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Coupled Brownian motors?
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Abstract. A set of coupled Brownian motors—resulting from a noise-induced phase transition generated
through an entropic mechanism, and formerly studied in mean-field approximation—is numerically inte-
grated by Heun’s method. The results add much insight to the mean-field ones, allowing interpretation
of the underlying mechanisms. It turns out that the low-noise boundary of the ordered phase obtained in
mean-field approximation lies near a region where the order parameter is negative. Hints of bistability and
negative mobility around F = 0 are seen in two cases, and anomalous hysteresis is confirmed in one case.

1 Introduction

Technology has always relied on phase transitions.
Although the steam engine alone suffices to justify this
assertion, steel and ferromagnets are not less relevant
examples. From a theoretical viewpoint, what defines a
phase transition is ergodicity breakdown. For finite sys-
tems, this observation provides a sufficient criterion for
discriminating phases.

Following the stochastic treatment of Brownian motion
by Einstein [1] and Langevin [2], it was long expected
that external noise could also trigger phase transitions [the
term “noise-induced phase transitions” (NIPT) has been
coined]. In fact, additive noise (equivalent to temperature
in its effects, according to Einstein [1]) was shown in 1999
to induce a first-order NIPT [3]. But external noise can
also be multiplicative, i.e. make the system’s parameters
into stochastic processes.

Despite our efforts to cast bifurcations into normal
forms, the nonlinear world is highly diverse, and so is the
repertoire of noise effects on nonlinear systems. As a rule,
the (nonrigorous albeit effective in simpler cases) “mean-
field approximation”—whereby one replaces a fluctuating
variable by its mean—gives wrong results in more complex
cases. It has become customary to speak of “constructive
effects of the noise” or “noise-induced phenomena”, a field
which continues to amaze us with counterintuitive results
after decades of intensive research, both in lumped and
extended systems [4–6].

The evidence of (multiplicative) noise-induced transi-
tions (NIT) in zero-dimensional stochastic systems [7]
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renewed the expectation that noise of this kind be
capable of inducing phase transitions. A survey by
Van den Broeck et al. yielded a surprising result: a
(second-order, re-entrant with noise intensity) NIPT was
obtained, but precisely for those systems for which NIT
are ruled out [8,9]. The mechanism whereby these NIPT
took place was the “freezing” by coupling of a short-time
instability. So whereas for a zero-dimensional system

ẋ = f(x) + g(x) ξ(t), 〈ξ(t)ξ(t′)〉 = σ2 δ(t− t′),

undergoing NIT, the extrema x̄ of the steady-state pdf

must obey f(x̄) − σ2

2 g(x̄)g′(x̄) = 0, for the extended
system

ẋi = f(xi) + g(xi) ξi(t)−
D

2d

∑
j∈n(i)

(xi − xj),

〈ξi(t)ξj(t′)〉 = σ2 δij δ(t− t′),

it is ˙̄x = f(x̄) + σ2

2 g(x̄)g′(x̄). The foregoing results
assumed the driving noise to be white. This is of course an
idealization, its correlation function being a Dirac’s delta
function. For colored driving noise, the NIPT turned out
to be also re-entrant with self-correlation time [10,11].

Shortly after, a second class of NIPT was discovered,
supported by the so-called “entropic mechanism” [12–14].
Let u(x, t) be a relaxational flow with field-dependent
kinetic coefficient Γ (u) in a free-energy F [u]. Then the
noise term is made to fulfill the fluctuation–dissipation
relation:

∂tu(x, t) = −Γ (u)
δF [u]

δu(x, t)
+ Γ 1/2(u) η(x, t). (1)
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Again η(x, t) is Gaussian, with 〈η(x, t)〉 = 0 and

〈η(x, t)η(x′, t′)〉 = 2σ2 δd(x− x′) δ(t− t′).

The virtue of this proposal is that it provides an ana-
lytic way of finding the stationary probability distribution
function for fields, namely

Pst[u] ∝ exp

{
−Feff [u]

σ2

}
, (2)

with an “effective potential” functional

Feff [u] = F [u] + β

∫
R

dx lnΓ (u(x)),

and β ∝ σ2. If the finite region R is a d-dimensional
square lattice with mesh size ∆x, then β = σ2/(2∆xd) in
Stratonovich’s interpretation [12,13]. This proposal yields
a handy tool for e.g. stabilizing nanopatterns [15–17] or
inducing pinning and localized states [18,19], in adsorbed
monolayers. Its compatibility with NITs has been shown
experimentally in a recent work [20].

An innovative application within the active field of
Brownian transport [21–23] was reported in [24]. A set
of coupled rotators

ẋi =

−∂Ui
∂xi
− 1

N

N∑
j=1

K(xi − xj)

+
√

2T ξi(t), (3)

with

Ui(x, t) = [V (x)− Fx] +W (x)
√

2Qηi(t), (4)

V (x) = W (x) = − cosx−A cos 2x, (5)

K(x) = K0 sinx (with K0 > 0) (6)

was shown to undergo a NIPT (driven by short-time insta-
bility) to a phase with nonzero mean particle current 〈ẋ〉,
which thus features spontaneous (not built-in) ratchet-
like properties. When A > 0 in equation (5), the direction
of 〈ẋ〉 is opposite to that of symmetry breaking in the
stationary probability distribution P st(x), which leads in
turn to negative zero-bias conductance and anomalous
hysteresis.

The noises’ self-correlation, addressed in [25–28], turned
out to have the following effects:

– The re-entrance as a function of Q tends to disap-
pear;

– The onset of the broken-symmetry phase occurs for
larger Q and smaller K0;

– The transition becomes re-entrant as a function of
K0;

– The “interaction-driven regime” (IDR), where
anomalous hysteresis occurs, sets in for lower K0 and
becomes almost independent of Q;

– There appear new solutions to the mean-field equa-
tions in the IDR, associated with a more complex
(anomalous) hysteretic behavior;

– The efficiency ε depends strongly on Q, K0, the
strength F of the load force, and τ ; fixing the for-
mer three parameters, there is an optimal value of τ
regarding ε.

The question of whether the entropic mechanism could
give rise to similar features, was addressed in [29]. In
Section 2, we briefly review the model and its mean-field
solution. In Section 3, we undertake its numerical simula-
tion by Heun’s method and expose our results. In Section 4
we draw our conclusions.

2 The model and its mean-field solution

In [29], the set of N coupled stochastic equations

ϕ̇i = −Γ (ϕi)

[
G(ϕi)− F −

K

2
(ϕi+1 + ϕi−1 − 2ϕi)

]
+Γ 1/2(ϕi) ξi(t), (7)

(interpreted in the sense of Itô) was considered. The ξi(t)
are assumed to be Gaussian, with

〈ξi(t)〉 = 0 and 〈ξi(t)ξk(t′)〉 = σ δikδ(t− t′).

The ξi(t) are multiplicative: they couple to the function

Γ (ϕi) = 1 + β cos2 ϕi,

so fluctuations are more pronounced at higher cos2 ϕi
regions.

In the deterministic part, function Γ (ϕ) multiplies the
sum of:

– A periodic force G(ϕi) = sinϕi + 2A sin 2ϕi (with
A > 0);

– A (nearest neighbor) diffusive term with strength K;
and

– A constant F , included for the analysis of Brownian
transport.

The mean-field approach proceeds—as usual—by
replacing the fluctuating ϕi+1 and ϕi−1 by a constant
field value M , playing the role of an order parameter
(M := 〈ϕ〉). The system (7) then reduces to a single
equation

ϕ̇ = −Γ (ϕ)
∂Veff(ϕ,M)

∂ϕ
+ Γ 1/2(ϕ) ξ(t), (8)

with the potential

Veff(ϕ,M) = −[cosϕ+A cos 2ϕ+Fϕ]+
K

2
(ϕ−M)2. (9)
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Fig. 1. Color-code density plot of the order parameter 〈ϕ〉 as a
function of σ and K, for F = 0. Clear: 〈ϕ〉 > 0; dark: 〈ϕ〉 < 0.
The superimposed dots belong to the mean-field phase diagram
(Fig. 2 in [29]).

The associated Fokker–Planck equation in Itô’s prescrip-
tion is [6]

∂tP (ϕ, t;M) =
∂

∂ϕ

[
Γ (ϕ)

∂Veff(ϕ,M)

∂ϕ
P (ϕ, t;M)

]
+

1

2

∂2

∂ϕ2
[σΓ (ϕ)P (ϕ, t;M)] . (10)

For periodic variables, J = 0 is not the only station-
ary possibility. The solution for J = const(M) 6= 0 is
essentially

exp

{
− 2

σ
[Veff(ϕ,M)− Veff(−π,M)]

}
,

times a prefactor [29],1 and so is J(M). The unknown
mean-field value M can be extracted from the stationary
probability using the self-consistency relation

M = 〈ϕ〉 =

∫ π

−π
dϕϕPst(ϕ,M). (11)

In the case of a short time instability [24], the phase
diagram in σ −K space was obtained by solving

1 =

∫ π

−π
dϕ ϕ

∂

∂M
Pst(ϕ,M)

∣∣∣∣
M=0

. (12)

1 See [30] and Appendix 1 in [25] for a detailed derivation.

Fig. 2. (a) 〈ϕ〉 vs. F , (b) 〈J〉 vs. F , for K = 2.5 and σ = 1
(circles), 3 (squares), and 5 (rhombs), to allow comparison with
Fig. 3 in [29]. Random initial condition.

In the present case [29], the equation to solve is

1 =

∫ π

−π
dϕ ϕ

∂

∂M
Pst(ϕ,M)

∣∣∣∣
M=M∗

, (13)

where M∗ 6= 0 is the solution of

M∗ = 〈ϕ〉 =

∫ π

−π
dϕϕPst(ϕ,M

∗). (14)

Hence, two equations have to be simultaneously solved.
The current was calculated in [29] as

J = − 1

2π

∫ π

−π
dϕΓ (ϕ)

∂Veff(ϕ,M)

∂ϕ
Pst(ϕ,M). (15)

We refer the reader to [29] for the detailed mean-field
results (here we have just reproduced the dots in Fig. 2 of
that work).
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Fig. 3. Zoom of Figure 2, for different initial conditions: −π/2
(circles) and +π/2 (squares).

3 Numerical results

In this work, we undertake the numerical simulation of
system (7) by Heun’s method, in Itô’s interpretation. This

implies adding σβ
4 sin 2ϕi to the drift, in the algorithm

described in e.g. [31]. The fixed parameters are consistent
with those adopted in [29], namely A = 0.15 and β = 20.
Moreover, we have chosen N = 64 and ∆t = 0.01. We have
monitored the order parameter 〈ϕ〉, and the current J :=
〈−Γ (ϕi)

[
G(ϕi)− F − K

2 (ϕi+1 + ϕi−1 − 2ϕi)
]
〉, averaged

over 1000 noise realizations.
Figure 1 is a color-code density plot of 〈ϕ〉 as a func-

tion of σ and K, for F = 0. The 〈ϕ〉 > 0 (lighter)
region qualitatively supports the phase diagram obtained
in mean-field approximation (Fig. 2 in [29], to which the
superimposed dots belong). A feature not detected in
mean-field approximation, namely the relatively narrow
region with 〈ϕ〉 < 0 (dark), now becomes apparent.

Figure 2 plots 〈ϕ〉 and J as functions of F , for K = 2.5
and σ = 1, 3, and 5 (as in Fig. 3 of [29]). The large jumps
in 〈ϕ〉 and negative mobilities (slopes of J) are a hint
of bistability, and thus hysteresis. These features are also
qualitatively consistent with the corresponding plots in

Figure 3 of [29]. We now learn that the aforementioned
effects are most evident where 〈ϕ〉 < 0.

Figure 3 is a zoom of Figure 2, for different initial condi-
tions: −π/2 (circles) and +π/2 (squares). The occurrence
of hysteresis in both 〈ϕ〉 and J is apparent. Moreover, hys-
teresis in J is anomalous, as in [24] (the cycle is toured
around clockwise).

4 Conclusions

We have undertaken the numerical simulation of a system
studied formerly in mean-field approximation [29]: a set
of coupled Brownian motors, generated through a NIPT
produced through an entropic mechanism. The results of
the present work are not only consistent with those in
[29], but they add much insight. It now becomes clear
that the point at K = 2.5, σ = 1 is well inside a region
where 〈ϕ〉 < 0, and that the entropic NIT also gives rise
to negative mobility and anomalous hysteresis, as in [24].

The fact that the system can transit from a pretty
linear regime to one displaying negative mobility and
anomalous hysteresis just by decreasing the noise inten-
sity, may find interesting applications in nanotechnology.
If, for instance, dynamical states are used to encode logical
states, then one might devise logical gates that perform
different logical functions, depending on the noise inten-
sity (noise-controlled multipurpose logic gates [32–34]).
The results reported in this work must be regarded as
preliminary, and requiring more refined study.
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