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This paper deals with the modeling of the early stage of cancer phenomena, namely
mutations, onset, progression of cancer cells, and their competition with the immune
system. The mathematical approach is based on the kinetic theory of active particles
developed to describe the dynamics of large systems of interacting cells, called active
particles. Their microscopic state is modeled by a scalar variable which expresses the
main biological function. The modeling focuses on an interpretation of the immune-
hallmarks of cancer.
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1. Introduction

The scientific community agrees that cancer is a genetic disease and that its evolu-
tion is related, since the very early stage, to mutations that give acquired abilities
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to cells. The biological system under consideration appears with multiscale fea-
tures: genes, cells and the early stage of various cancer phenomena related to the
molecular scale, while the dynamics at this scale determines that of cells and hence
of tissues. Multiscale issues are described in Ref. 8, which also provides hints to
develop a mathematical approach to the modeling of the whole path from the onset
of mutated cells to the formation and growth of cancer tissues. The book by Wein-
berg53 is a valuable reference regarding the molecular and cell biology of cancer.

The mathematical literature in the field is documented in Ref. 10, in the col-
lection of surveys,7 as well as in various recent papers in the field, e.g. Refs. 21,
20, 34 and 51. It can be observed that this literature mainly focuses on macro-
scopic approaches. In some cases, the link between parameters and gene expression
is studied. The survey by Eftimie31 provides an exhaustive report of the state-
of-the-art developed at the supermacroscopic scale. On the other hand, the need
of modeling cancer dynamics at the low scale, namely molecular and cellular, is
documented in the book by Frank33 and in various papers by Komarova.43,44 The
approach by evolutive games was introduced by Nowak and coworkers,49,48 while
recent developments are due to Gintis36 and Helbing.40

The modeling of the dynamics at the cellular scale is developed by methods of
statistical dynamics. The approach is known as the Kinetic Theory of Active Par-
ticles, for short KTAP method, it was initiated by the pioneer paper11 and devel-
oped and applied by various authors, among others,2,12–18,25,24,29,42 and therein
cited bibliography. The survey by Eftimie30 offers an interesting overview on the
link between kinetic and hyperbolic models. The idea of developing a mathematical
approach to modeling mutations followed by Darwinian selection was introduced in
Ref. 8. Subsequently, it has been extended in various papers, first to the modeling
of virus mutations,27,28 then to the theory of evolution,6 and to mutations in mul-
ticellular systems.16 Some ideas of these papers will be exploited in the technical
issues of the approach presented in the following.

The present paper aims at putting into a general mathematical framework
the seminal paper by Hanahan and Weinberg,37 which, as already remarked in
Refs. 6 and 8, focuses on the critical changes in cell physiology that character-
ize malignant cancer growth. These changes — self-sufficiency in growth signals,
insensitivity to anti-growth signals, evading apoptosis, limitless replicative poten-
tial, sustained angiogenesis, evading immune system attack, and tissue invasion and
metastasis — incorporate some aspects of genetic mutation, gene expression, and
evolutionary selection, leading to malignant progression. In various cases, this evo-
lution is induced by external or concomitant actions (as an example, the effect of
therapies, as reported in Ref. 41).

The immune system plays an important role in this dynamics. As a matter of
fact immune cells have a strategy to learn the presence of carriers of a pathology
and attempt to deplete them. It is a complex process, where immune cells, starting
from the innate immunity, improve their action by learning the so-called acquired
immunity.22 The recent paper19 refers specifically to Refs. 37 and 38 and identifies
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the hallmarks of cancer to escape the immune defence. In this dynamics, one has
to take into account that immune cells gain new defence abilities, from innate
to acquired immunity. Specific therapeutical actions are studied to activate the
immune defence.45

This complex dynamics has not yet been put into a very general mathematical
framework although preceding studies in the field6,8,9,16 have contributed to this
objective. Therefore, the present paper aims at developing a substantial improve-
ment of the theory known in the literature as reviewed in Ref. 8. The dynamics refers
to the early stage of the competition, which may end up either with the suppression
of cancer cells or with their indefinite growth, which subsequently aggregate into
condensed structures.

This objective is developed in the present paper by an approach which needs
further developments of the KTAP’s methods to introduce learning processes, non-
linearity in the interactions, and Darwinian selection. The contents are presented
through four more sections. More in details, Sec. 2 outlines the complexity fea-
tures of living systems in general and of multicellular systems in particular, and it
presents a conceivable representation of the system consistent with the said com-
plexity features. This section also outlines the strategies developed toward both the
modeling approach and the validation of models. Section 3 shows how the modeling
of interactions at the cellular scale can lead to the derivation of mathematical mod-
els suitable to describe the overall dynamics of the multicellular system. Section 4
presents the qualitative analysis of the related Cauchy problem and a variety of
simulations to investigate the predictive ability of the model mainly concerning the
merging behaviors and some preliminary speculations on therapeutical strategies.
This section also presents some reasonings on the prediction of rare events, namely
the black swan in biology. Section 5 looks at research perspectives and, in particu-
lar, to the modeling of the links between the molecular and the cellular scale, but
also on general issues concerning perspectives in the system biology approach.

2. Representation of Multicellular Systems
and Modeling Cellular Interactions

The modeling of the complex biological system under consideration requires the use
of multiscale methods, where the dynamics at the cellular scale, as reported among
others in Ref. 32, is related to the dynamics at the molecular scale, while the struc-
ture of tissues is an output of the dynamics at the cellular scale. This paper presents
an approach to the dynamics at the cellular scale: cells can progress, namely modify
their biological expression and mutate within Darwinian-type selective processes,
out of the interaction with other cells.

More precisely, we refer to the interplay, and competition, between cancer and
immune cells, where mutations are related, respectively, to the hallmarks of can-
cer37 and to those of the immune system.19 Both types of cells interact with normal
epithelial cells, which can undergo a first stage mutation toward cancer progression.
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Cells within each population can modify the level of their specific biological expres-
sion. The system biology approach finalized to the aforesaid objective is based on
the idea that mathematical models should attempt to capture the complexity fea-
tures of living systems according to the guidelines proposed in Refs. 6 and 23. This
section focuses on the first steps of this approach, namely the assessment of the
main complexity features that characterize the system under consideration, and its
consequent representation. These topics are treated in the next three subsections,
while the fourth one proposes a critical analysis on general issues concerning the
validation of models and their consistency with the complexity features of living
systems.

2.1. Complexity features of biological systems

Let us consider the problem of selecting the complexity features of multicellular sys-
tems. The first hint to include this strategic ingredient into the modeling approach
is arguably due to the celebrated paper by Hartwell and coworkers39 (soon after the
publication of this paper he obtained the award of Nobel laureate). This enlight-
ening paper puts in evidence, from the viewpoint of a biologist, the fundamental
differences that distinguish the inert from the living matter. These ideas have been
developed by various authors within different research contexts, among others the
mathematical approach to the theory of evolution6 and system biology.23

Bearing all above in mind, let us specifically focus on the immune competition
and extract from a phenomenological analysis the features that we believe are the
most important to insert into the modeling approach. Living entities, e.g. cells,
according to Ref. 39, have the ability to develop, without the application of any
external organizing principle, specific strategies depending both on genetic and epi-
genetic dynamics. These strategies depend on the search of individuals for their well-
being, sometimes just for their survival, and evolve in time. In fact, living systems
receive inputs from the environment and have the ability to learn from past experi-
ence to adapt themselves to the changing-in-time external conditions.1,46 Therefore,
living entities typically operate out-of-equilibrium in a constant struggle to remain
alive.

Additional important features are related to this expression of a strategy, which
is heterogeneously distributed among cells even when they share the same molecular
structure, for instance due to different phenotype expression generated by the same
genotype. Moreover, it produces mutations and selections generated by net destruc-
tive and/or proliferative events. Indeed, all living systems are evolutionary: birth
processes can generate individuals that fit better the outer environment, which in
turn generate new ones better and better fitted.

The central role in the expression of the strategy is played by interactions,
which are nonlinear and involve immediate neighbors, but in some cases also distant
entities. For instance, cells have the ability to communicate by signaling and can
choose different observation paths within networks that evolve in time.
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An additional aspect of living systems is the presence of large deviations related
to small variations of the parameters. Although some of the qualitative behavior
is still preserved, the quantitative one is more likely subject to them. However, in
some cases also the qualitative behavior is modified.

Having fixed the aforesaid features, it is worth mentioning two additional tech-
nical difficulties challenging the mathematical approach:

(i) Biological systems are characterized by a large variety of components, even
thousands of different elements. Therefore, the system biology approach needs
developing a strategy to reduce this technical complexity feature.

(ii) The study of biological systems needs a multiscale approach. For instance, the
dynamics at the molecular (genetic) level determines the cellular behaviors;
moreover, the structure of macroscopic tissues depends on such dynamics.

Therefore it is important, according to the authors’ bias, to distinguish between
the previous basic features and the technical ones which have been listed above.

2.2. On the representation of the system

Let us consider a system made up of a large number of interacting cells, which can
be viewed as active particles, whose physical microscopic state is described by the
variable called activity, that represents the individual ability to express a specific
biological function.

This approach requires the definition of the terms characterizing the functional
subsystems and the related activity variables as well as the interaction, progression
and mutation terms.

The identification of the functional subsystems is the first step of the model-
ing approach, which is developed here by analyzing the various stages of selective
mutations of cancer cells based on their hallmarks referred to the immune system.
The modeling approach needs tackling the problem of reducing the complexity of
the system under consideration. The functional system theory approach contributes
to such objective by selecting the smallest number of functional subsystems that
necessarily have to be taken into account to describe the main features of the com-
petition. Bearing these reasonings in mind, the following decomposition is proposed:

(1) i = 1 labels epithelial cells, whose selected function is the ability, supposed
uniform for all cells, to feed proliferative phenomena. Proliferative events can
generate cells with the same phenotype, but also cells with different phenotype
toward the onset of cancer cells. It is supposed that the organism is a source of
epithelial cells, so that their quantity can be regarded as constant in time;

(2) i = 2 labels cells, generated by the first functional subsystem, that have the
ability to thrive in a chronically inflamed micro-environment;

(3) i = 3 denotes the functional subsystem of cells, generated by the previous
subsystem, that have the ability to evade the immune recognition;



February 2, 2013 9:48 WSPC/103-M3AS 1250065

954 A. Bellouquid, E. De Angelis & D. Knopoff

(4) i = 4 refers to cells that have acquired the ability of suppressing the immune
reaction;

(5) i = 5 labels cells of the innate immune system which have the ability to acquire,
by a learning process, the capacity of contrasting the development of cancer
cells;

(6) i = 6 labels cells generated by the innate immune system, which have acquired
the ability of contrasting the development of cancer cells labeled by i = 2, i.e.
cancer cells from the first hallmark;

(7) i = 7 labels cells of the immune system generated from the previous two subsys-
tems, which have acquired the ability of contrasting the development of cancer
cells labeled by i = 3, i.e. cancer cells from the second hallmark;

(8) i = 8 labels cells of the immune system generated from the previous three
subsystems, which have acquired the ability of contrasting the development of
cancer cells labeled by i = 4, i.e. cancer cells from the third hallmark.

Remark 2.1. We will refer with the term cancer cell to any cell belonging to the
functional subsystems i = 2, i = 3 or i = 4, i.e. any cell which is neither epithelial
nor immune.

Remark 2.2. We will refer with the term immune cell to any cell belonging to
the functional subsystems from i = 5 to i = 8.

Remark 2.3. The decomposition into functional subsystems specifically refers
to the hallmarks put in evidence in Ref. 19. In principles, the same idea can be
extended to immune cells to take into account their learning ability. However, the
approach of the present paper models the learning process by considering only one
functional subsystem and confining the learning process to the progression within
it. Indeed, the activity expressed in each functional subsystem slowly progresses
towards higher values of the activity variable.

In this paper, we refer to the discrete representation of the activity variable,
which attains values in the following discrete set:

Iu = {0 = u1, . . . , uj , . . . , um = 1},

with uj < uj+1, for j = 1, . . . ,m − 1. This variable is heterogeneously distributed
and we assume that increasing values of the activity correspond to an increasing
ability of the subsystem to express its biological function.

The overall state of the system is described by the discrete probability distribu-
tion function

fij = fij(t), i = 1, . . . , 8, j = 1, . . . ,m. (2.1)

The index i labels each subsystem, j labels the activity variable, and fij(t) repre-
sents the number of active particles from functional subsystem i that, at time t,
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have the state uj. Therefore,

ni[f ](t) =
m∑

j=1

fij(t), i = 1, . . . , 8, (2.2)

where f = {fij} gives the number of active particles that, at time t, are in the
ith-subsystem.

This representation is consistent with the heterogeneous behavior of cells and
with the need of reducing the large number of components.

The mathematical structure for such a system should describe the evolution in
time of the probability distribution functions fij . It is obtained by equating the
variation rate of particles, in the corresponding state uj of functional subsystem i,
with the difference between the inlet and outlet fluxes from this state. In this way,
the balance equation can be summarized as follows:

dfij(t)
dt

= Jij [f ](t) = Cij [f ](t) + Pij [f ](t) −Dij [f ](t) − Lij [f ](t), (2.3)

for i = 1, . . . , 8 and j = 1, . . . ,m, where Jij , Cij , Pij , Dij and Lij are suitable
operators acting over the whole set of probability distribution functions. Specifically,

• Jij [f ](t) is the net flux, at time t, of particles that fall into the state uj of the
functional subsystem i;

• Cij [f ](t) is the net flux, at time t, into the state uj of the functional subsystem
i, due to conservative interactions that only modify the micro-state;

• Pij [f ](t) is the gain, at time t, into the state uj of the functional subsystem i,
due to proliferative events;

• Dij [f ](t) is the loss, at time t, in the state uj of the functional subsystem i, due
to destructive events;

• Lij [f ](t) is the natural relaxation of the immune system at time t and in the
state uj of the functional subsystem i, to a given healthy state.

This requires the modeling of interactions at the cellular level to compute the
balance of particles in the elementary volume of the space of the microscopic states.
If the fij ’s are known, the overall behavior of the system is properly described
not only by moments, but also by the distribution of biological activity of cells.
Accordingly all emerging behaviors are put in evidence.

2.3. Cellular interactions

Let us now consider the problem of modeling a multicellular system consistently
with the representation that has been given above. The guidelines to pursue such
objective are the following:

(i) Interactions involve not only immediate neighbors (short-range interactions)
but also the distant ones (long-range interactions). In fact, living systems com-
municate with each other directly or through media. Consequently, each entity
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interacts with all the others in a domain whose elements are able to commu-
nicate.

(ii) Each cell plays a game with the surrounding cells lying in its interaction
domain. This game modifies the state of the particles, while the strategy it
expresses can also be modified by the shape of the heterogeneous distribu-
tion of the interacting cells. In some cases it generates net proliferative and/or
destructive events.

(iii) Interactions are complex, namely the output of the game is not the linear
superposition of its separated interactions, but a complex combination which
depends on the strategy that all particles can develop.

(iv) The output of the game can also generate, in the proliferative process, particles
with a different structure (for instance, entities with a different phenotype).

(v) The following particles play the game: test particles, whose distribution func-
tion is fij(t), field particles, whose distribution function is fkq(t) and candi-
date particles, whose distribution function is fhp(t). Candidate particles may
acquire, in probability, the state of the test particle by interaction with the
field particles. All particles cannot be distinguished individually. Therefore,
their state identifies them: more precisely, candidate particles are field parti-
cles whose state, after the identification, reaches that of the test particles.

Some guidelines toward the modeling of the quantities related to the interaction
terms are suggested here in view of the derivation, in the next section, of the specific
model proposed in this paper. A useful reference is that offered by the mathematical
approach to the theory of evolution presented in Ref. 6. In order to simplify the
notation, let us denote by the abbreviation hp-particle the meaning of particle
belonging to the hth-functional subsystem with state up.

• ηhk is the encounter rate between the hp-candidate particle and the kq-field
particle. It is assumed, according to Ref. 26, that it depends on the ability of
interacting cells to recognize each other based on the distance between their
states and distribution functions. Simple models can be obtained by assuming
that it depends on the distances |up − uq| and ‖fh − fk‖, where ‖fi‖ =

∑
j |fij |.

• Bpq
ik (j) is the transition probability density that the ip-candidate particle falls

into the state j of the same functional subsystem after an interaction with a
kq-field particle, see Fig. 1. For instance, it can be assumed that the activity
variable has a trend toward an increase of progression that depends on the state
of the interacting cells and on the overall action of the system.

• µpq
hk(ij) models the net proliferation rate into the ij-state, due to interactions,

occurring with rate ηhk, between the hp-candidate particle and the kq-field parti-
cle. Interactions can induce net proliferative events, which may generate, although
with small probability, a daughter cell that presents genetic modifications with
respect to the mother cell, see Fig. 2. In some cases, these different cells represent
the first mutation toward the onset of cancer cells.3 If these cells have the ability
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Fig. 1. Dynamics of conservative interactions. A candidate particle from subsystem h with state
up can experiment a conservative interaction with a field particle from subsystem k. The output
of the interaction can be up−1, up or up+1, depending on the kind of interaction the two are
undergoing.

Fig. 2. Dynamics of proliferative interactions. A candidate particle (mother cell) of functional
subsystem h, by interacting with a field particle from population k, can proliferate a daughter cell,
belonging either to the same functional subsystem with same state, or eventually to the following
functional subsystem with the lowest activity value.

to overcome the immune defence, then further mutations can occur47 toward pro-
gression50 and hallmarks of cancer.37 The modeling approach is based on the idea
that these mutations occur with higher probability when progression increases.
The general framework is that of mutations and Darwinian selection.6,35

• νjq
ik models the net destruction rate into the ij-state, due to interactions, occurring

with rate ηik, between the ij-test particle and the kq-field particle, as shown in
Fig. 3. Interactions can induce net destructive events in the sense that the immune
system has the ability to kill a cancer cell.

• λ refers to the natural tendency of the immune system to relax to a given healthy
state.25

The terms appearing in the right-hand side of the evolution equation (2.3) can
now be detailed according to the following expressions:

Cij [f ] =
n∑

k=1

m∑
p=1

m∑
q=1

ηik[f ]Bpq
ik (j)[f ]fipfkq − fij

n∑
k=1

m∑
q=1

ηik[f ]fkq, (2.4)
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(a) (b)

Fig. 3. Dynamics of destructive interactions. A candidate particle from functional subsystem h
with state up, interacting with a field particle from population k with state uq , (a), can undergo
a destructive action which occurs within the same state of the candidate particle, (b).

Pij [f ] =
n∑

h=1

n∑
k=1

m∑
p=1

m∑
q=1

ηhk[f ]µpq
hk(ij)fhpfkq, (2.5)

Dij [f ] = fij

n∑
k=1

m∑
q=1

ηik[f ]νjq
ik fkq, (2.6)

for i = 1, . . . , 8 and j = 1, . . . ,m, and

Lij [f ] = λ(fij − f0
ij), (2.7)

for i = 5, . . . , 8 and j = 1, . . . ,m, namely, in the natural relaxation terms of the
evolution equations for the populations of the immune system, we have chosen as
healthy state the initial value of the distributions, say f0

ij .

2.4. Validation of models

As usual, the validation of models is obtained by comparison of the dynamics
depicted by the model and that delivered by empirical data obtained by experi-
ments. A technical difficulty is that empirical data present highly heterogeneous
features. Moreover, complex systems generally show collective behaviors that can-
not straightforwardly be related to that of a few entities. These emerging behaviors
are in most cases repeated only at a qualitative level due to the large amount of
events that often appear in the dynamics of living systems.

The validation approach presented in this paper focuses precisely on the sim-
ulation of the emerging behaviors that are considered important outputs of the
dynamics of the system under consideration. More precisely, the dynamics that the
model should take into account is a Darwinian-type evolution of cell phenotypes
contrasted by the immune system. The phenotypes correspond to the immune-
hallmarks of cancer, while the immune system develops a learning process from
innate immunity to acquired immunity.

Generally, this contrast action is sufficient to prevent the indefinite proliferation
of cancer cells. However, for some specific mutations, the Darwinian selections can
generate highly aggressive cell phenotypes that progress and proliferate with a
speed that cannot be contrasted by the learning process of the immune system.
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This rare event can even be regarded as a black swan in biology, somehow rare,
but with catastrophic outputs. Although, as observed by Taleb,52 once happened
it appears to be predictable. On the other hand, the dynamics that follow this
event does not obey the same rules before its onset. In fact, when cells start to
grow indefinitely, additional phenomena such as aggregation into tumoral shapes,
onset of angiogenesis, and many others should be included into the model. These
additional events are not taken into account in the present paper, while a more
detailed description of the immune-hallmarks of cancer will be given in the next
section focusing on the derivation of a specific model.

3. On the Modeling of the Collective Dynamics

This section is devoted to the modeling of the collective dynamics of the multi-
cellular system based on the mathematical frameworks proposed in Sec. 2, which
are formally given by Eq. (2.3), and further particularized by Eqs. (2.4)–(2.7).
The modeling needs a detailed description of the interaction terms, so that the
mathematical structures can be fully characterized. These take into account some
complexity features such as the heterogeneous expression of the cell phenotype char-
acters, nonlinearly additive interactions, competition to survive, generation of new
phenotypes and Darwinian selection that determines their surviving or not.

Remark 3.1. In general, a different modeling approach has to be considered for
cells of the various different functional subsystems. Briefly, we remember that the
tumor cells are distinguished according to their progressive hallmarks, while the
immune cells are characterized by the capability to recognize specific hallmarks.

• Encounter rate. The modeling of the encounter rate ηhk needs to take into
account the specific functions and expressions of cells, also related to a learning
process. Only encounters which lead to progression, mutations and proliferation will
be considered, being referred to a (positive) value η0. This dimensionless parameter,
small with respect to one, corresponds to interactions within the subsystem of
epithelial cells, and can be included into the time scale. Taking into account the
dependence of the encounter rate on the distance between the distribution functions,
as already mentioned in Sec. 2.3, we first introduce:

Ψhk[f ] =




exp
(
−τ ‖fh − fk‖

‖fh‖ + ‖fk‖
)
, ‖fh‖, ‖fk‖ �= 0, τ > 0,

0, ‖fh‖ = ‖fk‖ = 0,
(3.1)

for each pair of functional subsystems (h, k).

— Encounter rate of functional subsystems h = 1, 2, 3, 4 with k = 1. The rate of
encounters between tumor and epithelial cells, increases with the hallmark h,
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as progressive hallmarks correspond to increasing activation to search nutrients
for increasing proliferation:

ηh1 = η0hΨh1[f ], ∀h = 1, 2, 3, 4. (3.2)

On the other hand, it is assumed to be equal to zero for encounters involving
only cancer cells: ηhk = 0, ∀h, k = 2, 3, 4.

— Encounter rate of functional subsystems h = 5, 6, 7, 8 with k = 1, 2, 3, 4. Immune
cells have the ability to identify cancer cells only if they have acquired, after a
learning process, this specific ability. The following assumption is proposed:

ηhk = ση0Ψhk[f ], σ > 0, (3.3)

for each pair (h, k) = (5, 2), (6, 2), (6, 3), (7, 2), (7, 3), (7, 4), (8, 2), (8, 3), (8, 4).
As we shall see, the innate immune system has the ability to identify can-

cer cells of the first hallmark to generate progression and mutation processes,
but not yet a destructive action, while this specific action is expressed for
h > 5 toward the hallmarks that have been recognized. On the other hand,
the encounter rate between immune and epithelial cells is assumed to be equal
to zero.

Remark 3.2. It has been assumed, for simplicity, that η depends only on the dif-
ferent functional subsystems, but not on the activity within each of them. The role
of the parameter σ appears to be relevant considering that it models the difference
of the rate of action of immune and cancer cells.

• Transition probability density. Progression phenomena refer, according to
Remark 3.1, to an increasing activity within the same functional subsystem. This
dynamics is modeled by the terms Bpq

ik (j). Only interactions with encounter rate
different from zero are considered:

— Interactions involving functional subsystems h = 1, 2, 3, 4 with k = 1. Epithelial
and cancer cells can increase their state only after an interaction with epithelial
cells. Probability of transition is assumed to decrease with the activity state of
the candidate particle:

Bpq
h1(j) =



α(1 − up), j = p+ 1, α > 0,

1 − α(1 − up), j = p,

0, otherwise.

(3.4)

— Interactions of functional subsystem h = 1 with k = 2, 3, 4. Epithelial cells are
assumed to feed progression of cancer cells without changing their own state:
Bpq

1k(p) = 1.
— Interactions of functional subsystems h = 5, 6, 7, 8 with k = 2, 3, 4. Immune cells

acquire progressively the ability to identify functional subsystems of tumor cells.
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As a consequence, immune cells may increase their state and the probability of
progression decreases with increasing pth-state:

Bpq
52(j) = Bpq

62(j) = Bpq
73(j) = Bpq

84(j) =



α(1 − up), j = p+ 1,

1 − α(1 − up), j = p,

0, otherwise.

(3.5)

— Interactions between cancer cells from h = 2, 3, 4 with k = 5, 6, 7, 8. It is assumed
that these types of interactions do not induce biological events to cancer cells.

• Mutation events. These are rare events, related to the rate ηhk, where gen-
eration of a daughter cell occurs in a functional subsystem different from that of
the mother cells. This event is modeled by the term µpq

hk(ij), where i = h+ 1 with
output into the state j = 1:

— Mutations from cancer subsystems h = 1, 2, 3. These are related to encounters
with the first functional subsystem k = 1:

µpq
h1(ij) =

{
ε1up, i = h+ 1, j=1, ε1 > 0,

0, otherwise.
(3.6)

— Mutations from immune subsystems h = 5, 6, 7. These are related to an increas-
ing capability of the immune cells to recognize a specific hallmark:

µpq
52(6j) =

{
ε26up, j = 1, ε26 > 0,

0, otherwise.
(3.7)

µpq
63(7j) =

{
ε27up, j = 1, ε27 > 0,

0, otherwise.
(3.8)

µpq
74(8j) =

{
ε28up, j = 1, ε28 > 0,

0, otherwise.
(3.9)

• Proliferative events. Proliferation occurs within the same functional subsystem
with rate ηhk being modeled by the term µpq

hk(ij), where i = h and j = p. The
following assumptions model the dynamics:

— Proliferation in cancer subsystems h = 2, 3, 4. Proliferation increases with the
hallmarks of cancer cells, due to the resulting deregulated proliferation program
which is an acquired capability of tumor cells37:

µpq
h1(hj) =

{
β1hup, j = p, β1 > 0,

0, otherwise.
(3.10)
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— Proliferation in immune cells subsystems h = 6, 7, 8. Immune cells proliferate
due to encounters with cells up to the identified tumor subsystems:

µpq
hk(hj) =

{
β2, j = p, β2 > 0,

0, otherwise,
(3.11)

for each pair (h, k) = (6, 2), (7, 2), (7, 3), (8, 2), (8, 3), (8, 4).

• Destruction rate. Destructive terms concern only cancer and immune cells.
Immune cells have the ability to suppress cancer cells that are identified by them.
It is assumed that this ability increases with increasing activity of immune cells:

νpq
26 = νpq

27 = νpq
28 = νpq

37 = νpq
38 = νpq

48 = γuq, γ > 0. (3.12)

Remark 3.3. Encounter rates are symmetric: ηhk = ηkh, ∀h, k, p, q. However, the
other interaction terms do not have this property due to lack of reversibility.

The biological meaning of the parameters introduced in the model is summarized
in Table 1.

As a consequence of Eqs. (3.1)–(3.12), for each distribution function fij , the
terms on the right-hand side of Eq. (2.3) given by Eqs. (2.4)–(2.7), for j = 1, . . . ,m,
read:

C1j [f ] = Ψ11[f ]α(1 − uj−1)(1 − δ1j)f1(j−1)n1[f ]

+ Ψ11[f ][1 − α(1 − uj)]f1jn1[f ] − Ψ11[f ]f1jn1[f ], (3.13)

C2j [f ] = Ψ21[f ]α(1 − uj−1)(1 − δ1j)f2(j−1)n1[f ]

+ Ψ21[f ][1 − α(1 − uj)]f2jn1[f ] − Ψ21[f ]f2jn1[f ], (3.14)

C3j [f ] = Ψ31[f ]α(1 − uj−1)(1 − δ1j)f3(j−1)n1[f ]

+ Ψ31[f ][1 − α(1 − uj)]f3jn1[f ] − Ψ31[f ]f3jn1[f ], (3.15)

C4j [f ] = Ψ41[f ]α(1 − uj−1)(1 − δ1j)f4(j−1)n1[f ]

+ Ψ41[f ][1 − α(1 − uj)]f4jn1[f ] − Ψ41[f ]f4jn1[f ], (3.16)

Table 1. Model parameters.

Parameter Biological meaning

η0, σ, τ Refer to interaction rates
α Is a parameter of the probability density in conservative progressions
ε1, ε26, ε27, ε28 Model the mutation rate for cancer and immune cells
β1, β2 Model the proliferation rate for cancer and immune cells
γ Refers to suppression rate
λ Refers to the relaxation of the immune system
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C5j [f ] = σΨ52[f ]α(1 − uj−1)(1 − δ1j)f5(j−1)n2[f ]

+ σΨ52[f ][1 − α(1 − uj)]f5jn2[f ] − σΨ52[f ]f5jn2[f ], (3.17)

C6j [f ] = σΨ62[f ]α(1 − uj−1)(1 − δ1j)f6(j−1)n2[f ]

+ σΨ62[f ][1 − α(1 − uj)]f6jn2[f ] − σΨ62[f ]f6jn2[f ], (3.18)

C7j [f ] = σΨ73[f ]α(1 − uj−1)(1 − δ1j)f7(j−1)n3[f ]

+ σΨ73[f ][1 − α(1 − uj)]f7jn3[f ] − σΨ73[f ]f7jn3[f ], (3.19)

C8j [f ] = σΨ84[f ]α(1 − uj−1)(1 − δ1j)f8(j−1)n4[f ]

+ σΨ84[f ][1 − α(1 − uj)]f8jn4[f ] − σΨ84[f ]f8jn4[f ], (3.20)

P2j [f ] = 4Ψ21[f ]β1ujf2jn1[f ] + Ψ11[f ]ε1δ1jn1[f ]
m∑

p=1

upf1p, (3.21)

P3j [f ] = 9Ψ31[f ]β1ujf3jn1[f ] + 2Ψ21[f ]ε1δ1jn1[f ]
m∑

p=1

upf2p, (3.22)

P4j [f ] = 16Ψ41[f ]β1ujf4jn1[f ] + 3Ψ31[f ]ε1δ1jn1[f ]
m∑

p=1

upf3p, (3.23)

P6j [f ] = σΨ62[f ]β2f6jn2[f ] + σΨ52[f ]ε26δ1jn2[f ]
m∑

p=1

f5pup, (3.24)

P7j [f ] = σΨ72[f ]β2f7jn2[f ] + σΨ73[f ]β2f7jn3[f ]

+ σΨ63[f ]ε27δ1jn3[f ]
m∑

p=1

f6pup, (3.25)

P8j [f ] = σΨ82[f ]β2f8jn2[f ] + σΨ83[f ]β2f8jn3[f ]

+ σΨ84[f ]β2f8jn4[f ] + σΨ74[f ]ε28δ1jn4[f ]
m∑

p=1

f7pup, (3.26)

while P1j [f ] = P5j [f ] = 0. Moreover,

D2j [f ] = σγf2j

m∑
q=1

uq(Ψ26[f ]f6q + Ψ27[f ]f7q + Ψ28[f ]f8q), (3.27)

D3j [f ] = σγf3j

m∑
q=1

uq(Ψ37[f ]f7q + Ψ38[f ]f8q), (3.28)

D4j [f ] = σγf3j

m∑
q=1

uqΨ48[f ]f8q, (3.29)
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while D1j [f ] = D5j [f ] = D6j [f ] = D7j[f ] = D8j [f ] = 0. Finally

Lij[f ] = λ(fij − f0
ij), i = 5, . . . , 8, (3.30)

while Lij [f ] = 0 for i = 1, . . . , 4, as it was already stated in Eq. (2.7).
We used the standard notation δij = 1 if i = j and δij = 0 otherwise. The rate

η0 has been inserted into the time scale.

4. Qualitative Analysis, Simulations and Emerging Behaviors:
Looking for the Black Swan

Let us first consider the following initial value problem:

dfij(t)
dt

= Jij [f ](t),

fij(0) = f0
ij ,

(4.1)

where Jij [f ](t) = Cij [f ](t) + Pij [f ](t) −Dij [f ](t) − Lij [f ](t), for i = 1, . . . , n and
j = 1, . . . ,m, and f = {fij}, under the condition that all the terms Lij [f ](t) are
nonzero, i.e. all the n populations admit a relaxation term in the corresponding
evolution equation. The analysis of existence of solutions for problem (4.1) is a
useful preliminary step forward in the qualitative analysis of the corresponding
Cauchy problem for Eqs. (2.3)–(2.7).

Therefore the initial value problem (4.1) consists of n×m ordinary differential
equations in the unknown fij : R

+ → R
+, supplemented by n×m initial conditions

f0
ij . The proof of existence and uniqueness of a global in time solution of the Cauchy

problem can be obtained by taking advantage of the Lipschitz properties of the
right-hand side of (4.1).

In order to study the well-posedness of problem (4.1), let Mnm be the set of real
n×m matrices. We endow Mnm with the 1-norm,

‖f‖1 =
n∑

i=1

m∑
j=1

|fij |, f = {fij} ∈Mnm. (4.2)

Moreover, we introduce the linear space X = Cb([0,+∞);Mnm) of the matrix-
valued bounded and continuous functions

f = f(t) : [0,+∞) →Mnm,

equipped with the infinity norm

‖f‖∞ = sup
t∈[0,+∞)

‖f‖1.

Note that (X, ‖ · ‖∞) is a real Banach space. We will denote by X+ the positive
cone of space X . For T > 0, we denote XT = C([0, T ];Mnm).
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Well-posedness of the spatially homogeneous problem means global-in-time exis-
tence and uniqueness of a solution f = f(t) to the Cauchy problem (4.1). To show
these results, it is usual to make some assumptions which are necessary for the
proof.

Assumption H.1. In Sec. 2.3, Bpq
ik (j) is defined as a transition probability density,

and this implies:
m∑

j=1

Bpq
ik (j)[f ] = 1 ∀ i, k = 1, . . . , n, ∀ p, q = 1, . . . ,m.

Assumption H.2. There exists Cη > 0 such that:

0 < ηik[f ] ≤ Cη ∀ i, k = 1, . . . , n.

Assumption H.3. Both the encounter rate ηik[f ] and the transition probability
Bpq

ik (j)[f ] satisfy that there exist constants L1, L2 such that:

|ηik[f ] − ηik[g]| ≤ L1
‖gi − fi‖ + ‖gk − fk‖

‖gi‖ ∀ f, g ∈Mnm (4.3)

and

|Bpq
ik (j)[f ] − Bpq

ik (j)[g]| ≤ L2
‖gi − fi‖ + ‖gk − fk‖

‖gi‖ ∀ f, g ∈Mnm, (4.4)

for all i, k = 1, . . . , n and j, p, q = 1, . . . ,m.

Remark 4.1. (1) By inverting the role of f and g one gets easily from (4.3) the
following:

|ηik[f ] − ηik[g]| ≤ L1
‖fi − gi‖ + ‖fk − gk‖

‖fi‖ . (4.5)

(2) The function Ψhk given by (3.1) satisfies Assumption H.3, namely (4.3). Indeed,
by Taylor formula, one has:

|Ψik[f ] − Ψik[g]| = τ

∣∣∣∣ ‖gi − gk‖
‖gi‖ + ‖gk‖ − ‖fi − fk‖

‖fi‖ + ‖fk‖
∣∣∣∣ exp(−c),

where c is a positive constant such that:

c ∈
(
min

(
τ

‖gi − gk‖
‖gi‖ + ‖gk‖ , τ

‖fi − fk‖
‖fi‖ + ‖fk‖

)
,max

(
τ

‖gi − gk‖
‖gi‖ + ‖gk‖ , τ

‖fi − fk‖
‖fi‖ + ‖fk‖

))
.

Then,

|Ψik[f ] − Ψik[g]| ≤ τ

∣∣∣∣‖gi − gk‖ − ‖fi − fk‖
‖gi‖ + ‖gk‖

∣∣∣∣
+ τ‖fi − fk‖ |‖fi‖ − ‖gi‖| + |‖fk‖ − ‖gk‖|

(‖gi‖ + ‖gk‖)(‖fi‖ + ‖fk‖) .
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Using the inequality |‖f‖ − ‖g‖| ≤ ‖f − g‖ yields:

|Ψik[f ] − Ψik[g]| ≤ 2τ
‖gi − fi‖ + ‖gk − fk‖

‖gi‖ + ‖gk‖ ≤ 2τ
‖gi − fi‖ + ‖gk − fk‖

‖gi‖ .

Under Assumptions H.1, H.2 and H.3, one obtains the following.

Theorem 4.1. Let Assumptions H.1, H.2 and H.3 hold. Then there exists f0
0 > 0

such that if ‖f0‖1 ≤ f0
0 , there exists a strictly positive constant a such that problem

(4.1) admits a unique non-negative global solution f ∈ X satisfying the following
estimate:

‖f(t)‖1 ≤ a‖f0‖1, t ∈ (0,∞). (4.6)

Remark 4.2. The smallness condition on the initial condition can be avoided by
using the parameter λ large enough and the result can be stated as follows.

Theorem 4.2. Let Assumptions H.1, H.2 and H.3 hold and let f0 ∈ Mnm. Then
there exists λ0 such that if λ ≥ λ0, there exists a strictly positive constant a such
that the problem (4.1) admits a unique non-negative global solution f ∈ X satisfying
the following estimate:

‖f(t)‖1 ≤ a‖f0‖1, t ∈ (0,∞). (4.7)

Coming back to our model, i.e. Eqs. (2.3)–(2.7) and n = 8, due to the fact that
we have Lij [f ](t) = 0 for i = 1, . . . , 4 and ∀ j = 1, . . . ,m, we obtain the following
local existence theorem.

Theorem 4.3. Let Assumptions H.1, H.2 and H.3 hold and let f0 ∈ Mnm. Then
there exists T such that if t ≤ T, there exists a strictly positive constant a such that
the problem (4.1) admits a unique non-negative global solution f ∈ XT satisfying
the following estimate:

‖f(t)‖1 ≤ a‖f0‖1, t ∈ [0, T ]. (4.8)

To prove Theorems 4.1–4.3 we need some preliminary estimates on the nonlinear
operator J� given by

J�
ij = Jij + Lij , (4.9)

which are given in the following lemma.

Lemma 4.1. Let Assumptions H.1, H.2 and H.3 hold. Then the following estimates
are satisfied: there exists C1 > 0 such that:

‖J�[f ]‖1 ≤ C1‖f‖2
1, (4.10)

‖J�[f ] − J�[g]‖1 ≤ C1(‖f‖1 + ‖g‖1)‖f − g‖1. (4.11)
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Proof. Note that J� = Cij + Pij − Dij . Therefore to prove Lemma 4.1, one has
to establish the estimate (4.10), (4.11), for the terms Cij , Pij and Dij given by
(2.4)–(2.6). Using Assumptions H.1 and H.2, and summing over i, j yields:

n∑
i=1

m∑
j=1

|Cij | ≤
n∑

i=1

m∑
j=1

n∑
k=1

m∑
p=1

m∑
q=1

|ηik[f ]|Bpq
ik (j)[f ]|fip||fkq|

+
n∑

i=1

m∑
j=1

|fij |
n∑

k=1

m∑
q=1

|ηik[f ]||fkq|

≤ Cη

n∑
i=1

n∑
k=1

m∑
p=1

m∑
q=1


 m∑

j=1

Bpq
ik (j)[f ]


 |fip||fkq|

+Cη

n∑
i=1

m∑
j=1

|fij |
n∑

k=1

m∑
q=1

|fkq|

≤ 2Cη‖f‖2
1.

Note that:

Cij [f ] − Cij [g] =
n∑

k=1

m∑
p=1

m∑
q=1

ηik[f ]Bpq
ik (j)[f ](fip(fkq − gkq) + gkq(fip − gip))

+
n∑

k=1

m∑
p=1

m∑
q=1

((ηik [f ] − ηik[g])Bpq
ik (j)[g]

+ ηik[g](Bpq
ik (j)[f ] − Bpq

ik (j)[g]))gipgkq

+ fij

n∑
k=1

m∑
q=1

(ηik[g](gkq − fkq) + (ηik[g] − ηik[f ])fkq)

+ (gij − fij)
n∑

k=1

m∑
q=1

ηik[g]gkq

= Sij + Tij . (4.12)

Then using Assumptions H.1, H.2 and summing over i, j yields:
n∑

i=1

m∑
j=1

|Sij | ≤ Cη

n∑
i=1

n∑
k=1

m∑
p=1

m∑
q=1

(|fip||fkq − gkq| + |gkq||fip − gip|)

+
n∑

i=1

n∑
k=1

m∑
p=1

m∑
q=1

|ηik[f ] − ηik[g]||gip||gkq|

+Cη

n∑
i=1

m∑
j=1

n∑
k=1

m∑
p=1

m∑
q=1

|Bpq
ik (j)[f ] − Bpq

ik (j)[g]||gip||gkq|

= I + J +K. (4.13)
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The first term I is estimated as follows:

I ≤ Cη(‖f‖1 + ‖g‖1)‖f − g‖1. (4.14)

Now using (4.3), yields:

J ≤ L1

n∑
i=1

n∑
k=1

m∑
p=1

m∑
q=1

‖gi − fi‖ + ‖gk − fk‖
‖gi‖|gip||gkq|

≤ L1

n∑
i=1

n∑
k=1

m∑
q=1

‖gi − fi‖ + ‖gk − fk‖
‖gi‖

m∑
p=1

|gip||gkq|

= L1

n∑
i=1

n∑
k=1

m∑
q=1

(‖gi − fi‖ + ‖gk − fk‖)|gkq|

≤ 2L1n
2‖f − g‖1‖g‖1. (4.15)

By the same arguments, using (4.4) for the transition probability Bpq
ik (j)[f ], yields

K ≤ C‖g‖1‖f − g‖1. (4.16)

Using Assumptions H.1, H.2 and H.3 and (4.5), and summing over i, j yields

n∑
i=1

m∑
j=1

|Tij | ≤ Cη‖f‖1‖f − g‖1 + L1‖f‖1‖f − g‖1 + Cη‖g‖1‖f − g‖1. (4.17)

Finally combining (4.12)–(4.17), one deduces the estimate (4.11) for the term
Cij .

The same arguments can be used to prove (4.10)–(4.11) for Pij and Dij .
Indeed,

n∑
i=1

m∑
j=1

|Pij [f ]| ≤ Cη

n∑
h=1

n∑
k=1

m∑
p=1

m∑
q=1

n∑
i=1

m∑
j=1

µpq
hk(ij)fhpfkq

≤ CηCµ

n∑
h=1

n∑
k=1

m∑
p=1

m∑
q=1

fhpfkq = CηCµ‖f‖2
1,

where Cµ = maxh,k,p,q

∑n
i=1

∑m
j=1 µ

pq
hk(ij). In the same way, one has

n∑
i=1

m∑
j=1

|Dij [f ]| ≤ CηCν‖f‖2
1,

where Cν = maxi,j,k,q ν
jq
ik . This completes the proof of the lemma.
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Define the following operator ψ as follows:

ψ(f)(t) =
∫ t

0

exp(λ(s− t))J�[f ](s)ds.

Then the next lemma gives the following estimate for ψ.

Lemma 4.2. Let Assumptions H.1, H.2 and H.3 hold. Then ψ is a continuous map
from X into X and there exists C1 > 0 such that:

‖ψ(f)‖∞ ≤ C1

λ
‖f‖2

∞, (4.18)

‖ψ(f) − ψ(g)‖∞ ≤ C1

λ
(‖f‖∞ + ‖g‖∞)‖f − g‖∞. (4.19)

Proof. Using (4.10), yields

‖ψ(f)(t)‖1 ≤ C1‖f‖2
∞

∫ t

0

exp(λ(s − t))ds ≤ C1

λ
‖f‖2

∞(1 − exp(−λt)),

which gives (4.18). By the same argument, taking into account (4.11), one has easily
(4.19).

To prove the continuity of ψ, let t1, t2 ∈ [0,+∞) such that t1 < t2. Write

ψ(t2) − ψ(t1) =
∫ t2

t1

exp(λ(s− t2))J�[f ](s)ds

+
∫ t1

0

(exp(λ(s − t2)) − exp(λ(s− t1)))J�[f ](s)ds.

Therefore, using (4.10), yields

‖ψ(t2) − ψ(t1)‖1 ≤ C1‖f‖2
∞

∫ t2

t1

exp(λ(s− t2))ds

+C1‖f‖2
∞

∫ t1

0

|exp(λ(s− t2)) − exp(λ(s− t1))|ds

≤ C1‖f‖2
∞|t2 − t1|

+λC1‖f‖2
∞|t2 − t1|

∫ t1

0

exp(c)ds, (4.20)

where c ∈ (λ(s− t2), λ(s− t1)). Noting that as c < λ(s− t1), then∫ t1

0

exp(c)ds ≤
∫ t1

0

exp(λ(s− t1))ds =
1
λ

(1 − exp(−λt1)) ≤ 1
λ
. (4.21)

Combining (4.20), (4.21), yields

‖ψ(t2) − ψ(t1)‖1 ≤ 2C1‖f‖2
∞|t2 − t1|.

This completes the proof of lemma.
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Proof of Theorems 4.1 and 4.2. First, by multiplying the equation in (4.1) by
exp(λt), yields


d

dt
(exp(λt)fij) = exp(λt)J�

ij(t) + λ exp(λt)f0
ij ,

fij(0) = f0
ij ,

(4.22)

where J� is given by (4.9).
Therefore (4.22) can be written in the form of the integral equation:

f = N(f),

where N(f) is given by

(N(f))ij = f0
ij +

∫ t

0

exp(λ(s − t))J�
ij [f ](s)

= f0
ij + ψ(f)(t). (4.23)

Then, the proof can be obtained by application of classical fixed point methods.
Using Lemma 4.2 one has:

‖N(f)‖∞ ≤ ‖f0‖1 +
C1

λ
‖f‖2

∞,

‖N(f) −N(g)‖∞ ≤ C1

λ
(‖f‖∞ + ‖g‖∞)‖f − g‖∞.

Take f0 and λ such that:

4C1

λ
‖f0‖1 < 1,

and let

d =

√
1 − 4C1

λ
‖f0‖1.

Consider

a = λ
1 −√

d

2C1‖f0‖1
.

This implies that N is a contraction on a ball in X of radius a‖f0‖1 if ‖f0‖1 ≤
f0
0 = λ

4C1
or equivalently if λ ≥ λ0 = 4C1‖f0‖1. Thus, there exists a unique global

solution f(t) of Eq. (4.1) on [0,+∞).
Let

C1
ij [f ] =

n∑
k=1

m∑
p=1

m∑
q=1

ηik[f ]Bpq
ik (j)[f ]fipfkq,

Ci[f ] =
n∑

k=1

m∑
q=1

ηik[f ]fkq
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and

Di[f ] =
n∑

k=1

m∑
q=1

ηik[f ]νjq
ik fkq.

The solution fij satisfies the following identity:

(N(f))ij = (fij) = exp
(
−

∫ t

0

(λ+ Ci +Di)(s)ds
)
f0

ij

+
∫ t

0

exp
(∫ τ

t

(λ+ Ci +Di)(s)ds
)

(C1
ij + Pij)(τ)dτ.

It is clear that N maps X+ into itself if the initial datum (condition) is positive.
To complete the proof, the fixed point theorem in X+ can be applied again using
Lemma 4.1. This completes the proof.

Remark 4.3. Global existence does not mean that the dynamics of the competition
can be studied by the present model globally in time. In fact, when tumor cells grow
monotonically, they start to aggregate into condensed form. Then model change of
type namely into continuum model with space structure, which can be derived from
the underlying description delivered by our kinetic approach.

Proof of Theorem 4.3. In this case, i.e. for Eqs. (2.3)–(2.7), n = 8 and Lij [f ](t) =
0 for i = 1, . . . , 4 and ∀ j = 1, . . . ,m, Eq. (4.23) can be written in the form:

f = N(f),

where N(f) is given by:

(N(f))ij = f0
ij +

∫ t

0

Jij(f, f)(s), i = 1, . . . , 4, (4.24)

(N(f))ij = f0
ij +

∫ t

0

exp(λ(s − t))J�
ij [f ](s), i = 5, . . . , 8. (4.25)

Then, the proof can be obtained by application of classical fixed point methods.
Using Lemma 4.1 one has:

‖N(f)‖XT ≤ ‖f0‖1 + C1T‖f‖2
XT
,

‖N(f) −N(g)‖XT ≤ C1T (‖f‖XT + ‖g‖XT )‖f − g‖XT .

Let T such that

4C1T ‖f0‖1 < 1,

and let

d =
√

1 − 4C1T ‖f0‖1.
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Consider

a =
1 −√

d

2C1T ‖f0‖1
.

This implies that N is a contraction on a ball in XT of radius a‖f0‖1 if T ≤
1

4C1‖f0‖1
. Thus, there exists a unique local solution f(t) of Eq. (4.1) on [0, T ]. This

completes the proof of theorem.

The above qualitative analysis allows to apply computational methods to obtain
simulations. As we have seen, the model is characterized by 10 parameters, which
is still a small number considering the complexity of the phenomenon under con-
sideration. A detailed sensitivity analysis, suitable to put in evidence the aforesaid
phenomenon concerning the growth or depletion of tumor cells, needs a variety of
calculations scheduled in a forthcoming paper. However, a somehow limited anal-
ysis is proposed in the present paper, which focuses on a detailed study of the
parameters ε1 and ε2i (i = 6, 7, 8). More precisely, simulations aim at investigating
if there exists a critical value εc = ε1

ε28
of the ratio between these two parameters

such that for ε < εc the immune system has the ability to prevent the growth of
cancer cells, namely cells of the fourth functional subsystem, while for ε > εc the
opposite behavior is depicted.

Moreover, simulations should put in evidence how the state of the various func-
tional subsystems evolve in time along the said different dynamics. More precisely,
normally differentiated epithelial cells generate with small probability daughter
cells with the first hallmark of cancer. These newborn cells can generate, despite
the contrast of the immune system, newborn cells with the subsequent hallmarks.
The previous generations are suppressed, while the last one can continue to pro-
liferate. In several cases the learning action of the immune system is sufficient to
contrast this process. However, for some values of the parameter, tumor cells may
continue to grow.

Of course, the specific value of εc depends on the value of the other parameters.
However, we look for a preliminary analysis of the aforesaid bifurcation problem
in view of the more detailed analytic and computational investigation that was
announced before.

Simulations are developed for the following values of parameters: σ = 0.5, τ = 1,
α = 10−2, β1 = 10−3, β2 = 10−1, γ = 1, λ = 0.02, ε1 = 10−3, ε26 = ε27 = 10−1,
and different values of ε28, which models the transition of immune cells to the last
hallmark. We choose null initial conditions except for f1j and f5j . We select f0

1j

and f0
5j linearly decreasing with respect to the activity.

The objective of the simulations aims at depicting the following emerging
behaviors:

cancer cells cannot be suppressed for low values of the said parame-
ter. Therefore these will end up to aggregate into compact multicellular
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Fig. 4. Evolution of the density of functional subsystem 4 for different values of parameter ε28:
(a) ε28 = 0, (b) ε28 = 10−4, (c) ε28 = 10−3, (d) ε28 = 10−2.

structures, while for high values immune cells have the ability to learn the
presence of cancer cells, which are progressively depleted.

Figure 4 shows different behavior which cancer cells with the most aggressive
hallmark experiment for different values of ε28. Figure 5 shows the evolution of n2

and n3 that is equal for any choice of ε28, as expected.
As already mentioned, further simulations are planned in a proper research

program. However, the specific analysis of the present paper already confirms the
following:

• Figure 4 shows that the number density of cancer cells of the last hallmark have
an increasing behavior for ε28 = 0 as the immune cell is not able to deplete
them, while an asymptotic value is reached for increasing value of ε28. Finally,
for ε28 = 10−2 cancer cells are suppressed. This occurs because as ε28 takes
greater values, the immune system becomes stronger.

• Figure 5 shows how the number density of preceding hallmarks after a temporary
increase decay due to the selection of cells of the highest hallmark.

Referring now to the comments on the black swan52 reported in Sec. 2.4, we
stress that the rare event is the growth of cancer cells, which is generated by a
mutation into the highest hallmarks where the immune cells have not anymore the
ability to identify the presence of cancer cells and suppress them. As we have seen,
it is a Darwinian selective process ruled by cellular properties and specifically on
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t

n
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t

n
3

Fig. 5. Evolution of the density of functional subsystems 2 and 3.

the mutation rate. Hence the rare event is related to a mutation that is already a
rare event which can cause disaster for the vertebrate carrier of such mutation.

5. Critical Analysis on the Scaling Problem

A mathematical model of immune competition has been proposed in this paper,
including mutations and Darwinian selection, based on an extended development
of the tools of the kinetic theory for active particles and game theory. Prelimi-
nary simulations have shown that the model has the ability to depict some impor-
tant emerging behaviors of the competition. The approach was developed at the
cellular scale by taking advantage of a phenomenological interpretation of cell
interactions.

It is plain that this specific modeling can be further refined to obtain an
improved model. Empirical data and simulations can contribute to this objective.
However, the important problem that remains is the study of the links between
the lower and the higher scale. As already mentioned, cancer is a genetic dis-
ease. The onset of cancer cells are induced by DNA modifications related to low
expression of genes, namely at the molecular scale. Empirical data can indicate
groups of genes that cause specific diseases. On the other hand, it is plain that
the process is dynamical being ruled by interactions involving genes and the outer
environment.
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It was argued in Ref. 8 that the same approach to model cellular dynamics can
be properly generalized to model the dynamics at the molecular scale. On the other
hand, although this conjecture is convincing, it has not yet been transferred into
effective models. Therefore the validity of models can be based, at present, on their
ability to depict emerging behaviors as described by the modeling of the aforesaid
interactions. Moreover, they should describe not only the qualitative behaviors that
are repeated and observed, but also those appearing in rare circumstances and that
are, at least apparently, not predictable.

On the other hand, the link between the cellular scale and the macroscopic one
of tissues has recently given encouraging results as documented in the survey5 and
in the therein cited bibliography. In particular, it has been shown that classical
and improved Keller–Segel model can be obtained from the underlying description
at the cellular scale.4 This approach can be possibly extended to the derivation
of tissue models for time-evolving cancer phenomena. The classical derivation of
models by conservation equations implemented by reaction diffusion description20

can possibly take advantage of these micro–macro methods.16

An additional interesting perspective consists in modeling genetic therapies or
activation of the immune system.45 This aim can be pursued by including external
actions in the general mathematical structure.
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(Morocco), project “Méthodes mathématiques et outils de modélisation et simula-
tion pour le cancer”. The second author was partially supported by the European
Union FP7 Health Research Grant No. FP7-HEALTH-F4-2008-202047-RESOLVE.
The third author has been funded with support from the European Commission.
This publication reflects the views only of the author, and the Commission cannot
be held responsible for any use which may be made of the information contained
therein.

References

1. A. R. A. Anderson, A. M. Weaver, P. T. Cummings and V. Quaranta, Tumor morphol-
ogy and phenotypic evolution driven by selective pressure from the microenvironment,
Cell 127 (2006) 905–915.

2. L. Arlotti, A. Gamba and M. Lachowicz, A kinetic model of tumor/immune system
cellular interaction, J. Theor. Med. 4 (2002) 39–50.

3. S. B. Baylin and J. E. Ohm, Epigenetic gene silencing in cancer — a mechanism for
early oncogenic pathway addition? Nat. Rev. Cancer 6 (2006) 107–116.

4. N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multiscale biological tissue models
and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods
Appl. Sci. 20 (2010) 1179–1207.

5. N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from
microscopic growing tissue models: An overview and perspectives, Math. Models Meth-
ods Appl. Sci. 22 (2012) 1130001 (37 pp.).



February 2, 2013 9:48 WSPC/103-M3AS 1250065

976 A. Bellouquid, E. De Angelis & D. Knopoff

6. N. Bellomo and B. Carbonaro, Towards a mathematical theory of living systems
focusing on developmental biology and evolution: A review and perspectives, Phys.
Life Rev. 8 (2011) 1–18.

7. N. Bellomo, M. A. J. Chaplain and E. De Angelis (eds.), Selected Topics on Cancer
Modeling : Genesis, Evolution, Immune Competition, and Therapy (Birkhäuser, 2009).
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