject’s sensitivity to insulin at 

rest, and ext  the exercise start time. 

As indicated in Schiavon et al17 and Schiavon et al,31 this 

method has some limitations. First, it assumes a 

nonphysiological step increase in mxV  at ext . Furthermore, 
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it only describes the effect of exercise on insulin-dependent  

 

 

 

 

Figure 1. Postprandial blood glucose excursion obtained with the switched-LPV strategy with (blue squares) and 

without (green circles) unannounced PA. 

 

Figure 2. Blood glucose response (black squares) obtained with the autonomous switched-LPV strategy when insulin 

administration (blue circles) is interrupted during PA. 

 

 

glucose utilization, although insulin-independent effects are 

also known to be triggered due to the PA. Despite the 

aforementioned drawbacks, it is worth noting that the 

results presented in Schiavon et al31 were obtained using the 

triple-tracer technique for the first time to measure the PA 

effect on glucose metabolism in the postprandial period. In 

addition, although with this modeling framework we can 

only simulate moderate PA in the (late) postprandial period, 

we understand that, as mentioned in the Introduction, this is 

one of the most difficult control situations due to the large 

increase in the subject’s sensitivity to insulin at the time 

he/she still has high IOB. Finally, this physiological effect 

can be incorporated into the FDA-accepted UVA/Padova 

T1DM simulator in a straightforward way.1,17 

Control Problems in Postprandial PA 

As stated in Schiavon et al,17 there are 2 important 

questions regarding the inclusion of postprandial PA in 

closed-loop control. Here, we add a third one. 

● Is it necessary to anticipate the incoming PA to avoid 

postprandial hypoglycemia? 

● In case the answer is yes, which is the best closed-

loop strategy? 
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● Can bihormonal control help in this regard and 

avoid the necessity of anticipating PA? 

 

 

 

 

 

Figure 3. Postprandial blood glucose excursion when the control law switches to the most aggressive controller at meal 

time (blue squares), when the control law does not switch to the most aggressive controller at meal time (orange 

triangles), and when the control law switches to the conservative controller 30 minutes before the meal (green circles). 

 

Figure 4. Augmented model for controller design. 

 

 

In previous works in the LPV framework, we have focused 

on unannounced meal perturbations. This was handled by 

means of an estimator that detects persistent high glucose 

values, and by switching to a more aggressive LPV 

controller, which was previously designed. Specifically, the 

controller switches to a hyperglycemia operating mode 

when high and rising glucose values are detected, for 

example, after a meal. The LPV controller in this region is 

more aggressive because it is focused on reducing the 

hyperglycemia peak. However, if the patient is involved in 

PA in the postprandial state, hypoglycemia, which occurs 

when the blood glucose level drops below 70 mg/dl, could 

not be prevented, as is depicted in Figure 1. 

The same idea applied to unannounced meals could be 

attempted with PA. The goal would be to have a similar 

“exercise estimator” that could anticipate this 

perturbation, and thereby, avoid the user’s involvement, 

for example, unannounced PA. However, it can be shown 

by means of in silico simulations, that even if we have a 

perfect PA estimator, the postprandial hypoglycemia 

may not be avoided. In fact, in Figure 2, it is shown that 

the strategy of cutting the total insulin infusion to zero at 
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the instant when PA is initiated is still futile, at least with 

a mono-hormonal control strategy. The latter was also 

detected experimentally in van Bon et al.30 Basically, the 

problem is that the amount of insulin injected at meal 

times could be excessive under the effect of PA. 

Unfortunately, considering that PA can be detected, at 

the earliest, at the time it is initiated, it is impossible to 

make a decision at meal times which involves 

postprandial PA, before PA has been detected. In 

addition, only the patient can anticipate PA before it 

happens. 

Once we agree with the fact that PA anticipation is 

necessary, the best strategy can rely on another LPV 

controller that may be designed for PA situations, that is, a 

third, more conservative controller, in the switched-LPV 

control approach. The switching signal in this case would 

be triggered by the patient 30 minutes before the meal, 

because there is no way to anticipate this information in a 

real situation by CGM feedback. The conservative region 

will be active during 5 hours for it to remain active during 

almost the whole postprandial period, and thereafter, the 

other LPV controllers will automatically take over the 

insulin delivery. Similar postprandial periods have been 

defined in Colmegna et al,26 Colmegna et al,28 Monnier and 

Colette,32 Nimri et al,33 and Breton et al.34 The comparison 

between this new, more conservative approach, that will be 

detailed in the next section, and the previous presented in 

Colmegna et al28 is depicted in Figure 3. As shown in that 

figure, even without switching to the most aggressive 

controller at mealtime, the postprandial hypoglycemia due 

to PA cannot be avoided. 

Controller Design 

The following is a very brief summary of work presented in 

Colmegna et al.28 In that work, for each in silico Adult # j  

of the UVA/Padova simulator, 2 LPV controllers ,Ki j  with 

  1, 2  i were synthesized. Controller 1,K j  was designed to 

control most of the time, while 2,K j  was applied only when 

high and rising glucose values were detected, for example, 

after a meal. 

The model structure presented in van Heusden et al,35 

and slightly adapted in Colmegna et al,26 was considered for 

design purposes. The main advantage of such a model 

structure is that it is a simple third-order model with a 

personalized gain based solely on a priori clinical 

information: total daily insulin (TDI), carbohydrate ratio 

(CR), and body weight (BW). Therefore, for each Adult 

# j , an individualized transfer function  ,i jG s , from the 

insulin delivery input (pmol/min) to the glucose 

concentration output (mg/dl), can be obtained. Note that 

 ,i jG s  depends on both indexes: i  and j . This is because 

the gain of the transfer function  2, jG s  is intentionally 

smaller than the gain of  1, jG s  to obtain a more 

aggressive control law when large and persistent 

hyperglycemic excursions are detected. 

In this work, a third LPV controller 3,K j  is included to 

manage postprandial PA. To that end, the gain of the 

corresponding transfer function  3, jG s  is purposefully 

defined to be greater than the gain of  1, jG s . In this way, 

 3, jG s  is associated with a more conservative model, and 

therefore, with a less aggressive control law. 

The augmented continuous-time model for controller 

design is depicted in Figure 4, where: 
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r  and e  are, respectively, the reference and error signals, 

u  is the control action, and ,u iW  and  , sp iW  are the 

design weights. As shown in the same figure, 2 parameters 

have been included in each augmented model to adapt the 

controller during the closed-loop implementation. The time-

varying parameters are  
 

1
110 mg/dl

 t
g t  and  

 pe
2

pb

 
i t

t
i . 

The first parameter is real-time measurable and depends on 

the glucose level  g t  measured by the CGM. The second 

parameter depends on  pe pb,  i t i , which are the estimated 

current and basal plasma insulin levels, respectively. The 

estimation is performed through the subcutaneous insulin 

model proposed in Dalla Man et al,36 considering its mean 

population values. In the case of  pei t , the input to the 

model is the current injected insulin, and in the case of pbi , 

the basal insulin dosage. Note that pbi  can be obtained off-

line, before the simulation. 

The performance and actuator weights  , sp iW  and ,u iW  

are designed such that the open-loop model matrices 

depend affinely on the parameters  k t , 1,2k . Also, 

the parameter regions are convex polytopes with a finite 

number v  of vertices, that are known. Hence, the 

optimization problem related to the LPV controller 

synthesis can be stated in terms of a finite number of linear 

matrix inequalities (LMIs). Specifically, for each LPV 

controller, the problem is solved in terms of 2 1v  LMIs, 

that is, a common single quadratic Lyapunov function for 

each set of 4v  vertices. Note that the vertex controllers 

can be synthesized off-line. 

During the implementation phase, the LPV controllers 

for 1,2,3i  can be computed as follows: 

      , , ,

1

      
v

l i j k l

l
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Figure 5. Average closed-loop responses for all the in silico adults of the distribution version of the UVA/Padova 

simulator with (green circles) and without (blue squares) PA anticipation. The lines with markers are the mean values, 

and the mean 1  STD values are represented by vertical bars, every 10 minutes. The filled yellow and green regions 

represent the 70-180 mg/dl and 80-140 mg/dl ranges, respectively. 

 

 

where         0,1       0,    l t t  are the polytopic coordinates 

of the measured parameter   t , and ,k l  are the vertices 

of the parameter regions. 

The LPV “fast poles” problem can be solved by defining 

a convenient LMI region to keep the poles of each “frozen” 

linear time invariant closed-loop system (holding the 

parameter fixed) in a prescribed region of the complex 

plane.37 These pole region is selected at least 10 times 

slower than the controller sampling time 10sT  minutes. 

As previously mentioned, 2,K j  automatically takes over 

the insulin delivery when high and rising glucose values are 

detected. In that way, a hyperglycemia detection algorithm 

has been implemented based on  g t  and an estimation of 

its rate of change, which is obtained by a causal fourth-

order Savitzky-Golay filter.38,39 On the other hand, 3,K j  is 

applied manually by user notification. 

Results 

The glucose-insulin model presented in Dalla Man et al40 

was modified to include the effect of PA in the postprandial 

state. All 11 in silico adults (one is an average patient) of 

the distribution version of the UVA/Padova metabolic 

simulator are considered for simulations, using CGM as the 

sensor and a generic CSII pump. 

Due to the fact that closed-loop performance of the 

switched-LPV strategy with several unannounced meals has 

already been tested in Colmegna et al,28 here, simulations 

are exclusively focused on postprandial PA. Therefore, the 

protocol has only a duration of 6 hours. It starts at noon 

with the switched-LPV controller closing the loop, and the 

conservative LPV controller is triggered manually at 12:30 

PM. Then, a meal of 65 g carbohydrates is ingested at 1 PM, 

and thereafter, a moderate-intensity exercise commences at 

3 PM. Finally, the controller automatically leaves the 

conservative mode, that is, 3i , at 5:30 PM and returns to 

the autonomous mode, that is,  1,2i . The case where 

PA is not announced is also tested for comparison purposes. 

The average time responses obtained with and without 

postprandial PA announcement are depicted in Figure 5. As 

shown in that figure, if exercise is not announced, a large 

insulin spike appears, because the controller triggers into an 

aggressive mode when the meal is detected. In that way, 

subsequent PA makes postprandial hypoglycemia 

unavoidable. On the other hand, as can be seen from Figure 

5, if the controller is triggered into the conservative mode 

30 minutes before the meal, postprandial hypoglycemia 

does not occur. 

The control variability grid analysis (CVGA) plots41 and 

the average results for announced and unannounced PA are 

presented in Figure 6 and Table 1, respectively. Both the 

CVGA plots, as well as the average results, are computed 

based on the 5-hour time interval following the start of the 

meal, considering a 95% confidence interval. It is 

noteworthy that although the risk of hypoglycemia is 

substantially reduced with the conservative strategy, the 
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risk of hyperglycemia is scarcely affected. In fact,  

 

 

 

 

Figure 6. CVGA plots of the closed-loop responses of all the in silico adults of the distribution version of the UVA/Padova 

simulator with (circles) and without (stars) PA anticipation. The CVGA categories represent different levels of glucose 

control, as follows: accurate (A zone), benign deviation into hypo/hyperglycemia (lower/upper B zones), benign control (B 

zone), overcorrection of hypo/hyperglycemia (upper/lower C zone), failure to manage hypo/hyperglycemia (lower/upper D 

zone), and erroneous control (E zone).41 

 

 

Table 1. Comparison Between the Average Results for 

All the in Silico Adults of the Distribution Version of the 

UVA/Padova Simulator Obtained With and Without PA 

Anticipation. 

PA anticipation Yes No 

Postprandial PA Yes No Yes No 

Max BG (mg/dl) 224 224 219 219 

Min BG (mg/dl) 104 107 64 105 

% time in (70 180) 

mg/dl 

68.6 50.4 60.0 65.4 

% time > 300 mg/dl 0.0 0.0 0.0 0.0 

% time > 180 mg/dl 31.4 49.6 26.1 34.6 

% time < 70 mg/dl 0.0 0.0 14.3 0.0 

% time < 50 mg/dl 0.0 0.0 8.5 0.0 

# < 80 mg/dl 0 0 6 0 

# < 70 mg/dl 0 0 5 0 

# < 50 mg/dl 0 0 5 0 

LBGI 0 0 4.5 0 
HBGI 5.3 8.6 4.2 5.8 
HBGI, high blood glucose index; LBGI, low blood glucose index. 

 

hyperglycemia is slightly reduced (HBGI = 5.8 to 5.3) 

comparing with the case of standard autonomous switching 

from normal ( 1i ) mode to aggressive ( 2i ) mode and 

no exercise. 

Figure 7 illustrates that reducing the insulin infusion to 

the basal rate before the PA and up to its completion 

produces a high risk of hypoglycemia. Furthermore, in that 

figure it is shown that even switching off the pump during 

that period of time, hypoglycemia could not be avoided in 

all patients, and, in addition, increase glucose variability. 

One of the reasons is that 30 minutes before the PA the 

controller already injected the insulin “bolus” in response to 

the meal. Hence, even if the insulin infusion is reduced, or 

the pump is switched off, there is still a large amount of free 

insulin, which under PA (that increases insulin sensitivity) 

will increase the risk of hypoglycemia. This is the reason 

why, as stated above, it is switched to the most conservative 

LPV control region 30 minutes previous to the meal, so that 

the controller is less aggressive in response to the CHO 

ingestion, and as a consequence, when PA begins there is 

less IOB. Finally, in Table 2 outcomes for different meal 

sizes (and therefore different IOB at the start of PA) using 

the switched LPV controller with and without PA 

anticipation are compared. 

Discussion 

Here, the questions posed in Schiavon et al17 regarding the 

inclusion of PA in closed-loop control are analyzed. 

● Is it necessary to anticipate the incoming PA to avoid 

postprandial hypoglycemia? 

● In case the answer is yes, which is the best closed-

loop strategy? 

The answer to the first one is yes, and the solution 

presented here involves a switched LPV controller based on 

current research by the authors described above, with the 

addition of a third more conservative LPV region used in 

the case of PA. 

Furthermore, a third question, whether a bihormonal 

control could allow the patient to not be part of the control 

loop, is also considered. Although this is not yet reliable 

from the technological point of view,42 it is worth exploring 



8 Journal of Diabetes Science and Technology 

 
and will be the matter of future research. In that case, an 

estimator of PA should be included as part of the control so 

that the patient would not have to trigger a signal before a  

 

 

 

 

Figure 7. Envelopes of the minimum and maximum responses for all the in silico adults of the distribution version of 

the UVA/Padova simulator with the conservative LPV strategy (filled green region), pump suspension (filled red 

region), and insulin infusion reduction to the basal rate (filled light blue region). 

Table 2. Comparison Between the Average Results for All the in Silico Adults of the Distribution Version of the 

UVA/Padova Simulator to Different Unannounced Meal Sizes Obtained Using the Switched LPV Controller With and 

Without PA Anticipation. 

Meal size (gCHO) 55 60 65 70 75 

PA anticipation Yes No Yes No Yes No Yes No Yes No 

IOB at tex (U) 3.1 3.9 3.2 4.1 3.3 4.3 3.3 4.4 3.4 4.7 

Max BG (mg/dl) 205 201 214 210 224 219 233 228 243 236 

Min BG (mg/dl) 104 69 104 66 104 64 103 61 102 57 

% time in (70 180) 

mg/dl 

76.6 67.7 71.9 62.9 68.6 60.0 66.0 57.1 64.0 53.9 

% time > 300 mg/dl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 1.1 

% time > 180 mg/dl 23.4 19.3 28.1 23.3 31.4 26.1 34.0 28.1 36.0 29.4 

% time < 70 mg/dl 0.0 13.0 0.0 13.8 0.0 14.3 0.0 14.8 0.0 16.7 

% time < 50 mg/dl 0.0 6.5 0.0 7.5 0.0 8.5 0.0 10.0 0.0 11.7 

# < 80 mg/dl 0 6 0 6 0 6 0 7 1 8 

# < 70 mg/dl 0 5 0 5 0 5 0 5 0 7 

# < 50 mg/dl 0 5 0 5 0 5 0 5 0 5 

LBGI 0 3.5 0 4.1 0 4.5 0.1 5.1 0.1 6.4 

HBGI 3.9 3.2 4.6 3.6 5.3 4.2 6.0 4.7 6.8 5.2 
gCHO, grams of carbohydrates; HBGI, high blood glucose index; LBGI, low blood glucose index. 

 

 

meal. Such a controller would increase glucagon infusion a 

short time after the PA has been detected to compensate and 

avoid a hypoglycemia event. In (late) postprandial PA, 

where the IOB is high and glucose is decreasing, injecting 

glucagon as soon as possible is recommended to avoid 

hypoglycemia.42,43 In addition, it is important to emphasize 

that in nondiabetics there is a rise in glucagon and a 

reduction in insulin release at the onset of mild to moderate 

aerobic PA.24 Hence, increasing the dose of glucagon as 

soon as PA is detected is a prudent decision. 

Several articles indicate the plausibility of bihormonal 

control in the presence of PA.44-48 In particular, in the last 2 

articles, patients receive a lunch at approximately 12:30 PM 

and PA starts at 4 PM (at 6 PM they receive another meal). 

At that time (4 PM), a peak in the infusion of glucagon can 

be observed (Figure 1 in Russell et al47 and Figures 2 and 3 

in El-Khatib et al48). In van Bon et al,44 patients receive 40 

g of CHO during lunch, 2 hours later they start moderate 

PA and 1.5 hours later they receive a 60 g CHO meal. The 

presence of that meal near to the PA has an influence, as 

mentioned in that article. Nevertheless, it concludes that 

subcutaneous glucagon administration was almost always 

effective to prevent hypoglycemia when glucose was falling 

rapidly after exercise. 

Conclusions 

A switched-LPV control strategy was presented to deal with 

unannounced meals and (late) postprandial PA. It is clear 
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that a more detailed description of PA is necessary to 

include both insulin-dependent and insulin-independent 

effects on glucose absorption during exercise. The actual 

simulator used here only describes the worst case scenario, 

that is, postprandial PA, and includes only the insulin-

dependent effects. 

From this work, it was concluded that, at least under 

mono-hormonal (insulin) control, patients may need to 

announce at least 30 minutes before meals the intention to 

perform PA in the (late) postprandial stage so that no 

hypoglycemia is induced. In this case, the user simply 

“pushes a button” and this signal triggers a more 

conservative LPV controller. This is much easier than in 

meal announcement strategies where the insulin bolus needs 

to be computed beforehand based on the meal carbohydrate 

content. 

The switched-LPV technique can be seen as a 

generalization of previous results obtained by the authors. It 

can be used both in an unannounced (meals) and announced 

(PA) fashion, and allows both automatic and user-defined 

switches for other possible situations, for example, stress. 

The results are promising and will be tested against the 

complete UVA/Padova simulator when this includes a 

suitable exercise model. 
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