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A B S T R A C T

Spatial awareness and memory are key factors for a robot to evolve in semi-structured and dynamic environ-
ments as those found in agriculture, and particularly in fruit crops where the trees are regularly distributed. This
paper proposes a probabilistic method for mapping out-of-structure objects (weeds, workers, machines, fallen
branches, etc.) using a Kernel density estimator. The methodology has theoretical and practical advantages over
the well-known occupancy grid map estimator such as optimization of storage resources, online update, high
resolution, and straightforward adaptability to dynamic environments. An example application would be a
control scheme through which a robot is able to perform cautious navigation in areas with high probability of
finding obstacles. Simulations and experiments show that large extensions can be online mapped with few data
and high spatial resolution.

1. Introduction

The United Nations proposed a 2030 agenda with 17 goals for
sustainable development, placing food and agriculture as crucial pillars
U. Nations. A profound change of the global food and agriculture
system is needed to nourish today’s 815 million hungry and the addi-
tional 2 billion people expected by 2050. One of the proposed objec-
tives is to “Ensure sustainable consumption and production patterns”,
which points to do more and better with less. Precision agriculture is a
modern farming practice that makes production more efficient by the
proper application of inputs like water, fertilizer, pesticides, etc. at the
correct time to the crop for increasing its productivity and maximizing
its yields. Besides, precision agriculture provides farmers with a wealth
of information to keep track of the farm, improve decision-making,
ensure greater traceability, enhance marketing of farm products, im-
prove lease arrangements and relationship with landlords, and enhance
the inherent quality of farm products. A review of the motivations of
implementing precision agriculture technologies is given in Pierpaoli
et al. (2013).

In both developed and developing countries, the primary limiting
factor in the development of agricultural industries is the manpower
(Bechar and Vigneault, 2016), since it is the largest single cost-con-
tributor in agriculture representing about 40% of the operational costs
(Bechar and Eben-Chaime, 2014). The operational and socio-
demographic factors that influence significantly in the adoption of
precision agriculture technologies by German crop farmers are analyzed

in Paustian and Theuvsen (2017). In the 20th century, technological
progress in developed countries reduced the manpower for farming
activities by a factor of 80 (Ceres et al., 1998). The transient nature of
manpower in countries where wages are low reduces production cap-
ability and quality (Bechar and Vigneault, 2016). Furthermore, there
are heavy manual tasks that cause injuries or chronic problems to
workers (Perez-Ruiz et al., 2014). The enormous workforce force re-
quired for the different operations causes bottlenecks, downgrading
productivity, reducing yield and increasing costs. Besides, problems
such as aging of the workforce and shortage of rural workers contribute
to the lack of manpower (Iida et al., 2013). This high manual labor
requirement impedes cost reductions and increases the demand for
robotics and automation (Bechar et al., 2007). Therefore, some human
workers must be relocated to other sectors such as maintenance and
programming of machines, supervision of tasks, or industrialization of
primary agricultural goods (Autor, 2015). Statistics show that the
agriculture labor is not lost but transformed (Employment Projections
Program, 2017). A detailed analysis of the replacement of labor by
machines is presented in Bechar and Vigneault (2016).

The use of robots enables the farmer to automate precision agri-
culture tasks (Yahya, 2018). There are already companies that offer
robots that assist in agricultural tasks, such as Deepfield Robotics, Naïo
Technologies, or Saga Robotics, to list some of them. The development
of an agricultural robot must include the creation of sophisticated and
intelligent algorithms for sensing, planning and controlling to cope with
challenging, unstructured and dynamic agricultural environments
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(Edan and Bechar, 1998). A review of recent research and develop-
ments in robotics for agricultural field applications and associated
concepts, principles, gaps, and limitations can be found in Bechar and
Vigneault (2016). One of the main limitations is the uncertainty accu-
mulation during navigation, which can be reduced by including land-
marks on the whole farm (such as QR codes in each tree) or by using
prior information (such as an environment map or particular distribu-
tions of the trees), among others. For this reason, the mapping of par-
tially structured agricultural environments is a valuable resource for
precision agriculture. The regular geometry of the trees in an orchard
(see Fig. 1) allows having prior precise information of their locations,
which can be exploited by several automatic systems (Gimenez et al.,
2015). Nevertheless, other objects, which are external to this regular
structure, are also present in the agricultural environment. Among
others, weeds, fallen branches, machinery, and rural workers are con-
sidered out-of-structure objects. These elements are also essential to be
mapped because they can affect the robot navigation as well as the
Human-Robot interaction (HRI) tasks. In such environments, the robot
must be part of a more adaptive system, with the possibility to dyna-
mically introduce new objects to the scene (Kaldestad et al., 2012).

Weeds and workers are part of any agricultural environment (see
Fig. 1). Weeds affect the production by reducing crop yield and quality,
delaying or interfering with harvesting, preventing water flow, etc.
(Scursoni et al., 2011; Zimdahl, 2007). Tasks and other elements for
weed control can be optimized by detecting and mapping the areas
where weeds are more likely to grow (Torres-Sospedra and Nebot,
2014; Dammer, 2016; Panetta, 2015). On the other hand, the mapping
of rural worker traffic allows generating appropriate control algorithms
for HRI. Human capabilities of perception, thinking, and action are still
unmatched in environments with anomalies and unforeseen events
(Tervo and Koivo, 2014). Consequently, human and robot skills are
complementary.

Dynamic environments are best represented with probabilistic maps
in which areas with the highest probability of occupation are high-
lighted (see the working area in Fig. 1). This mapping procedure is

often associated with the costly methods of occupancy grid maps in
which the environment is regularly partitioned, and a probability is
assigned to each grid cell (Thrun et al., 2005). In large-scale environ-
ments or when there is the need for high resolution, memory con-
sumption of this methodology can become prohibitive, and even more if
a 3D map is desired. The grid-based maps can be optimized using oc-
trees, that allows to generate an original map with low resolution and
refine each grid as their occupation probability increases (Hornung
et al., 2013). The tree representation of the map reduces access times,
memory consumption, and can also be used as a multi-resolution re-
presentation since it can be cut at any level to obtain a coarser sub-
division (Hornung et al., 2013). However, these optimizations are not
naturally designed to work in dynamic environments, and the in-
corporation of probabilities is not straightforward since it requires
probabilistic models that are heuristically adjusted.

The main contribution of this paper is the development of a prob-
abilistic method for mapping out-of-structure objects with the following
properties: (i) It only requires storing the coordinates of an observation
set detected outside the regular structure of the orchard; (ii) The ob-
servation set allows a nonparametric estimate of the unknown density
function f of the out-of-structure objects through a Kernel estimator;
(iii) It obtains a probabilistic map with high spatial resolution; (iv) It
allows adapting the amount of stored information to the processing and
storage capacities without compromising the map spatial resolution.
The mapping procedure also allows incorporating new areas without
increasing the required memory space. This is achieved by using a novel
recursive subsampling methodology, which eliminates redundant non-
informative data and reduces outliers. (v) The access times to the data
can be optimized if a tree structure (like octrees) is generated, in which
the observations are grouped according to the similarity of the decimal
representations of their coordinates. (vi) It does not require constant
updating of the probabilistic map, and the probability of observing an
object at a specific point (and not the probability of finding an object
within a grid cell) can be estimated online; (vii) It does not require:
initialization, prior knowledge of the areas to be mapped, nor perform
costly copy operations every time the map area is expanded; (viii) Free
and unknown areas are not stored, and they are detected by the absence
of points in spatial windows. (ix) It allows mapping dynamic environ-
ments by incorporating a forgetting factor. In this map, there are no
regions without a significant probability of objects presence. (x) Kernel
estimators are consistent and probabilistically optimal. Instead, the
histogram estimator (or its generalization in grids) requires a cell size
reduction (increasing the amount of storage memory required) to
converge theoretically to f while increasing the sample size (Györfi
et al., 2002). (xi) The estimates do not need the probabilistic modeling
of the sensor, which generally contains heuristically adjusted para-
meters. (xii) It facilitates loop-closures in slam processes since original
observations are stored instead of increasing data counters in each grill
losing spatial information.

In addition, this paper presents an example application in which a
robot uses this map to achieve cautious navigation by reducing its ve-
locity in areas with high probability of finding rural workers. This na-
vigation strategy includes an obstacle avoidance controller based on
impedance. Fig. 1 presents two typical environments where the pro-
posed system can be applied. In the first case, a worker performing a
task on trees of the same line is observed. The points generated by these
observations are incorporated into a database, which is kept bounded
by using a recursive subsampling procedure. If the observation area is
frequently occupied, then the algorithm marks it as a high traffic zone
(working area in Fig. 1) and activates a cautious navigation mode.
However, if the worker is never again observed in this region, the al-
gorithm will forget these observations over time. Weeds are also de-
tected and marked as areas with collision probability, but if they are
removed, this area will be marked as a free area again. Fig. 1(b) pre-
sents a similar situation, in which a worker crosses the likely path of the
robot. If this passage is commonly used for workers (or machines), the

Fig. 1. Typical fruit grove environments with trees regularly located and
workers performing a task. The working and weed areas are highlighted in
order to identity regions of free movement and cautious navigation.
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algorithm assigns it a high collision probability and activates a cautions
navigation mode in this area. In both cases, the regular distribution of
the trees can be used to keep the mapping errors bounded. This map-
ping procedure should be seen as a complementary tool to be used by
the robot while it performs its assigned task. The proposed metho-
dology is not intended to replace the human, but to improve the
Human-Robot Interaction.

The paper is organized as follows. Fundamental concepts of density
estimation to develop this paper are formally defined in Section 2.
Section 3 presents an online recursive subsampling methodology used
to keep the points cloud size bounded, reducing non-informative ob-
servations and outliers. In Section 4, it is explained how to make the
probabilistic map of the out-of-structure objects by using the Kernel
estimator. An example application of probabilistic mapping is devel-
oped in Section 5. Simulations of the probabilistic mapping of weeds
and rural workers are shown in Section 6. Experimental results are
shown in Section 7, and finally, conclusions are given in Section 8.

2. Density estimation

The density of a random variable is a normalized function that takes
more significant values in the most likely points to observe the variable.
Density estimators seek to maximize some functional that depends on a
finite sample …X X, , n1 of the distribution. The most known optimality
criterion is the maximum likelihood approach, which seeks the density f
that maximizes the joint likelihood of all observations, that is,

∏=
=

f f Xargmax ( ).n f i

n

i
1


(1)

Density estimators are divided into parametric and nonparametric.
On the one hand, parametric estimators assume that the density is
characterized by a parameter set, like Gaussian or Gaussian mixture,
wherein the parameter estimation is equivalent to the density estima-
tion. These models are not the most advisable to characterize un-
structured environments such as those found in this work. On the other
hand, nonparametric estimators seek to optimize (1) assuming that f
belongs to a class characterized by functional concepts such as
smoothness or shape (Györfi et al., 2002). Among the most known
nonparametric estimators, the histogram estimators (or its general-
ization based on grids) and the Kernel estimators are highlighted.

Density estimators based on grids are the most commonly used in
the application field, in which the domain of f is discretized, and the
observation probability on each grid cell is optimally estimated (ac-
cording to (1)) by the proportion of observed points in the cell. In ro-
botic mapping, octrees avoid the full data storage, which is the main
shortcoming of fixed grid structures.This is achieved by mapping in low
resolution and delaying the sub-grids initialization until the occupation
probability of the grid becomes significant.

In this way, the extent of the mapped environment does not need to
be known beforehand, and the map only contains grids that have been
measured (Hornung et al., 2013).

A discretization of the environment can be avoided by storing range
measurements directly. The occupied space in the environment is then
modeled by the point clouds returned by range sensors. Kernel density
estimator (KDE) is based on a finite data sample and can be viewed as a
generalization of histogram density estimation with improved statis-
tical properties. In short, the KDE performs the convolution between the
sampling point cloud and a kernel in charge of weighting local ob-
servations.

Given a random sample …X X X, , , n1 2 of a population, the 1D version
of KDE is defined by
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where K is the kernel (a non-negative function that integrates to one

and has zero mean), and >h 0 is the bandwidth. Several kernel func-
tions are commonly used: uniform, triangular, biweight, triweight,
Epanechnikov, normal, among others (Györfi et al., 2002). Intuitively,
the smoothing parameter h is choosed as small as the data allow,
however there is always a trade-off between the bias of the estimator
and its variance. If the bandwidth is small (big), then an under-
smoothed (oversmoothed) estimation with low (high) variance and
high (low) bias is produced. Several optimality approaches are used to
select the appropriate bandwidth (Györfi et al., 2002).

In this paper, out-of-structure objects are mapped in a 2D space, but
generalization to higher dimensional spaces can be performed. Let

… ∈X X X( , , , )n1 2
2 be an independent and identically distributed

sample drawn from some distribution with an unknown and non-
parametric density f. The bidimensional kernel density estimator of f is
defined by (Botev et al., 2010)
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where K is the kernel (a non-negative bidimentional function that in-
tegrates to one and has zero mean), and = >H h hdiag( , ) 0x y contains
the bandwidths. The standard bivariate normal kernel is often used due
to its convenient mathematical properties, this is,

= −{ }K x
π

x x( ) 1
2

exp 1
2

.T

Once the kernel function is selected, the estimator (2) becomes
parametric, since it now results to be characterized by the parameters
hx and hy. More details on how to optimally define the smoothing
parameters of 2D-KDE are given in Wand and Jones (1993) and Botev
et al. (2010).

If the probabilistic reconstruction of the whole map is desired, the
Matlab function kde2d (Botev, 2007) can be used, which is a fast and
accurate state-of-the-art bivariate kernel density estimator with diag-
onal bandwidth matrix. The two bandwidth parameters are optimally
chosen without ever using a parametric model for the data or any “rules
of thumb”. Unlike many other procedures, this one is immune to ac-
curacy failures in the estimation of multimodal densities with widely
separated modes (Botev et al., 2010).

Instead, if the probability of detecting an out-of-structure object at a
specific point x (and not the grid cell to which it belongs) is desired, the
observations lying within a window centered in x should be selected
and weighted by using (2). The bandwidths can be calculated online as
indicated in Botev et al. (2010), or it can be used precalculated optimal
values.

Note that it is not necessary to make any probabilistic calculation
during data collection. Besides, the size of the data set can be adapted to
the processing and storage capacities. To this, the database must be
constantly subsampled, keeping it updated and bounded. However, the
higher the storage capacity, the better the estimate of f, since

=→∞f flimn n
 .

3. Recursive subsampling

The number of observations continually increases throughout the
data acquisition, and therefore, the probability computation can be-
come a costly task if a mechanism for eliminating non-informative
observations is not incorporated. Although most methodologies in-
corporate processes to detect and remove outliers, it is impossible to
eliminate them altogether. On the other hand, repeated or redundant
observations can appear if too much data are accumulated. For this
reason, the data subsampling reduces outliers significantly, and in the
same proportion, eliminates redundant observations.

Subsampling is the random process of reducing the sample size from
K to <k K (subsampling performed in one step), in which each ob-
servation remains in the subsample with probability k K/ . Suppose now
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that there is a storage capacity quota of C observations, which is lesser
than the expected amount of data. Then, it is not feasible to wait for the
experiment finishes for then performing a subsampling in one step. This
requires to perform a subsampling, every time the number of stored
observations N exceeds the quota C, in which each observation has a
probability C N/ of remaining in the subsample (recursive sub-
sampling).

With a traditional recursive subsampling, in which observations are
randomly deleted as new observations are acquired, the more recent
observations have a higher probability to be in the subsample. Thus,
this recursive subsampling is not equivalent to a subsampling per-
formed in one step, and it tends to quickly forget old representative
observations. Algorithm 1 produces a recursive subsampling equivalent
to a subsampling performed in one step, in which all observations
(regardless of when they are acquired) have the same probability of
belonging to the point cloud. This purpose is fulfilled through an ac-
ceptance-rejection method of new observations.

At the beginning of the algorithm, the point cloud is empty ( =N 0),
and the probability of accepting new observations is =p 1. The algo-
rithm incorporates all the acquired observations to the point cloud until
the storage quota is exceeded >N C . When this happens, C observa-
tions are subsampled without replacement, and the remaining ob-
servations are deleted. Then, the probability of belonging to the point
cloud is updated to =p C N/ , and N is set to C. From this moment, each
new observation must undergo an acceptance-rejection process
equaling its probability to belong to the point cloud with the probability
of the observations acquired previously. This probability of belonging p
decreases every time a new subsampling is performed (steps 15–17 of
the Algorithm). In this way, all observations (originals and news) have
the same probability p of belonging to the point cloud. The for loop of
the steps 7–13 can be efficiently performed in matrix form.

Algorithm 1. Subsampling algorithm

1: Set =N 0 ▷ size of the point cloud
2: Set =p 1 ▷ probability for the

acceptance-rejection
procedure

3: for =t 1: end do ▷ for each sampling period
4: Include the nt new observations
in the point cloud.
5: = +N N nt
6: if >N C then ▷ if the storage quota is

exceeded
7: for =i n1: t do ▷ for each new observation
8: =u rand(0, 1) ▷ random number with

uniform distribution
9: if >u p then ▷ acceptance-rejection

procedure
10: i-th new observation is

deleted
11: = −N N 1
12: end if
13: end for
14: if >N C then ▷ if the storage quota is still

exceeded
15: a subsampling without

replacement of size C is
performed.

16: =p pC N/ ▷ update the acceptance-
rejection probability

17: =N C
18: end if
19: end if
20: end for

A forgetting factor can be set according to the application by
modifying the update of the acceptance probability of step 16. A pos-
sible update may be = >p p C N α( / ) , 0α .

4. Mapping out-of-structure objects

Consider a fruit grove with regular geometry, like the olive grove
shown in Fig. 2. Let m be the set of actual locations of the trees. Any
object outside of this regular structure is considered an out-of-structure
object, which can be dynamic or static. Among dynamic objects are the
farm workers and machineries, and among the static objects, it can be
mentioned the weeds and complementary structures. In this paper, it is
considered one of each type: agricultural workers and weeds.

Let = x x xx [ , , ]t t x t y t θ
T

, , , be the state variable of the vehicle at time t,
where x x( , )t x t y, , represents its position and xt θ, its orientation. In ad-
dition, it is assumed that the vehicle is equipped with a laser range
sensor whose measurements can be summarized in a vector

= = …z i nz { : 1, , }t t i t, , where each =z z z[ , ]t i t i d t i θ, , , , , contains the dis-
tance zt i d, , from the robot to the i-th obstacle, and the direction zt i θ, ,
from which this obstacle is observed. This direction takes values be-
tween 0 (right side of the robot) and π (left side of the robot). Then,

=
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is the observed point cloud at time t (see Fig. 3 for more details).
Each point of these sets is considered a tree observation if its dis-

tance to the regular grid is less than >δ 0, where the threshold δ is a
design parameter. Then, each zt can be partitioned into tree observa-
tions zt

a and out-of-structure observations zt
e.

In this paper, the observation zt
a is used to perform a classic SLAM to

correct small differences between m and the actual regular structure,
and then to improve the estimation of robot trajectory x{ }t . m and x{ }t
can be calculated with high accuracy if the SLAM algorithm is in-
itialized with the regular map and the exact initial pose of the robot.

On the other hand, the point cloud of out-of-structure objects is built
by using the vectors xt and zt

e for all t. This database is kept re-
presentative, updated and bounded by using Algorithm 1, which can be
run online.

5. Application example of the probabilistic map

Human-Robot Interaction (HRI) in the agricultural environment will
be a typical situation shortly, and therefore, it represents a topic of
great research interest. In HRI, not only the human bt also the robot is

Fig. 2. Google Maps image of an experimental olive grove at the National
Institute of Agricultural Technology (INTA) located in San Juan, Argentina.
This fruit grove has a regular geometry in which the olive trees spacing is 6m
(between rows) by 4m (between trees).
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expected to adapt to its partner (Mitsunaga et al., 2008). Current re-
search is aimed at achieving automated farms where machines and
humans coexist in total sync, although this is a significant challenge
that requires passing a countless number of technological and social
barriers (Ellis et al., 1991; Bergerman et al., 2015).

A social robot (Dautenhahn and Billard, 1999) in agriculture must
have socially-acceptable movements, i.e., their movements should be
legible, natural, and should take into account the human comfort (Auat
Cheein et al., 2015). Successful farm interaction depends strongly on
the appropriateness, usefulness, and efficiency of the robot (Latif et al.,
2009). A mobile robot that navigates between humans and other ma-
chines must follow a series of security and social norms. If the robot
detects map zones with higher traffic and obstacle presence, then it
should be able to navigate along these zones cautiously.

The statistical significance of the observations becomes relevant
when the robot senses dynamic objects since erroneous maps can be
generated if the total observation time is not long enough. If no workers
are observed in some region of the crop, it does not mean that in this
region is unlikely to find them. In the same sense, if a worker is ob-
served in an atypical place, false areas with worker occupancy could be
generated. The statistical theory states that the only way to reduce these
uncertainties is by increasing the sample size, i.e., increasing the period
in which the robot acquires data, and the times the robot passes over
the same path. This concept can be compared to humans gained ex-
perience, because the more times a situation is faced, the better is the
response to that situation. This procedure could be incorporated into

agricultural robots to acquire additional information to perform its
assigned task under an HRI paradigm.

An example application of the probabilistic map is presented in this
Section. The aim of this example is not to prove the mapping abilities of
the robot but to iteratively construct a dynamic map based on the in-
formation gathered in successive visits, to achieve an efficient, secure
and socially acceptable navigation.

Consider an agricultural environment with regularly distributed
fruit trees, and a robot equipped with a laser range sensor and a control
system, as shown in Fig. 4. The semi-structured characteristic of the
environment allows the algorithm to easily distinguish trees from out-
of-structure observations, such as humans, machinery or any other
obstacle that restrict the free transit areas (Object classification block in
Fig. 4). Trees observations are used in the odometry correction (SLAM
block in Fig. 4), while out-of-structure observations are incorporated in
a database of 2D cartesian coordinates by using Algorithm 1 (Point cloud
update block in Fig. 4).

Consider now that the agricultural mobile robot is performing some
specific task. For simplicity, in this case it is assumed that the task is to
follow a specific path across the crop, having into account the presence
of obstacles. While performing its assigned task, the robot should be
able to reduce its velocity in zones with high obstacle probability even
if momentarily there are not out-of-structure objects in the area. This

Fig. 3. Robot pose and variables based on laser measurements that characterize
the relative position of the detected objects.

Fig. 4. Control system diagram for the example
application. Laser measurements are classified as
tree or as out-of-structure observations, and then
assigned to SLAM (to reduce system errors) or to
update the point cloud (on which the probabil-
istic map is based), respectively. The control ac-
tion, given by the path following controller and
modified by the obstacle avoiding system, is
fused with the collision probability to generate a
cautious navigation for the robot.

Fig. 5. Obstacle avoidance system. When an obstacle is detected, the robot is
repelled by virtual forces ( =F F F[ , ]r t ) preventing likely collisions. These forces
depend on preset safety distance parameters (dmin and dmax) and the vehicle-
obstacle relative orientation (β).
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deceleration is similar to the velocity reduction that a car driver per-
forms while approaching a crossing street.

The probabilistic map is generated following Algorithm 2 (see the
cautious behavior block in Fig. 4). Several controllers can be used to
perform steps 5 and 6 of Algorithm 2 (see the path following controller
and obstacle detection blocks in Fig. 4). Simulations and experiments
presented in this paper use the path following controller developed in
Andaluz et al. (2011), with a modification for obstacle avoidance based
on impedance (Secchi and Mut, 2003).

Algorithm 2. Cautious behavior

1: while performing a normal navigation do
2: define a rectangular area in front of the robot;
3: randomly sample the area and calculate the transit

probability at these points by using (2);
4: estimate the collision probability p by averaging these

probabilities;

5: calculate the desired velocities by using a path following
controller;

6: modify the control actions according to the requirement of the
obstacle evader;

7: multiply the linear velocity by the reduction factor
+ k p1/(1 )c , where >k 0c is a design constant.

8: end while

The path following control action is = ν ωu [ , ]T , where ν and ω are
the linear and angular desired velocities. The detected obstacles pro-
duce a repulsion force F, which is decomposed in a lateral component Fr

and a longitudinal component Ft according to the robot-obstacle re-
lative orientation (see Fig. 5).

The control action u and repulsion forces Ft and Fr are combined
with the collision probability p to modify the velocity and orientation of
the vehicle, as shown Fig. 4. The fusion block of Fig. 4 implements the
equations
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Fig. 6. Outcomes of the first simulation. The mapping considering a storage bound takes up less memory and obtains maps similar to those based on the whole
database.
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T is the control action sent to the vehicle, >k 0p is a

design constant and >k k, 0i ν i ω, , are the impedance constants.
Some problems related to the controllers’ interaction can appear.

For example, if an obstacle remains static while is detected by the laser,
then an area with a high probability of collision is generated. Instead, if
the obstacle is moving within the crop, a spatially distributed point
cloud is generated, and therefore, the occupied area probabilities do not
concentrate in the same place. A poor choice of the regulation factor
can result in very deliberate evasions or low reduction of the velocity in
high traffic areas. An adequate parameter selection can correct these
problems.

6. Simulations

Simulation results are presented to evaluate the proposed metho-
dology. Matlab is used for implementing the mapping and control
strategy, while the dynamic model of the vehicle is implemented in
MobileSim Mobilesim. A robot Pioneer P3-AT Pioneer 3-at is used both
in simulation as in experimentation. Besides, a C++ interface, based
on shared memory, links the program running in the Matlab environ-
ment with the robot model of MobileSim. The interface also allows to
read a virtual rangefinder and to generate the control command based
on the reference velocities given by the controller.

Regarding the simulation environment, a virtual fruit grove with a
regular geometry plus a Gaussian noise is generated. Moreover, an
eight-shape trajectory along the grove trails is planned for the robot.

6.1. Weed mapping

In the first simulation, weeds are randomly placed around the trees
in a simulated map. The design parameter is fixed to =δ 0.5 m (defined
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Fig. 7. Reference paths for the robot and the rural workers used for the second
simulation. The trajectories are cyclical except the casual trajectory performed
once by a worker.
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Fig. 8. KDE estimation of the worker presence density and SLAM estimations. Maps improve as data acquisition time increases, since iterative subsampling reduces
outliers and replaces redundant data with worker observations in new areas.
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in Section 4), and no quota for the storage capacity is considered.
Fig. 6(a) shows actual and estimated tree locations, the robot odometry
obtained from MobileSim, the estimated trajectory and the KDE esti-
mation of the weed density. In this case, the total size of the point cloud
of the out-of-structure objects is 20,129 observations. On the other
hand, the KDE estimation of the weed density when the storage capa-
city is bounded to 1000 observations is shown in Fig. 6(b). Note that the
density estimations are similar, although only 4.96% of the data are
used. This shows that deleted data were redundant since they did not
provide significant additional information. Note also, how the sub-
sampling reduces isolated observations. In addition, the map shown in

Fig. 6(b) covers about 3000 m2 with 1000 data. If this space is divided
into 1000 cells to build a grid-based map, each cell would have a re-
solution of approximately 3 m2 which is not an adequate spatial re-
solution to the precise calculation of densities at specific locations. A
zoom of Fig. 6(a) and (b) is showed in Fig. 6(c) and (d), respectively.
Level curves of the estimated probabilistic map can be observed with
more details in these figures. The highest concentration of weeds are
plotted in red,1 which can reveal a problem in the irrigation system.

6.2. Agricultural workers mapping

The second simulation is designed to show the potential of the
proposed methodology to map the walking trails of the workers. In
order to simulate rural workers walking along the fruit grove, nine
robots are included in the MobileSim environment as shown Fig. 7. In
this experiment, a virtual worker is programmed to follow a casual path
at the beginning of the simulation, i.e., it only traverses its assigned
path once in front of the robot and within the observation range of the
laser. The remaining virtual workers follow their path throughout the
whole simulation with stop periods of 50 s over each tree, as if they are
performing pruning tasks. Gaussian noise is added to the desired path to
avoid straight runs. The design parameter δ is fixed at 0.3m, and a
quota of 10000 observations is considered for the storage capacity.

Fig. 8 shows the real and estimated tree locations, the robot odo-
metry obtained form MobileSim, and the estimated trajectory. The KDE
estimations of workers presence density, after passing once and ten
times over the crop following the eight-shaped path, are shown in
Fig. 8(a) and (b), respectively. The more times the crop is traveled, the
higher the accuracy of the estimated density map.

human path
robot path
initial point

Fig. 9. Experimental environment constructed
using red traffic cones and stools as fruit trees and
static obstacles. The robot must cyclically follow a
path (blue line), evading a static obstacle in the first
row, and a dynamic obstacle (worker going back
and forth along the red line) in the second row. (For
interpretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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Fig. 10. Experimental results. The robot trajectory and trees positions esti-
mated by SLAM are shown in blue and green, respectively. The probabilistic
map of out-of-structure objects is displayed in color shades, where red areas
highlight most likely zones. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Diagram of the linear velocity reduction according to the collision
probability.

Fig. 12. Execution time of each algorithm. Most of the computer time is spent
in probability calculation and SLAM, while the computer time required by
subsampling is negligible. The computer time required by probability computes
computation until the storage bound is reached, and from that moment on, the
subsampling keeps it constant.

1 For interpretation of color in Fig. 6, the reader is referred to the web version of this
article.
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In these plots, the concept of statistical significance is evidenced,
since there are places with a high probability of finding a worker which
are not adequately considered in Fig. 8(a) due to lack of significant
data. Besides, Fig. 8(a) shows a high probability of workers presence in
the areas where the virtual worker is observed following the casual
path. The same areas in Fig. 8(b), after ten passes over the same path,
present a low probability of workers’ presence. This is because the
virtual worker with a casual path is only observed during the initial
pass and the subsampling process gradually eliminates these observa-
tions. The ability to forget atypical observations is another significant
advantage of the methodology.

7. Experimental result

This Section presents the experimental results of the example ap-
plication proposed in Section 5. In this case, a robot Pioneer 3-AT (P3-
AT) from Omron Adept MobileRobots equipped with a laser range-
finder sensor is used.

A real experimental environment requires days of experimentation
for the robot to recognize areas with the highest traffic. Besides, it is
necessary to distribute a large number of workers throughout the fruit
grove so that navigation is not a mere path following. In order to reduce
the experiment scale and to quickly show the probabilistic map effects
in navigation, a scaled fruit grove is constructed using red traffic cones
(as fruit trees) and stools (as obstacles) as shown Fig. 9. A path along
the center line of the simulated crop is designed as the reference for the
path following controller. A static obstacle is placed in the center of the
first path and a dynamic obstacle (person pretending to be a rural
worker) in the second path. Subsequently, the robot traveled around the
diagrammed environment for 500 s avoiding obstacles and reducing its
velocity in the areas with high traffic as is explained in Section 5.

The probabilistic map built by the robot can be observed in Fig. 10
where the robot trajectory estimation is shown in blue and the tree
location estimations are shown in green. The probabilistic estimation of
out-of-structure objects is displayed in color shades, where the red re-
presents the more likely zones, the white represents the unlikely zones,
and the other colors show zones with intermediate probability. The
figure also shows how the robot avoids the obstacles by using the im-
pedance-based controller.

A comparative graph showing the reference and actual linear ve-
locities, and the collision probability calculated online while navigating
are displayed in Fig. 11. In this figure, a strict relationship between
these quantities can be observed. Note that static obstacles generate
greater collision probabilities than dynamic obstacles because each
static obstacle concentrates their observations on a site. For this reason,
the velocity reduction produced by the collision probabilities must be
designed in such a way that the robot reduces its velocity enough in
traffic zones, and it does not stop in areas with static obstacles. The
reduction factor used in this paper (see step 7 of Algorithm 2) decreases
the velocity in zones of higher traffic and saturates asymptotically the
reduction in zones with static obstacles. Besides, the linear velocity is
set to zero when an obstacle is very close to avoid an imminent colli-
sion.

The runtime of each stage of the proposed methodology is shown in
Fig. 12. Note the short runtime of the tasks: reading and classification of
observations, subsampling of the point cloud, and calculation and ex-
ecution of the controller. In particular, note that the bounded database
and the recursive subsampling can be maintained and performed
without computational difficulties. The runtime of the collision prob-
ability calculation increases at the beginning until the storage quota is
reached, and then it remains constant. This allows regulating the quota
according to the storage and processing capacities. Finally, note that the
runtime of the robot pose estimation does not vary throughout the
experimentation.

8. Conclusions

In this paper, a methodology for probabilistic mapping of out-of-
structure objects in regular plantations such as fruit groves is presented.
The aim of generating such a map is to include extra functionality for
the robot to improve the Human-Robot Interaction. The proposed
methodology could be incorporated as an extra functionality in the
robot control system so that it performs its primary task in a better way.
An example application is presented in which a robot, whose main task
is to follow a trajectory within the fruit grove, reduces its velocity ac-
cording to a collision probability calculated online. This is a cautious
motion objective within an environment frequented by human workers.
Similar behavior could be considered related to machinery working in
the place.

The proposal discriminates the observations according to whether
they come from trees or out-of-structure objects. Based on the tree
observations, a SLAM is performed for localization and for correcting
mapping errors with respect to the initial regular structure. The data-
base, generated from the out-of-structure observations, is kept
bounded, updated and representative thanks to a novel recursive sub-
sampling method. This database allows an online probabilistic mapping
of the environment based on a Kernel nonparametric estimator. The
proposed methodology maps with a better spatial resolution and has
theoretical convergence advantages in comparison with the grid-based
estimators.

The simulations and the experimentation of the example application
show the potentialities of the methodology.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.compag.2018.05.018.
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