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Abstract.  We study the collective motion of a large set of self-propelled 
particles subject to voter-like interactions. Each particle moves on a 2D space 
at a constant speed in a direction that is randomly assigned initially. Then, at 
every step of the dynamics, each particle adopts the direction of motion of a 
randomly chosen neighboring particle. We investigate the time evolution of the 
global alignment of particles measured by the order parameter ϕ, until complete 
order ϕ = 1.0 is reached (polar consensus). We find that ϕ increases as t1/2 for 
short times and approaches 1.0 exponentially fast for longer times. Also, the 
mean time to consensus τ varies non-monotonically with the density of particles 
ρ, reaching a minimum at some intermediate density ρmin. At ρmin, the mean 
consensus time scales with the system size N as τmin ∼ N0.765, and thus the 
consensus is faster than in the case of all-to-all interactions (large ρ) where 
τ = 2N . We show that the fast consensus, also observed at intermediate and 
high densities, is a consequence of the segregation of the system into clusters 
of equally-oriented particles which breaks the balance of transitions between 
directional states in well mixed systems.
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1.  Introduction

Imitation is one of the fundamental social mechanisms implemented in most statisti-
cal physics models of opinion formation [1]. By means of local pairwise interactions 
between agents, the imitation mechanism generates an ordering dynamic that allows 
the study of how a population of individuals reaches consensus, i.e. a state where all 
individuals share the same opinion. Among the most studied opinion formation models, 
the so-called voter model (VM) is the most basic model that introduces social imitation 
in a simple way. In its original formulation [2, 3], each individual or voter is located at 
the site of a d-dimensional lattice and can take one of two possible opinions represented 
by an up or a down spin (S = ↑ or  ↓). At each time step of the dynamics, a voter cho-
sen at random simply adopts the opinion of a randomly chosen nearest neighbor. This 
local alignment dynamics leads to the formation of same-spin domains that growth in 
size until one domain takes over the entire lattice and the system reaches consensus in 
a time that scales as N2, N lnN and N in one, two and three dimensions, respectively 
[4, 5]. This ultimate state is frozen as spins can no longer evolve. The macroscopic 
dynamic behavior of the VM can be understood in terms of its associated Langevin 
equation for the magnetization field [6, 7], whose Ginzburg–Landau potential is zero. 
The VM with an arbitrary number of opinion states (the multi-state VM) has recently 
been studied in [8, 9], where the authors found interesting properties on the evolution 
of the number of dierent opinions and consensus times. The VM has also been applied 
to the study of other processes like the kinetics of heterogeneous catalysis [4, 5], spe-
cies competition [2] and ecological diversity [10–12]. Several extensions of the VM have 
been investigated in the literature, including the presence of zealots or inhomogeneities 
[13], constrained interactions [14], non-equivalent states [15], asymmetric transitions 
or bias [16], noise [17] and memory eects [18–21], among others.

While all these works assumed that agents are fixed in space, some recent works 
have considered the case in which agents are allowed to move. In reference [22] Sousa 
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et al introduced mobility in the Sznadj Model for opinion formation and found that 
consensus is always reached given that agents’ diusion remove the typical frustra-
tions observed in the static case. Terranova et al [23] studied a multi-state opinion 
model with moving individuals and showed that low motility enhances the tendency 
of the population to adopt moderate states. Lipowska and Lipowski [24] explored the 
influence of migrations in language formation by means of a model called Naming 
Game in which agents move diusively on a two-dimensional (2D) lattice, finding that 
the language of agents with lowest mobility is favored and that consensus is slower 
than in systems without motility.

The models described above assume that the direction of motion of a given particle 
is independent of its opinion or language state. However, in some other social phe-
nomena like the flocking behavior of large groups of animals such as bird flocks, fish 
schools or insect swarms (see [25–27] for recent reviews), the direction of motion of each 
individual is given by its opinion or decision. For instance, Couzin et al [28] combined 
experiments and theory to study collective decision making in fish schools. In these 
experiments, a group of fish are released in a pool and then each fish decides whether 
to go to a yellow or a blue target. Beginning with a minority group who are trained 
to have a strong preference for a given target and are able to persuade the majority 
group, they showed that the addition of a large enough group of uninformed individuals 
can promote democratic consensus, returning the control to the majority. In one of the 
seminal works that connected the field of swarming behavior with that of opinion for-
mation [29] the authors introduced a non-spatial adaptive network approach to model 
swarming experiments with locusts on a ring-shaped arena [30]. Agents were endowed 
with one of two possible states (right or left) representing the two possible moving 
directions of each locust (clockwise and anti-clockwise), and updated their states by 
interacting with their neighbors in the network. The model reproduced qualitatively 
the collective properties observed in the experiment, such as a spontaneous symmetry 
breaking and a density-driven order-disorder transition.

In this article we explore the mechanism of social imitation in flocking dynamics, 
where the direction of motion of each particle is associated to its opinion state. We 
propose and study a simple 2D flocking model with voter-like interactions in which, in a 
single iteration step, each particle adopts the direction of one particle chosen at random 
within its interacting neighborhood. Unlike the models studied in [28] and [29] and 
other related models [31], where the possible moving options are binary, all possible 
directions in the range (−π, π] are allowed in our model. Besides, interactions are not 
of mean-field type as in [29], but rather take into account the distance between nearby 
particles in an Euclidean 2D space. If we think of the example of a flock of birds, the 
imitation rule can be interpreted as each bird copying the direction of one close-by bird 
even if it is able to see a group of, for instance, ten birds around. Some recent works 
have also implemented other types of social interactions to study flocking, like the 
majority rule dynamics explored in [32], where interactions are not pairwise as in our 
model, but they include a group of neighbors as in the standard Vicsek model (SVM) 
[33]. Also, the model proposed by Chou and Ihle [34] considered the low density limit 
of the SVM where particles interact by pairs and both take their average orientations, 
unlike in our model where only one of the two particles updates its direction. We want 
to note as well that the flocking voter model (FVM) proposed here can be framed as a 
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particular type of coevolving network model [35–37], in which the network of interac-
tions evolves as particles enter and leave the interaction range of other particles.

We show in this article that the ordering dynamics of the FVM is much slower than 
that in the SVM. Also, the interplay between the interaction pattern and the align-
ment dynamics leads to a relaxation of the final ordered state that largely deviates from 
the one observed in mean-field, as well as in lattices with static particles. As a conse-
quence, the mean time to reach full polar order (consensus) exhibits a non-monotonic 
dependence with the density of particles. The motion appears to accelerate the polar 
consensus by a non-trivial mechanism that breaks the equivalence between particle 
states typically observed in the voter dynamics, introducing a net drift from minority 
to majority states.

The article is organized as follows. We introduce the model and its dynamics in 
section 2. In section 3 we explore the ordering dynamics. We analyze the consensus 
times to the final ordered state in section 4. Finally, we discuss the results and state 
the conclusions in section 5.

2. The model

We consider a set of N particles that move on a continuous 2D space [0,L]2 with peri-
odic boundary conditions. The density of particles ρ = N/L2 is conserved at all times. 
At a given time t, the position of particle i is denoted by �ri

t = (xt
i, y

t
i) and its velocity 

by �vi
t = (v cos θti , v sin θ

t
i), with speed |�vi| = v and direction θti, for i = 1, ..,N . That is, 

all particles move at the same speed v, but not necessarily in the same direction. At 
each time step of length ∆t = 1, each particle i selects a random neighboring particle 
j inside a circular region of radius R  =  1 centered at �ri, and updates its position and 
direction according to

�ri
t+1 = rti + �vi

t∆t,� (1a)

θt+1
i = θtj,� (1b)

where θtj is the direction of the particle j at time t. If particle i has no neighbors inside 
the interaction range R, then its direction is not changed. At t  =  0, positions of parti-
cles are assigned randomly with a uniform distribution inside the box [0,L]2, while their 
directions are randomly chosen from the interval (−π, π]. Then, each particle moves at 
a constant speed following a given straight path and can update its direction at integer 
times t = 1, 2, 3, ..., by adopting the direction of a neighbor chosen at random. We men-
tion that we have chosen in our model the updating rule used in the original version 
of the Vicsek model [33], which is known under the name of backward update. In the 
backward update the velocity at time t is used to obtain the position of a particle at the 
next time t  +  1 (equation (1a)), whereas in the forward update that position is obtained 
using the velocity at time t  +  1. This ambiguity in the selection of the position update 
and their consequences in the dynamics of the Vicsek model were discussed in some 
works (see for instance [38]). However, we expect the qualitative behavior of the FVM 
to be the same under both updates at low speeds. Qualitative dierences may appear 
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at high speeds where the dierence between moving a particle before or after adopting 
a direction could be very large in some cases.

3. Ordering dynamics

Voter-like interactions in the dynamics of the model tend to align the direction of 
neighboring particles. This leads to a local order in the short run, and to global or 
macroscopic polar order in the long run, as it happens in flocking models with fer-
romagnetic interactions like the SVM. The ordering properties in these systems are 
characterized by the parameter ϕ, defined as

ϕ ≡ 1

v N

∣∣∣∣∣
N∑
i=1

�vi

∣∣∣∣∣ ,� (2)

which is the absolute value of the normalized mean velocity of all particles. The order 
parameter ϕ can vary from 0 (total disorder) to 1.0 (full order).

In figure 1 we show the temporal behavior of the average value of the order param
eter 〈ϕ〉 for speed v  =  0.1, and two dierent densities. Averages were performed over 104 
independent realizations of the dynamics, as in most plots shown in the article unless 
stated. The two lower curves correspond to the FVM. We also show, for comparison, 
〈ϕ〉 for the SVM at zero noise (two upper curves). We observe that, in all cases, full 
order ϕ = 1.0 is eventually achieved in the long run. In this final ordered state all parti-
cles move in the same direction, thus no more direction updates are possible. Although 
this final state is not frozen because particles continue moving, it is analogous to the 
consensus state in the VM. The ordering in the FVM is characterized by an initial 
increase of 〈ϕ〉 as a power law in time, with an exponent close to 1/2 (lower dashed 
line) and a final exponential approach to 1.0. Even though the approach to a complete 
order in the FVM is much slower than that in the noiseless SVM, we see that the SVM 
also exhibits an initial algebraic increase of 〈ϕ〉 with time, with an exponent similar to 
1/2 (upper dashed line).

As we see below, the behavior of ϕ is closely related to that of the mean number of 
dierent directions S(t) at time t shown in figure 2. Initially, all directions are dierent 
as they are randomly assigned, and thus S(t = 0) = N . Then, for densities ρ � 2 we see 
that S decreases very slowly during an initial transient of order N, as

S(t) � N

1 + t/2
,� (3)

represented by a solid line in figure 2. This result was derived analytically in [8] follow-
ing a Master equation approach and in [9] using generating functions, for the multi-
state VM under a sequential update on a complete graph (all-to-all interactions). In the 
synchronous version of the model that we use here time is rescaled by a factor 1/2. In 
the final regime S relaxes exponentially fast to 1.0, corresponding to the single direction 
of full order (see figure 2). We note that the decrease of S is monotonic at all times. This 
is because some directions may not be copied by any particle in a single step (mainly 
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those directions followed by few particles), and thus these directions disappear from the 
system. Then, given that new directions are never created in the voter dynamics, S just 
decreases monotonically with time.

Solid lines in figure 2 correspond to equation (3), which reproduces the evolution 
of S quite well from simulations on a fully-connected system (all-to-all interactions), 
represented by empty circles. We also see that these mean-field (MF) curves agree very 
well with simulations on 2D for large particle densities. Indeed, as the box’s length 

L =
√

N/ρ decreases with ρ, the MF limit of all-to-all interactions is achieved as ρ → ∞, 

Figure 1.  Time evolution of the average order parameter 〈ϕ〉 in a system with 
N  =  4000 particles, with speed v  =  0.1. Blue (upper) symbols correspond to 
results of the SVM at zero noise for particle densities ρ = 21 (triangles) and ρ = 5 
(diamonds). Red (lower) symbols are results for the FVM with densities ρ = 5 
(squares) and ρ = 21 (circles). The solid line is the theoretical approximation 
equation (10), while the dashed lines are a guide for the eye with slope 1/2.

Figure 2.  Mean number of dierent directions S versus time for a system of 
N  =  4000 particles, speeds v  =  0.1 (a) and v  =  20 (b), and densities ρ = 0.06 (circles), 
2 (squares), 5 (diamonds) and 50 (triangles). Empty circles correspond to numerical 
results of S on a fully-connected system (SMF), while solid lines are the analytical 

expression equation (3). Insets: Plots of SMF(t)
S(t)

 as function of time for densities ρ = 5 

and 50 in panel (a), and ρ = 2, 5 and 50 in panel (b). The peaks of the curves make 

the departure of the FVM dynamics from the mean field case evident.
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independent on v, because L approaches the interaction range R  =  1. Deviations from 
MF are evident for very low values of ρ (see ρ = 0.06 curve), where the number of 
neighbors is very small and local interactions rule the dynamics. We also observe that 
for low speed v  =  0.1 (figure 2(a)) the agreement between MF and 2D is quite good for 
ρ � 2, but for high speeds v  =  20 (figure 2(b)) 2D results depart from the MF curve at 
a time around 103. We shall discuss this fast decay of S for large speeds in section 4.

An approximate expression for the relation between ϕ and S can be obtained by 
assuming that the directions of particles are randomly distributed at all times, as we 
describe below. Even though this assumption is only strictly valid at t  =  0 we shall 
see that it also works reasonable well for longer times. Let us consider that, at a given 
time t, there are S(t) dierent independent directions in the system of particles, drawn 
uniformly in the (−π, π] range. The number of dierent directions at time t may vary 
between realizations, but here we assume that they are all equal to its mean number 
S(t). Then, we can rewrite the order parameter at time t from equation (2) in the form

ϕ(t) =
1

v N

∣∣∣∣∣∣

S(t)∑
k=1

nk(t) �vk

∣∣∣∣∣∣
,� (4)

where the sum is over the dierent particles’ directions θtk labeled by the index k, which 
runs from 1 to its total number S(t). The number of particles moving in the direction 

θtk is denoted by nk(t) and is normalized at all times 
(∑S(t)

k=1 nk(t) = N
)
. As particles 

are initially assigned random directions, we have that S(0) = N  and nk(0)  =  1 for all 
k = 1, ..,N . The evolution of the occupation numbers nk is not trivial, thus we make 
an approximation and assume that at all times t  >  0 are all equal to its mean value 
nk(t) � N/S(t) (k = 1, ..,S). Therefore, equation (4) can be written as

ϕ(t) � 1

v S(t)

∣∣∣∣∣∣

S(t)∑
k=1

�vk

∣∣∣∣∣∣
= |�V |,� (5)

where we have defined the resulting vector �V ≡ 1
v S(t)

∑S(t)
k=1 �vk. Given the assumption 

that all velocities �vk are independent and uniformly distributed in (−π, π], the respec-
tive x and y components of �V , Vx and Vy, are uncorrelated. Then, from the central limit 
theorem we know that, in the S � 1 limit, Vx and Vy are normally distributed with 
zero mean (〈Vx〉 = 〈Vy〉 = 0 )

P (Vx) =
1√
2πσx

e
− V 2

x
2σ2

x , P (Vy) =
1√
2πσy

e
−

V 2
y

2σ2
y ,� (6)

and equal variance σ2
x = σ2

y = σ2 = 1/(2S), and thus |�V | is characterized by the Rayleigh 
distribution

P (|�V |) = |�V |
2πσ2

e−
|�V |2

2σ2 .� (7)

Now, we can calculate the average value of the order parameter by implementing polar 
coordinates as

https://doi.org/10.1088/1742-5468/aaac3e
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〈ϕ(t)〉 = 〈|�V |〉 =
∫ π

−π

dθ

∫ ∞

0

d|�V | |�V |2

2πσ2
e−

|�V |2

2σ2 =

√
π

2
σ.� (8)

Finally, using σ = 1/
√
2S we arrive to

〈ϕ〉 �
√
π

2
S−1/2.� (9)

In figure 3 we plot 〈ϕ〉 versus S obtained from computational simulations on a fully-
connected system (empty circles) and on a 2D system for v  =  0.1 and dierent densities, 
and compare with the behavior predicted by equation (9) (solid line). At t  =  0 (S  =  N) 
the expression from equation  (9) works very well because all velocities are actually 
randomly distributed, and thus the occupation number distribution is uniform (nk  =  1 
for all k = 1, ..,N ). Then, as groups of particles start to have the same direction the nk 
distribution deviates from uniform, and thus the assumption nk(t) � N/S(t) for all k 
implemented above does not hold any more. However, for short times—or large values 
of S-the uniform approximation still works quite well, and the relation between ϕ and 
S for 2D systems is well described by equation (9), as we can see in figure 3.

Combining equations (3) and (9) we arrive to the following approximate expression 
for the time dependence of 〈ϕ〉

〈ϕ〉 �
√
π

2

(
1 + t/2

N

)1/2

,� (10)

indicated by a solid line in figure 1. Even though there are discrepancies between the 
numerics and the analytical expression equation (10) for t  >  1, the algebraic increase 
〈ϕ〉 ∼

√
t/N for intermediate times (dashed line) predicted by equation (10) seems to 

hold quite well for both particle densities. In figure 3 we can see that for a fixed value 
of S, 2D simulations (filled symbols) show more orientational order than the corre
sponding MF simulation (empty circles), as 〈ϕ〉 is larger in the former case. This is a 

Figure 3.  Average number of dierent directions S versus average order parameter 
〈ϕ〉 for a system of N  =  4000 particles, speed v  =  0.1, and densities ρ = 0.06 (filled 
circles), 5 (squares) and 50 (triangles). Empty circles correspond to numerical 
results on a fully-connected system, while the solid line is the analytical estimation 
from equation (9).
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consequence of the fact that in 2D the dierent directions of particles at a given time 
are not uniformly distributed in the (−π, π] interval. Instead, longer lasting directions 
tend to be similar. This happens because orthogonal directions quickly tend to anni-
hilate each other, given that interactions (and alignments) are more frequent between 
particles with high relative cross section. This can be seen in the time = 6800 frame of 
figure 7 where the two largest clusters move almost parallel to each other.

4. Consensus times

A magnitude of interest in models that exhibit a complete order is the time taken to 
reach the final ordered state or consensus time. In figure 4(a) we plot the mean consen-
sus time τ over many realizations as a function of the particle density ρ, for a system of 
N  =  600 particles and dierent speeds. We should mention that there was a very small 
fraction of realizations that did not reach consensus, especially at low densities. Those 
realizations were not considered in the calculation of τ. In the static case scenario v  =  0 
(circles) τ decreases with ρ and approaches the MF value (τMF � 2N = 1200) for large 
N [8, 9] (horizontal dashed line). As discussed in section 3, the MF limiting case is 
obtained when L �

√
2 and thus each particle falls in the interaction range of any other 

particle. Therefore, for N  =  600 this happens when ρ overcomes the value N/2  =  300. 
However, for ρ � 50 is τ � τMF and the system behaves as in MF. In figure 4(b) we 
show the dependence of τ with the number of particles for v  =  0 and dierent densities. 
For high densities, τ approaches the MF linear behavior τMF � 2N  (dashed line), but 
for lower densities there are logarithmic deviations consistent with the 2D behavior 
τ ∼ N lnN  [4, 5]. This crossover between 2D and MF can be better seen in the inset 
of figure 4(b), where we show τ/N  versus N on a log-linear scale to capture logarithmic 
corrections. We observe that data points fall on a straight line with density dependent 
y-coordinate A(ρ) and slope B(ρ). As ρ increases, B goes to zero and A approaches 2.0, 
recovering the MF behavior.

The dynamic case scenario v  >  0 is dierent from the static case v  =  0, as τ exhib-
its a non-monotonic behavior with ρ. The mean consensus time τ is much larger than 
τMF for low densities, but it decays to values smaller than τMF as ρ increases and, after 
reaching a minimum value τmin, increases and saturates at the MF value. As expected, 
τ becomes independent of v at high densities. The behavior of τ with the system size N 
also shows interesting properties, as we see in figure 5(a) where we plot τ versus ρ for a 
fixed speed v  =  20 and several values of N. The shape of all curves are non-monotonic, 
and the location of the minimum ρmin and its value τmin increase with N. When the 
data corresponding to each size N is shifted by the factors N0.42 and N0.765 on the x and 
y axis, respectively, all curves collapse into a single curve (see inset of figure 5(a)). To 
obtain these scaling exponents we first selected a set of data points (ρmin, τmin) around 
the minimum of each curve, over an interval of ρ where the curve τ(ρ) is approximately 
flat. The sets (τmin,N) and (ρmin,N) which consisted on 43 points each are plotted 
by dots in figure 5(b) and its inset, respectively, while circles correspond to the aver-

age values for each N. By doing a linear regression analysis on a double logarithmic 

scale, ln(ρmin) = α + β ln(N), we obtained the estimators β̂ = 0.42 and α̂ = −1.83 that 
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provide the best fit to the (ρmin,N) data, and their associated error bars given by the 
95% confidence intervals β = 0.42± 0.09 and α = −1.83± 0.64, respectively. Then, we 
used the power-law best fit ρmin � 0.16N0.42 to estimate ρmin for larger values of N (up 
to N = 76 800) and calculated τmin for those estimated minima. The results are plotted 

Figure 4.  (a) Mean consensus time τ versus particle density ρ for a system of 
N  =  600 particles and speeds v  =  0 (circles), v  =  0.1 (triangles), v  =  5 (diamonds) 
and v  =  20 (squares). The horizontal dashed line denotes the mean field consensus 
time τMF � 2N = 1200, while the upper dashed line is the approximation from 
equation (11). Inset: Same data on a linear-log scale showing the non-monotonic 
behavior regime. (b) τ versus N for v  =  0 and densities ρ = 5 (circles), ρ = 10 
(squares) and ρ = 21 (diamonds). The dashed line is the expression τ = 2N . Inset: 
τ/N  versus N on a log-linear scale. Solid lines are the best linear fits A(ρ) + B(ρ) lnN , 
with coecients A = 1.285, 1.668 and 1.817 and slopes B = 0.170, 0.069 and 0.032 
for densities ρ = 5, 10 and 21, respectively.

Figure 5.  (a) τ versus ρ for speed v  =  20 and system sizes N  =  300 (circles), 600 
(squares), 1200 (diamonds), 2400 (up triangles) and 4800 (left triangles). Dashed lines 
are the analytic approximation 2N/πρ at low densities (equation (11)), for N  =  1200, 
600 and 300 (from top to bottom). Inset: Rescaled τ versus rescaled ρ showing the 
collapse of the curves. (b) Auxiliary plots showing the regression lines with the 
exponents γ = 0.765± 0.018 and β = 0.42± 0.09 used in the inset of panel (a).  
Dots in the main plot and the inset correspond to the set of points (ρmin, τmin) 
around the minima of the τ versus ρ curves of panel (a), while circles represent 
respective average values for each N. Main: Minimum mean consensus time τmin 
versus N. The straight line is the power-law fitting function τmin = 2.378N0.765 
for the range 2400 � N � 76 800. Inset: Density at the minimum value of τ, ρmin, 
versus N. The straight line is the best fit ρmin = 0.16N0.42 to the data.
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in figure 5(b) where we observe that τmin follows an asymptotic power law in the inter-
val 2400 � N � 76 800, with an exponent γ = 0.765± 0.018 (error bars were estimated 
using 25 data points for N = 2400, 4800, 9600, 19 200, 38 400 and 76 800). We note that 
the scaling τmin ∼ N0.765 is consistent with a consensus that is reached faster than in 
MF, where τ grows linearly with N.

The peculiar shape of τ versus ρ is a consequence of the non-trivial interplay between 
particles’ speed and the propagation of directions over the space. We understand that 
the approach to consensus depends on the relation between the time scales associated 
to these two processes—convection and diusion-, which vary with ρ and v. Below we 
explore in more detail the origin of the non-monotonic behavior of τ with ρ. We first 
provide some scaling arguments that explain the behavior of τ in the limit of small 
densities and large speeds, and then study the clustering dynamics at intermediate and 
high densities.

4.1. Limit of small densities and high speeds

Let us consider the case where particles move fast, and so they travel such a long dis-
tance in each time step that their distribution remains nearly uniform over the box. 
This is so because the backward update [38] used in simulations involves two con-
secutive events: each particle first aligns its direction with a neighboring particle and 
then moves a distance v with the old direction. As a consequence, for larger speeds 
(v � L) aligned particles could be at any distance from each other, leading to a quite 
uniform spatial pattern. Therefore, we can assume that the system remains well mixed 
at high speeds and thus interactions are as in MF. Then, at each time step, direc-
tion updates take place only among those particles that have at least one neighboring 
particle inside their interaction range. For each particle this happens with probability 
p = 1− (1− πρ/N)N−1 � πρ for πρ � 1 � N , assuming that particles are uniformly 
distributed. The fact that particles do not always update their directions at every time 
step introduces a time delay in the alignment dynamics, which rescales the MF consen-
sus time τMF � 2N  by a factor of 1/p (the mean number of attempts between interac-
tions). Therefore, we arrive at

τ � 2N

πρ
for ρ �

1

π
.� (11)

We observe in figure 4(a) that the expression from equation (11) (dashed line) gives 
a reasonable estimation of τ for high speed v  =  20 in the limit of low densities. The 
power-law decay τ ∼ ρ−1 at low ρ is also observed for speed v  =  5. Figure 5(a) shows 
how equation  (11) performs as the system size is varied (dashed lines). We see that 
for densities in the range 0.01 < ρ < 0.5 the approximation is very good for N  =  300 
(bottom line), but it becomes worse for larger system sizes N  =  600 (middle line) and 
N  =  1200 (top line). This is because by increasing N, while keeping ρ and v fixed, the 

box’s length L =
√

N/ρ increases and thus the ratio v/L eventually becomes small. 
Therefore, we expect that for large enough system sizes the well-mixed system assump-
tion v � L does not hold any more, and thus the MF approximation is not longer valid. 
We also speculate that, for a fixed N, the agreement becomes better as ρ decreases and 
is far from the minimum, as we can see for the N  =  600 curve of figures 4(a) and 5(a). 
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We observe as well that equation (11) underestimates the numerical data at intermedi-
ate densities, where the formation of clusters plays an important role, as we show in 
the next subsection.

4.2. Clustering dynamics at intermediate and high densities

For intermediate densities, the consensus turns out to be faster than in MF. This is 
consistent with the behavior of the number of dierent directions S in figure 2. There 
we can see that S decays as in MF (S ∼ N/t) during an initial transient, but then it 
starts to decay faster (exponentially), leading to a consensus time that is smaller than 
τMF. This eect is more pronounced for large speeds (see figure 2(b)). As we explain 
below, the departure observed in S from a power law to an exponential decay is caused 
by a dynamic reordering of the spatial pattern of interactions, from a well mixed sys-
tem to structures localized in space. To explore this in more detail, we studied the time 
evolution of the mean number of neighbors 〈k〉 (mean degree). Results are shown in 
figure 6 for N  =  4000 (the same as in figure 2), v  =  20 and various densities, where we 
observe that 〈k〉 starts to increase very slowly from its initial value πρ—corresponding 
to a uniform distribution of particles—until it saturates for a long time when the sys-
tem reaches consensus. This increase in the number of neighbors suggests that particles 
aggregate into spatial clusters. Indeed, when two particles are less than a distance 
R  =  1 apart they can align their directions and then move together until one of them 
changes direction by interacting with a third particle. Thus, one can see that align-
ment implies the ‘sticking’ of nearby particles, forming large sets of particles that move 
together in the same direction. These structures can be seen in figure 7 for a system of 
N  =  600 particles, with v  =  0.1 and ρ = 0.1. The panels represent snapshots of the sys-
tem at dierent times, showing the transition from a uniform distribution of particles 
moving in random directions at t  =  0 (a), to a spatial segregation into clusters of par-
ticles with the same direction at t  =  150 (b) and t  =  470 (c), and to a quasi-consensus 
state at t  =  6800. The segregation occurs for higher densities as well, but clusters may 
overlap when densities are very high.

By comparing figure 2(b) with figure 6, we observe that the deviation of S from the 
MF value starts approximately when 〈k〉 starts to be significantly larger than its ini-
tial value πρ; for instance at time t � 400 for ρ = 2. This indicates that the formation 
of clusters speeds up the dynamics and the approach to consensus. It turns out that 
spatial segregation induces a drift in the transitions between directions, from directions 
followed by small clusters to directions of large clusters. In other words, large clusters 
are more likely to gain particles while small clusters tend to lose particles. This might 
seem obvious in a typical coarsening dynamics like the one in the Ising model, where 
smaller clusters tend to vanish and the average size of clusters increases with time. 
However, ordering in the original voter dynamics is quite dierent because same-state 
domains gain and loose particles at the same rate, independent on their size, and thus 
coarsening is only driven by fluctuations. This is due to the fact that all opinion states 
are equivalent in the VM on regular topologies [39] and, as consequence, the average 
fraction of particles in each state is conserved at all times. Therefore, the drift or net 
flow of particles between any two states is zero in the VM.
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To study whether the transitions to a given direction α are correlated with the 
number of particles with direction α (mass mα), we define the drift from direction β to 
direction α at time t as

D(β → α, t) ≡
N∑

i=1/θi=β

p(θi → α, t),� (12)

where the sum is over all particles with a direction θi = β, and p(θi → α, t) is the prob-
ability that particle i adopts the direction α at time t, calculated as the fraction of i’s 
neighbors with direction α. Then, the net drift from small to large clusters is defined as

Figure 6.  Time evolution of the mean number of interacting neighbors 〈k〉, for 
N  =  4000, speed v  =  20 and densities ρ = 0.06 (circles), ρ = 2 (squares), ρ = 5 
(diamonds) and ρ = 50 (triangles).

Figure 7.  Snapshots showing the configuration of the system at dierent times, 
composed by N  =  600 particles with a density ρ = 0.1 and speed v  =  0.1. Particles 
are depicted by filled circles of radius 1.0, thus interacting particles overlap in this 
scale. Arrows indicate the direction of motion of each cluster, shown in a particular 
color.
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D(t) =
∑
α

∑
β

sign(mα −mβ)D(β → α, t),
� (13)

where sign(x) is a function that takes the value 1 (−1) for x  >  0 (x  <  0), and 0 for x  =  0, 
thus it assigns a positive weight to drifts towards larger clusters, and a negative weight 
to drifts towards smaller clusters. Therefore, a positive (negative) value of D means 
that, on average, the net drift in the system is from smaller (larger) to larger (smaller) 
clusters. In figure 8(a) we show the time evolution of D averaged over 3× 104 realiza-
tions, on a system with N  =  600 particles moving at speed v  =  5 and for various densi-
ties. We observe that D is larger than zero for all times, showing that there is a net drift 
from small to large clusters. This generates a positive feedback in which large clusters 
tend to increase their size while small clusters tend to shrink, and is in contrast with 
the MF behavior, where no direction has a prevalence on the others and thus D  =  0 at 
all times. Therefore, the presence of a positive drift breaks the symmetry of the system 
and speeds up the evolution towards consensus, as compared to MF. We can check that 
the MF limit is achieved as ρ increases, where we see that D decreases and is already 
very small for ρ = 31.

Figure 8.  Time evolution of four dierent magnitudes: (a) the net drift D from 
small to large clusters, (b) the time derivative of the mean number of neighbors 〈k〉, 
(c) the ratio between the mean number of directions in MF (SMF) and in 2D (S) as 
defined in figure 2, and (d) the covariance cov(m, 〈k〉) between the size of a cluster 
and its mean degree. Simulations correspond to systems with N  =  600 particles, 
speed v  =  5 and densities ρ = 2 (circles), ρ = 9 (squares), ρ = 16 (diamonds) and 
ρ = 31 (triangles).
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As we can see in figure 8(b), the shape of the time derivative of 〈k〉 agrees quite well 
with the shape of D(t), showing a direct relationship between clustering and drift. Also, 
D reaches a maximum when S starts to deviate from the MF curve (see figure 8(c)), 
indicating that the drift accelerates the evolution towards consensus. Figure 8 only 
shows the case of v  =  5, but we found similar results for v  =  0.1 and v  =  20 as well. 
We speculate that the reason why larger clusters tend to increase their size more rap-
idly than smaller clusters is because particles that belong to larger clusters have, on 
average, a larger number of neighbors. And, it is known that in disordered topologies 

of interactions like complex networks, the weighted magnetization (m =
∑N

i=1 Siki/N , 
with Si and ki the state and degree of node i, respectively) is conserved in the voter 
dynamics [39], rather than the state magnetization. This means that nodes are more 
likely to copy the opinion state of other nodes with large degrees, breaking the equiva-
lence between states.

To check the relation between cluster size and mean degree we calculated the time 
evolution of the covariance cov(m, 〈k〉) between the mass m of a given cluster and the 
mean degree 〈k〉 of the particles that belong to that cluster, regardless whether the 
neighbors belong to the same or to a dierent cluster. The evolution of the covariance 
averaged over many realizations is shown in figure 8(d). We observe a positive covari-
ance between m and 〈k〉 which shows that, indeed, larger clusters have more neighbors, 
increasing their chances to gain more particles. A similar result was obtained in the 
SVM for which bigger clusters have larger mean degrees as well [40]. The fact that 
larger clusters tend to have a larger mean degree and grow faster, breaks the symmetry 
of the FVM.

5. Discussion and conclusions

We proposed and studied a flocking model in which self-propelled particles interact 
via a simple dynamics of velocity imitation. We studied the ordering dynamics of the 
system and its approach to the fully ordered state (consensus) 〈ϕ〉 = 1. We found that 
the dynamics is characterized by an algebraic increase with time (〈ϕ〉 ∼ t1/2) during an 
initial transient, and a final exponential approach to the ordered state. Interestingly, 
a similar ordering behavior is observed in the SVM model at zero noise, although the 
initial algebraic increase happens earlier, and thus the approach to order is much faster 
than in the FVM. We suspect that the scaling exponent 1/2 found in the noiseless SVM 
might be related to the coarsening exponents found in the ordered phase of the SVM 
with noise [41, 42]. The ordering in the FVM is related to the decreasing number of 
dierent directions of motion in the system, which is well explained by the MF theory 
of the multi-state VM during the first stage. In the second stage, and for high enough 
particle density ρ, the ordering dynamics is faster than in MF due to a break in the 
symmetry of directional states that speeds up the dynamics. As a consequence, the 
mean time to reach consensus τ is non-monotonic with ρ, that is, there is an optimal 
density for which the system reaches full order in the shortest time. The shape of the τ 
versus ρ curve can be qualitatively explained in terms of three main mechanisms that 
act on dierent density scales. At low densities, the dynamics is limited by the sporadic 
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encounters between particles that introduce a delay in the interactions and lead to 
large consensus times. At intermediate densities, the dynamics undergoes a breaking 
in the symmetry of transitions between directions, induced by the spatial segregation 
of particles into same-direction clusters. This symmetry breaking is enhanced by the 
motion of particles, generating a net mass drift from small to large clusters and accel-
erating the approach to consensus respect to the MF behavior. The sublinear scaling of 
the mean consensus time with N at the minimum of the τ versus ρ curve (τmin ∼ N0.765) 
is consistent with a consensus that is faster than in MF. Finally, at high densities the 
MF case of all-to-all interactions is recovered.

We explored a voter-like dynamics acting on self-propelled agents subject to metric 
interactions, which by definition occur when two particles are less than a predefined cuto 
distance apart. This type of interactions was adopted for its simplicity. Nevertheless, 
it is known that some social living organisms, like birds or humans, may interact in a 
dierent way, for instance by considering the first k closest neighbors regardless of the 
distance to them [43]. It would be worthwhile to study a system with voter-like interac-
tions in this context. In particular, the density dependence of the dynamics could turn 
out to be very dierent with respect to the one found in this article, as it happens with 
the Vicsek model where the dynamics is essentially independent of the density in the 
case of non-metric interactions [44, 45]. Finally, a natural extension of the model would 
consist of the introduction of noise perturbing the direction of motion of particles as in 
the SVM. We plan to study this extended version of the FVM in a future work.
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