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Abstract
Eichhornia crassipes is a macrophyte widely used in phytoremediation, demonstrating a high ability to remove metals from
water. The aim of this work was to evaluate its enzymatic detoxification strategies and metal accumulation when it is exposed to
different Zn concentrations (0, 2, 4, 6, and 9 ppm) for periods of 24, 48, and 72 h. Zn concentration in roots was significantly
higher than in aerial parts. Independently of the treatment, in the first 48 h, concentrations of photosynthetic pigments were not
affected. However, a significant increase (between 19 and 34%) in Chl-b concentrations for all treatments was observed at 72 h.
Carotenoid concentration was not affected during the first 48 h, while at 72 h, there was a significant increase regarding the
control (between 11 and 24%) for all treatments. Malondialdehyde concentration in aerial parts and roots was not affected during
the experiment. Nonetheless, a significant increase in the enzymatic activity of the antioxidant system was observed. Results
suggest that Zn could have potential antioxidant properties, which may result in the activation of different antioxidant enzymes
involved in the protection against metal stress.

Keywords Macrophytes .Metals . Plant stress . ROS scavenging . Lipid peroxidation

Introduction

Zn is one of the most essential micronutrients for plant growth
(Broadley et al. 2007). It constitutes part of metalloenzymes
and is a cofactor of various enzymes as anhydrases, dehydroge-
nases, oxidases, and peroxidases (Hewitt 1983). In addition, it
contributes to the regulation of nitrogen metabolism, cell multi-
plication, photosynthesis, and auxin synthesis (Shier 1994). Zn

deficiency has been reported as a stimulant of increased
membrane permeability and exudation of metabolites
(Cakmak 2000; Cakmak and Marschner 1988; Li et al. 2013),
suggesting an important function in membrane stabilization
products. However, Zn can be toxic to plants when concentra-
tions exceed thresholds, reducing rooting and photosynthetic
capacity and causing the chlorosis of leaves (Tewari et al.
2008; Cambrollé et al. 2012). Furthermore, Zn stress increases
the generation of reactive oxygen species (ROS), which are
highly reactive molecules that interact with various cellular
components leading to oxidative damage, causing lipid perox-
idation, and altering antioxidant enzyme activity in plants
(Artetxe et al. 2002; Tripathi and Gaur 2004). Nevertheless,
Zn plays a dual role in the ROS-induced oxidative stress in
plants. Zn excess leads to ROS production, while Zn is also
an important cofactor of superoxide dismutase (SOD), which
catalyzes the dismutation of superoxide radical. SOD is an en-
zyme of the complex enzymatic antioxidant system which in-
cludes guaiacol peroxidase (POD), catalase (CAT), and gluta-
thione reductase (GR), among others.

A number of studies have investigated Zn uptake, accumu-
lation, distribution, and detoxification in terrestrial
plant species as Kandelia obovate (Hu and Wenjiao 2015),
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Phyllostachys pubescens (Peng et al. 2015) and Cistus
monspeliensis (Arenas-Lago et al. 2016), and aquatic species
such as Hydrilla verticillata (Srivastava and Shrivastava
2016; Wang et al. 2009; Xu et al. 2013) and Lemna minor
(Radić et al. 2010). However, studies on the physiological and
biochemical changes in Eichhornia crassipes due to a Zn
exposure have not been reported. E. crassipes can adapt easily
to different environmental conditions and is highly efficient
for the accumulation of metals from water (González et al.
2015a, b; Hadad et al. 2009, 2011; Módenes et al. 2013).
The aim of this study was to assess the enzymatic Zn detox-
ification strategies and the metal accumulation in E.
crassipes tissues. This species was chosen since it was
the dominant floating macrophyte in a wetland constructed
for the effluent treatment at a metallurgical industry (Maine
et al. 2009). Zn was studied for being one of the contam-
inants found in the treated effluents at this constructed
wetland.

Materials and methods

Plant material and growth conditions

E. crassipes plants and water were collected from an unpol-
luted pond of the Middle Paraná River floodplain. Collected
plants were acclimated for 7 days in the laboratory under
controlled conditions, temperature of 23 ± 2 °C, light intensity
of 1400 μmol photons m−2 s−1 from natural sunlight at 11 h/
13 h day/night cycle, and relative humidity of 54 ± 10%. After
acclimation, only young healthy plants of a uniform size and
similar fresh weight (30–40 g) were selected for the experi-
ment. One plant and 2 L of pond water were disposed in
plastic experimental pots.

The used pond water showed the following chemical com-
position (mean ± standard deviation): pH = 8.0 ± 0.2, conduc-
tivity = 122 ± 1 μS cm−1; dissolved oxygen = 7.7 ±
0.10 mg l−1; soluble reactive phosphorus = 0.033 ±
0.002 mg l−1; N-NH4

+ = 0.551 ± 0.019 mg l−1; N-NO3
− =

0.649 ± 0.005 mg l−1; N-NO2
− = 0.007 ± 0.001 mg l−1;

Ca2+ = 10.5 ± 0.8 mg l−1; Mg2+ = 3.5 ± 0.5 mg l−1; Na+ = 13.1
± 1.0 mg l−1; K+ = 3.50 ± 0.5 mg l−1; Cl− = 10.4 ± 1.3 mg l−1;
SO4

2− = 7.8 ± 1.8 mg l−1; HCO3
− = 52.3 ± 0.8 mg l−1, Fe =

4 μg l−1, Zn = non-detected (detection limit = 5 μg l−1).
Zn stock solutions were prepared by dissolving an appro-

priate amount of ZnCl2·6H2O (99.9% Sigma-Aldrich, China)
in deionized water. Then, dilutions were made to obtain con-
centrations of 2, 4, 6, and 9 mg l−1. These concentrations were
chosen based on the results of previous works that studied the
tolerance of E. crassipes exposed to different metals
(González et al. 2015a, b; Hadad et al. 2011). The experiment
was conducted by triplicate over 3 days, taking samples after
24, 48, and 72 h. A control without Zn addition was used.

At the end of the experiment, plants were collected, washed
with distilled water, air-dried, and separated in aerial parts and
roots. Then, samples were frozen in liquid nitrogen for storage
at − 80 °C.

Metal accumulation

Plant samples were dried, ground, and digested with a HNO3/
HCl mixture (USEPA 1994) and analyzedwith atomic absorp-
tion spectrophotometer (Perkin Elmer AAnalyst 200).
Translocation factor (TF) was calculated as the ratio of Zn
concentrations between aerial parts and roots (Baker and
Brooks 1989).

Measurement of photosynthetic pigments

Measurement of photosynthetic pigments were carried out as
previously reported by González et al. (2015a). Photosynthetic
pigments were reported as chlorophyll a (Chl-a), chlorophyll b
(Chl-b), and carotenoids and calculated according to Wellburn
(1994).

Enzyme extraction

Enzyme extracts from aerial parts and roots were carried out
as previously reported by González et al. (2015a). Total solu-
ble protein was estimated according to Bradford (1976).

Antioxidant enzyme assays

Catalase (CAT), guaiacol peroxidase (POD), superoxide dis-
mutase (SOD), and glutathione reductase (GR) total activities
were assayed as described by González et al. (2015a).

Estimation of lipid peroxidation

For the estimation of lipid peroxidation, the method of Heath
and Packer (1968) was employed. It was measured in terms of
malondialdehyde (MDA) concentration. It was calculated ac-
cording to Hodges et al. (1999).

Statistical analysis

All assays and measurements were performed in triplicate.
The results are expressed as mean ± standard deviation.
Analysis of variance (ANOVA) was applied. The assumptions
of normality and homoscedasticity were verified. Duncan’s
multiple range test was used to determinate the significant
differences among treatments. Differences at p < 0.05 were
considered significant.
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Results

Metal accumulation

Zn concentration increased in aerial parts and roots both in
terms of exposure times and initial metal concentration in
water (Fig. 1). The highest Zn concentrations were observed

in roots reaching concentrations 50 times higher than in aerial
parts. In aerial parts, the highest Zn accumulation was ob-
served during the first 24 h for all treatments. While at 48 h,
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Fig. 2 Effects of Zn on photosynthetic pigments in the leaves of E.
crassipes. All values are mean of triplicates ± SD
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Fig. 1 Zn accumulation in aerial parts and roots of E. crassipes at
different concentrations and exposure times. All values are mean of
triplicates ± SD

Table 1 Translocation factors for Zn accumulation in plants

Zn concentrations
(mg l−1)

Exposure time (h)

24 48 72

2 0.043 0.035 0.049

4 0.035 0.034 0.048

6 0.045 0.044 0.047

9 0.039 0.045 0.067
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there were no significant changes in accumulation, at 72 h, a
significant increase was observed. In roots, the highest Zn
accumulation occurred in the first 24 h for all treatments,
and no further increase was detected over time for the two
highest Zn concentrations. According to the TFs calculated
(between 0.03 and 0.06), Zn was not translocated to aerial
parts (Table 1).

Effects of Zn on photosynthetic pigments

No significant differences were observed in Chl-a concentra-
tions during treatments, except for exposure to 6 mg l−1 Zn at
48 h (11% of increase) (Fig. 2). On the other hand, no signif-
icant differences were observed in Chl-b concentrations at 24
and 48 h compared to the control. However, a significant
increase (between 19 and 34%) in Chl-b concentrations for
all treatments was observed at 72 h. Carotenoid concentration
was not affected during the first 48 h, while at 72 h, there was a
significant increase regarding the control (between 11 and
24%) for all treatments.

Effects of Zn on antioxidant enzyme activity

Antioxidant enzyme activity was affected by Zn exposure
both in roots and in aerial parts (Figs. 3 and 4). In aerial parts
(Fig. 3), CAT activity was not significantly different from the
control during the first 48 h. However, at 72 h, enzyme activ-
ities showed a significant increase (between 22 and 47%) for
the two lowest Zn concentrations. This was not the case for the
two highest Zn concentrations, which showed no significant
differences compared to the control. A significant increase in
POD activity (between 75 and 440%) was observed in all Zn
treatments and exposure times, compared to the control. It is
important to note that, for the two highest Zn concentrations at
72 h, a decrease in POD activity was observed compared to
the previous samplings, whereas for the two lowest Zn con-
centrations, POD activities remained increasing over time.
SOD activity in aerial parts increased significantly (between
47 and 141%) for all Zn treatments and exposure times stud-
ied. A significant increase was observed in GR activities dur-
ing the first 48 h for all treatments, compared to the control,
whereas at 72 h for the two lowest Zn concentrations, a
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Fig. 3 Effects of Zn on antioxidant enzyme activities of E. crassipes, in aerial parts. All values are mean of triplicates ± SD
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significant increase (15 and 22%) in GR activity was ob-
served. No significant differences were recorded for the two
highest Zn concentrations.

In roots (Fig. 4), CAT activity increased significantly (be-
tween 42 and 108%) for 2, 4, and 6 mg l−1 Zn treatments and
all exposure times, while it showed a significant decrease in
their activity in 9 mg l−1 Zn treatment at 72 h. POD activity
was significantly higher (between 75 and 182%) for all Zn
concentrations and exposure times compared to the control.
SOD activity increased significantly (between 44 and 200%)
for all treatments and exposure times compared to the control
until 48 h. While SOD activities continued increasing over
time for the two lowest Zn concentrations, it was observed
that, for the two highest Zn concentrations, SOD activities
showed a decrease at 72 h. GR activity increased significantly
(between 15 and 40%) for all treatments and exposure times.

Effects of Zn on lipid peroxidation

Zn effects on MDA concentration are showed in Fig. 5. In
aerial parts, no significant differences in the MDA

concentrations regarding the control were observed during
the first 2 days of exposure, except for 9 mg l−1 Zn treatment
at 48 h, where a significant increase (15%) was observed. At
72 h for the two highest Zn concentrations, a significant de-
crease (25 and 17%) inMDA concentrations was observed. In
roots, MDA concentration was not affected by the treatments.

Discussion

E. crassipes showed significantly higher Zn concentrations in
roots than in aerial parts, with a scarce translocation, in agree-
ment with literature (Deng et al. 2004; Hadad et al. 2011;
Hasan et al. 2007; Miretzky et al. 2004; Mishra and Tripathi
2009; Yapoga et al. 2013). Poor Zn translocation could be due
to metal binding to the root cell walls (Wainwright and
Woolhouse 1977), forming metal complexes with soluble
compounds (organic acids and amino acids) (Turner and
Marshall 1972) or binding to specific proteins, thus contribut-
ing to the plant tolerance.
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Fig. 4 Effects of Zn on antioxidant enzyme activities of E. crassipes, in roots. All values are mean of triplicates ± SD
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It has been observed that Zn preferentially is accumulated
in chloroplasts (Van Assche and Clijsters 1986), which can
interact directly with thylakoid membranes (Szalontai et al.
1999). This interaction can inhibit chlorophyll synthesis, caus-
ing a reduction in pigment concentrations. Mishra and
Tripathi (2009) observed a decrease in chlorophyll concentra-
tion due to Zn accumulation in E. crassipes, after a period of
7 days of incubation. Hadad et al. (2011) reported a significant
reduction in chlorophyll concentrations when E. crassipes
was exposed to 1 mg l−1 Zn during 30 days. In our study, Zn
concentrations did not affect photosynthetic pigment concen-
trations in the first 48 h of experiment. However, it is impor-
tant to note that after 72 h, all Zn treatments showed a signif-
icant increase in Chl-b and carotenoids. This response may be
due to the presence of Zn in aerial parts, generating ROS
production and causing oxidative stress, as reported by other

studies (Artetxe et al. 2002; Cuypers et al. 2001; Madhava
Rao and Sresty 2000; Tewari et al. 2008). Therefore, consid-
ering that carotenoids are not only essential components of
photosynthetic apparatus but also essentially protective
against photooxidative damage, acting as free radical scaven-
gers preventing lipid peroxidation (Hou et al. 2007), this re-
sponse was expected. Wang et al. (2009) observed an increase
in total chlorophyll concentration in leaves of H. verticillata,
when exposed to 0.05 and 0.5 mg l−1 Zn for a period of 7 days.
However, in the same experiment, a decrease in total chlorophyll
concentration and necrotic symptoms were observed in leaves
when exposed to concentrations higher than 10 mg l−1 Zn.

A Zn excess can generate oxidative stress by increasing
ROS production, causing lipid peroxidation and altering anti-
oxidant enzyme activity in terrestrial plants (Cuypers et al.
2001;Madhava Rao and Sresty 2000), aquatic organisms such
as algae (Tripathi et al. 2006), and aquatic plants (Artetxe et al.
2002; Radić et al. 2010; Wang et al. 2009). In this context,
oxidative stress produced by Zn excess increases lipid perox-
idation and membrane permeability, reducing the content of
sulfhydryls (Tripathi and Gaur 2004). In general, in our ex-
periment, a significant increase in antioxidant enzyme activi-
ties was observed. Yuan et al. (2009) observed that SOD and
CAT activities increased significantly in leaves of
Alternanthera philoxeroides, exposed to Zn concentrations
from 0.25 to 5 mM for a period of 5 days. Similar results were
also observed in H. verticillata exposed to Zn concentrations
from 5 to 30 mg l−1 for a period of 7 days (Wang et al. 2009).
There are also reports of increased activity of antioxidant en-
zymes in terrestrial plants (Prasad et al. 1999; Tewari et al.
2008; Tripathi et al. 2006). This can be considered as a cir-
cumstantial evidence for an increase in free radical production
under Zn stress in E. crassipes. However, the increase ob-
served in antioxidant enzyme activities involved in the anti-
oxidant system of E. crassipes favored the tolerance to Zn.
This was reflected in lipid peroxidation, measured as MDA
concentration, which evidenced no significant difference com-
pared to the control for all treatments and exposure times in
roots. In aerial parts, MDA concentrations did not change
compared to the control during the first 48 h, highlighting a
significant decrease for the two highest Zn concentrations.
This duality has a positive effect on antioxidant enzyme ac-
tivities and does not cause lipid peroxidation. This fact would
allow us to affirm that Zn is a metal with potential antioxidant
properties. Literature suggests that Zn plays an important role
in protecting DNA and membranes from damage caused by
reaction with ROS (Cakmak 2000). Finally, it has been dem-
onstrated that Zn exposure may protect plants against oxida-
tive stress induced by other heavy metals (Aravind and Prasad
2003, 2004, 2005; Aravind et al. 2009; Cherif et al. 2011;
Tkalec et al. 2014).
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Conclusions

& Zn accumulation was observed to be higher in roots than
in aerial parts, where it occurred mainly during the first
24 h.

& Zn accumulation caused a significant increase in Chl-b
and carotenoid at 72 h of treatment in E. crassipes. Such
response was expected because these photosynthetic pig-
ments have a protective character against photooxidative
damage.

& An increase in MDA concentrations in aerial parts was
observed only for 9 mg l−1 Zn at 48 h, while a decrease
in MDA concentrations at 72 h was observed for the two
highest Zn concentrations. In roots, MDA concentrations
were not significantly affected.

& A rapid increase in antioxidant defense response, in aerial
parts and roots, was observed in all Zn treatments. This
response ensured the redox homeostasis.

& E. crassipes tolerated all Zn treatments during short expo-
sure times by the stimulation of its antioxidant enzymatic
defense system.

& Zn acted as a metal with potential antioxidant properties.
Further work is needed to understand the role of Zn as a
stimulator of complex enzymatic antioxidant system.
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