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Summary 

1. The most studied mechanism of protection against herbivores in grasses associated with 

Epichloë fungal endophytes has been the fungal production of alkaloids. However, the 

contribution of the plant immune response on the level of  resistance to herbivores in 

symbiotic grasses has been poorly explored. We studied the relationship between the 

plant hormone, jasmonic acid (JA), and Epichloë fungal endophytes on herbivore 

defenses in symbiotic grasses. We hypothesized that an exogenous application of methyl 

jasmonate (MeJA), an activator of the plant JA defense response, would increase the 

level of resistance of endophyte-symbiotic and non-symbiotic plants to a chewing insect. 

As Epichloë endophytes produce alkaloids, an enhancement of the JA defense would 

complement the resistance given by these alkaloids. 

2. Lolium multiflorum plants symbiotic and non-symbiotic with the endophyte Epichloë 

occultans were subjected to an exogenous application of MeJA followed by a challenge 

with the generalist chewing insect Spodoptera frugiperda. We measured the level of plant 

resistance to chewing insects, and the defenses conferred by host plants and fungal 

endophytes.  

3. Symbiotic plants were more resistant to S. frugiperda than their non-symbiotic 

counterparts. However, despite the fact that the concentration of JA significantly 

increased in all plants exposure to MeJA, neither endophyte-symbiotic nor non-symbiotic 

plants showed an enhanced resistance to insects. Unexpectedly, the exposure of 

endophyte-symbiotic plants to MeJA led to a reduction in the concentration of loline 

alkaloids (i.e. N-formyllolines and N-acetylnorlolines), consequently decreasing the level 

of plant resistance to the herbivore. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

4. Synthesis. Our results suggest that, rather than complementing the alkaloid-based 

defense, the JA hormone weakens the anti-herbivore mechanism conferred by Epichloë 

endophytes. The present study highlights that the interaction between the JA hormone 

and the presence of leaf fungal endophytes can be of importance for the effectiveness of 

the anti-herbivore defenses of symbiotic plants. 

 

Key words: Jasmonates, Epichloë, endophyte symbiosis, alkaloids, beneficial microorganisms, 

plant defenses, jasmonic acid. 

 

Second Summary in Spanish 

1. El mecanismo de anti-herbivoría más estudiado en los pastos asociados con los hongos 

endofitos Epichloë es la producción de alcaloides fúngicos. Sin embargo, es 

prácticamente desconocido el aporte que podría tener la respuesta inmune de los pastos 

simbióticos en la resistencia frente a los insectos herbívoros. Aquí estudiamos la 

interacción entre la hormona de defensa de la planta, el ácido jasmónico (JA), y los 

hongos endofitos Epichloë sobre las defensas anti-herbivoría de los pastos. La hipótesis 

es que la aplicación exógena de metil jasmonato (MeJA), un activador de la defensa 

dependiente del JA, aumenta el nivel de resistencia de las plantas con y sin el endofito 

frente a un insecto masticador. Dado que los endofitos Epichloë producen alcaloides, la 

activación de la defensa del JA debería complementar la resistencia dada por los 

alcaloides. 
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2. Plantas de Lolium multiflorum simbióticas y no simbióticas con el endofito Epichloë 

occultans fueron expuestas a una aplicación exógena de MeJA y posteriormente 

desafiadas con el insecto masticador generalista Spodoptera frugiperda. Se midió tanto el 

nivel de resistencia de la planta frente al insecto como las defensas conferidas por la 

planta hospedera y el hongo endofito.  

3. Las plantas simbióticas fueron más resistentes frente al insecto S. frugiperda que las no 

simbióticas. Sin embargo, a pesar de que la concentración del JA aumentó 

significativamente en las plantas expuestas al MeJA, ni las plantas con el endofito ni las 

sin el hongo aumentaron la resistencia frente a los insectos. Inesperadamente, la 

exposición de las plantas simbióticas al MeJA redujo la concentración de los alcaloides 

(i.e. N-formilolinas y N-acetilnorlolinas), disminuyendo consecuentemente el nivel de 

resistencia de las plantas al herbívoro. 

4. Síntesis. Nuestros resultados sugieren que, en lugar de complementar la defensa dada por 

los alcaloides, la hormona JA atenúa el mecanismo anti-herbivoría conferido por los 

hongos endofitos Epichloë. Éste estudio enfatiza que la interacción entre la hormona JA y 

la presencia de los hongos endofítos foliares puede ser de importancia para la efectividad 

de las defensas de las plantas simbióticas. 

 

Introduction 

During their entire life, plants are constantly threatened by herbivores. In order to defend 

themselves, plants have developed sophisticated mechanisms that can be either constitutively 

expressed or induced by the herbivore attack (Karban & Baldwin, 1997; Schoonhoven, van 
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Loon, & Dicke, 2005). Some of these herbivore-induced plant responses involve the production 

of toxins, anti-nutritional compounds, and plant volatile organic compounds (Karban & Baldwin, 

1997; Schoonhoven et al., 2005). The induced responses are governed by a group of plant 

hormones of which jasmonic acid (JA) and salicylic acid (SA) play a central role (Ballaré, 2014; 

Dicke & Baldwin, 2010; Heil, 2008; Karban & Baldwin, 1997; Thaler, Humphrey, & Whiteman, 

2012). Plants generally respond by activating JA-dependent defenses when attacked by chewing 

insects and necrotrophic pathogens, whereas SA-dependent responses are induced by attacks 

from sap-sucking herbivores and biotrophic pathogens (Ballaré, Mazza, Austin, & Pierik, 2012; 

Glazebrook, 2005; Halitschke & Baldwin, 2004; Kunkel & Brooks, 2002; Schwartzberg & 

Tumlinson, 2014; Schweiger, Heise, Persicke, & Muller, 2014; Thaler et al., 2012). In addition, 

plants usually interact and establish symbiotic relationships with beneficial microorganisms 

(Pineda, Dicke, Pieterse, & Pozo, 2013). These mutualistic symbioses between plants and 

microorganisms involve a complex molecular dialogue that affects several plant functions 

including the expression of plant defenses (Gutjahr, 2014; Pozo, López-Ráez, Azcón-Aguilar, & 

García-Garrido, 2015). While certain symbionts increase plant resistance by modulating the host 

hormonal pathways involved in defenses (Pieterse et al., 2014; Pineda et al., 2013; Pozo et al., 

2015), other microorganisms (e.g. Epichloë fungal endophytes) produce bioactive compounds, 

which protect their host plants against attackers (Panaccione, Beaulieu, & Cook, 2014; Schardl et 

al., 2013a). Although the role of the defense compounds produced by endophyte-symbionts in 

protecting plants have been well described (Potter, Tyler Stokes, Redmond, Schardl, & 

Panaccione, 2008; Wilkinson et al., 2000), the possibility that this endophyte-conferred 

mechanism of resistance is complemented by the plant’s own defenses, has not been explored. 
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The establishment of symbiotic relationships between plants and beneficial microorganisms 

entails changes in the plant’s immune response (Jung, Martinez-Medina, Lopez-Raez, & Pozo, 

2012; Pieterse et al., 2014; Pozo et al., 2015; Zamioudis & Pieterse, 2011). The effects of 

beneficial symbionts on the host immunity have been mainly studied in plant symbioses with 

rhizobacteria and mycorrhizal fungi, where the colonization of roots by these microorganisms is 

essential for the establishment of a stable interaction (Cameron, Neal, van Wees, & Ton, 2013; 

Gutjahr, 2014; Jung et al., 2012; Oldroyd & Downie, 2008; Pozo et al., 2015; Ryu, Cho, Choi, & 

Hwang, 2012). From the plant’s point of view, a consequence, in terms of defense, of 

establishing a symbiotic interaction with these microorganisms is that symbiotic plants are 

generally more susceptible to biotrophic pathogens and certain species of sap-sucking insects 

(Hartley & Gange, 2008; Jung et al., 2012; Pineda et al., 2013). This susceptibility seems to 

result from an active suppression of the plant’s SA pathway by symbionts (Cameron et al., 2013; 

Jung et al., 2012; Pozo et al., 2015; Zamioudis & Pieterse, 2011). As biotrophic microorganisms, 

beneficial symbionts would control the SA pathway, by means of specific effectors, in order to 

avoid the plant immune response (Jung et al., 2012; Martínez-Abarca et al., 1998; Paszkowski, 

2006; Pozo et al., 2015; Siciliano et al., 2007; Zamioudis & Pieterse, 2011). Another change 

usually observed is that symbiotic plants with these microorganisms are more resistant to 

necrotrophic pathogens and chewing herbivores (Jung et al., 2012; Pieterse et al., 2014; Pineda, 

Zheng, van Loon, Pieterse, & Dicke, 2010; Zamioudis & Pieterse, 2011). This resistance seems 

to be related to the activation of the JA signaling pathway, rendering the symbiotic plants in a 

‘primed state’ of defense (Martinez-Medina et al., 2016; Pieterse et al., 2014; Pineda et al., 2013; 

Van Wees, Van der Ent, & Pieterse, 2008). A primed state of defense differs from other induced 

immune responses in that plants show an earlier, faster, stronger, and/or more sustained 
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defensive response against attackers (Jung et al., 2012; Pieterse et al., 2014; Pineda et al., 2013; 

Van Wees et al., 2008). 

Some asexual leaf fungal endophytes of the genus Epichloë (family Clavicipitaceae) form 

mutualistic symbioses with specific grass species of the subfamily Poöideae. These Epichloë 

species are strictly vertically transmitted from one plant generation to the next. The symbiotic 

interaction persists across generations by the clonally-multiplied mycelium colonizing 

developing seeds (Clay, 1988; Gundel, Rudgers, & Ghersa, 2011; Schardl, 2010; Zhang et al., 

2017). One benefit that these endophytes provide is that they are the source of bioactive 

alkaloids, nitrogen-based compounds, that protect host plants against herbivores (Clay, 1988; 

Popay & Bonos, 2005; Saikkonen, Gundel, & Helander, 2013; White & Torres, 2009). Fungal 

alkaloids produced by Epichloë endophytes belong to four main classes, ergot alkaloids (i.e. 

ergopeptine and ergovaline), indole-diterpenes (i.e. lolitrem B and terpendoles), pyrrolizidines 

(i.e. lolines), and peramine (Panaccione et al., 2014; Saikkonen et al., 2013; Schardl et al., 2013a; 

Schardl, Young, Faulkner, Florea, & Pan, 2012; Schardl et al., 2013b; Young et al., 2015). The 

genes for the biosynthesis of alkaloids are entirely encoded within the fungal genome, and the 

biosynthetic routes are almost entirely elucidated (Schardl et al., 2013a; Schardl, Grossman, 

Nagabhyru, Faulkner, & Mallik, 2007; Young et al., 2015). The particular Epichloë species and 

strain determine the alkaloid profiles, whereas the level of alkaloid production depends on 

factors such as the plant species and genotype, plant growth stage, plant tissue/organ, and 

growing conditions (Ball, Prestidge, & Sprosen, 1995; Justus, Witte, & Hartmann, 1997; Ryan, 

Rasmussen, Xue, Parsons, & Newman, 2014; Saikkonen et al., 2013). Furthermore, the 

effectiveness of a particular fungal alkaloid will depend on the particular herbivore species 

attacking the plant (Saikkonen et al., 2013; Saikkonen, Lehtonen, Helander, Koricheva, & Faeth, 
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2006; Saikkonen, Saari, & Helander, 2010; Schardl et al., 2013a) and the environmental 

conditions (Ueno et al., 2015).  

The role of fungal alkaloids in protecting the host grasses has been extensively documented 

(Potter et al., 2008; Wilkinson et al., 2000), while the effects of Epichloë endophytes on the host 

immune system have received less attention. Recent studies, however, revealed that the presence 

of fungal endophytes can induce changes in the molecular components of the host plant immune 

system (Dinkins, Nagabhyru, Graham, Boykin, & Schardl, 2017; Dupont et al., 2015; Schmid et 

al., 2017). For example, various WRKY genes were up-regulated in plants of Schedonorus 

arudinaceum (syn. of Lolium arudinaceum and Festuca arundinacea) symbiotic with the 

endophyte E. coenophiala (formerly Neotyphodium coenophialum), which suggests that the 

endophyte-symbiotic plants could have an enhanced level of resistance to attackers (Dinkins et 

al., 2017). Plants of Lolium perenne symbiotic with the endophyte E. festucae strain Fl1 have 

shown a general down-regulation of genes related to the biosynthesis and signaling of the SA 

pathway (Dupont et al., 2015). Similar to other systems involving symbioses between plants and 

biotrophic symbionts, the downregulation of the SA pathway could be the result of an active 

suppression exerted by Epichloë endophytes on the host defense system (Ambrose & Belanger, 

2012; Martínez-Abarca et al., 1998; Siciliano et al., 2007). Other studies suggest that the 

presence of the endophyte could also affect the JA-dependent plant defense. For instance, 

endophyte-symbiotic plants of S. arundinaceus showed an enhanced expression of the plant gene 

TFF41. The protein encoded by the gene TFF41 is highly similar to the potato and parsley 

enzyme ω-3 FAD, which increases the concentration of JA precursor molecules (Johnson, 

Johnson, Schardl, & Panaccione, 2003). Additionally, endophyte presence has also been 

associated with higher concentrations of plant metabolites involved in defenses, such as 
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phenylpropanoid and phenolic compounds, and the up-regulation of genes related to the 

biosynthesis of these compounds (Dupont et al., 2015; Malinowski, Alloush, & Belesky, 1998; 

Pańka, Piesik, Jeske, & Baturo-Cieśniewska, 2013; Rasmussen, Parsons, & Newman, 2009; 

Rasmussen, Parsons, Popay, Xue, & Newman, 2008).  

Study System 

Here, we studied the interaction between the JA hormonal pathway and Epichloë endophytes on 

plant defenses against herbivores. We subjected symbiotic and non-symbiotic grass plants to an 

exogenous application of methyl jasmonate (MeJA) followed by a challenge with a chewing 

insect. MeJA was used to elicit a JA-dependent defense response (Koo, Yoon, Seo, Kim, & 

Choi, 2013; Wu, Wang, & Baldwin, 2008). For our model system we used larvae of the 

generalist folivorous herbivore Spodoptera frugiperda (fall armyworm), Lolium multiflorum host 

plants (Italian ryegrass), and the fungal endophyte Epichloë occultans. This endophyte species is 

known to produce loline alkaloids (Bastías et al., 2017; Moon, Scott, Schardl, & Christensen, 

2000; Moore, Pratley, Mace, & Weston, 2015; Sugawara, Inoue, Yamashita, & Ohkubo, 2006), 

which have been shown to provide the plant with protection from insect herbivores (Charlton et 

al., 2014; Schardl et al., 2007). Loline alkaloids are not present in endophyte-free grasses (Clay, 

1988). Despite the wide range of plant species that can be consumed by S. frugiperda, grasses 

are among the most preferred at the larval stage (Luginbill, 1928). Previous studies have 

demonstrated a negative effect of Epichloë endophytes on the performance of S. frugiperda 

(Ahmad, Govindarajan, Johnson-Cicalese, & Funk, 1987; Ball et al., 2006; Crawford, Land, & 

Rudgers, 2010).  
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We used a group of response variables related to insect performance as indicators of plant 

resistance, and both the physiological concentrations of loline alkaloids and hormones (SA and 

JA) to characterize the defensive state of plants. Since chewing insects and biotrophic symbionts 

are assumed to be negatively affected and unaffected by the JA pathway, respectively 

(Halitschke & Baldwin, 2004; Thaler et al., 2012), we predicted that the exogenous application 

of MeJA will enhance the resistance level in endophyte-symbiotic and non-symbiotic plants, and 

thus reducing the performance of fall armyworms. However, the increased resistance will be 

higher in endophyte-symbiotic than in non-symbiotic plants. Whereas the resistance will be only 

related to the JA-dependent defense in non-symbiotic plants, the same hormonal mechanism will 

be complemented by the alkaloid-based defense in endophyte-symbiotic plants. This study helps 

to understand how the interaction between the JA pathway and Epichloë fungal endophytes can 

modulate plant herbivore defenses. 

Materials and Methods 

PLANT STOCK AND LARVAE COLONY  

Plants of Lolium multiflorum (Lam.) symbiotic and non-symbiotic with the endophyte Epichloë 

occultans (E+ and E-, respectively) were generated from one population harvested from a 

successional grassland in the Argentinean Pampas (36° 00’ S, 61° 5’ W). E- plants were 

generated by subjecting endophyte-infected seeds to a systemic fungicide (Triadimenol 150 g kg
-

1
; Baytan®). In order to increase the number of seeds, fungicide treated and untreated seeds were 

sown in contiguous 1 m
2
 plots at the experimental field of the Institute IFEVA - CONICET, 

Universidad de Buenos Aries, Argentina (34° 35’ S, 58° 28’ W). Cross-pollination between 

plants was allowed to mitigate any genetic differentiation between symbiotic and nonsymbiotic 
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plants (Gundel et al., 2012). Mature seeds from each plot were harvested and the proportion of 

endophyte-infected seeds from each seed lot was determined by microscopy. For each seed lot, 

100 seeds were sampled, cleared, stained, and examined individually under a microscope at 40× 

magnification (Bacon & White Jr, 1994; Latch & Vaughan, 1995). The efficacy of the fungicide 

treatment to remove the endophyte was very high as only 3% of the seeds were endophyte-

infected in the seed lot produced by plants grown from fungicide-treated seeds. On the other 

hand, 99% of the seeds produced by plants grown from untreated seeds were endophyte-infected. 

We did not observe any phytotoxic effects of the fungicide on the experimental plants. 

The experimental plants (E+: n = 50, and E-: n = 50) were grown individually in 1.5 L pots 

(containing equal parts of soil, sand, and peat) during the normal growing season for the species 

(autumn-winter-spring). Plants were placed outdoors in the Institute’s experimental field site and 

were periodically watered to avoid stressful situations. The symbiotic status of each experimental 

plant was re-confirmed by looking for the endophyte in the sheath base of the outermost leaf 

using microscopy (Bacon & White Jr, 1994). Larvae of fall armyworms (Spodoptera frugiperda, 

Smith) were obtained from a colony maintained permanently in our lab (>80 generations), reared 

on a synthetic diet (composed of pinto beans, wheat germ, soybean protein, brewer yeast, 

ascorbic acid, tetracycline, methyl paraben, sorbic acid, and agar) under controlled conditions 

[21 °C (±1), photoperiod L16:D8 h, and radiation 150 μmol m
-2

 s
-1

].  

DESIGN AND SETUP OF THE EXPERIMENT  

We conducted an experiment to test the anti-herbivory responses of endophyte-symbiotic and 

non-symbiotic plants against S. frugiperda larvae. In early-spring, 36 healthy plants (18 each of 

E+ and E-), each 16 weeks old, were chosen from the plant stock and moved to a growth 

chamber with identical conditions to those experienced by the S. frugiperda colony. After 
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examining each plant to ensure that there were no insects on them, they were individually 

enclosed in a white voile bag supported by a tubular plastic frame. These plants were subjected 

to chamber conditions for one week prior to the application of the jasmonate treatment (see 

below). The plants had approximately 32 tillers each (range: 24-46) and were starting to flower. 

In addition, the number of tillers was positively affected by the endophyte presence (Symbiosis: 

F1.34 = 14.70, P < 0.001); E+ plants had 17% more tillers than E- plants (E+: 35.33 ± 1.36 and E-

: 29.17 ± 0.89). The positive effect of the endophyte on plant growth has been commonly 

observed in other studies (Clay & Schardl, 2002; Saikkonen et al., 2006). 

The experiment was a 2 x 2 full factorial design with 9 replicates of each treatment combination. 

Endophyte status (E+, E-) and methyl jasmonate application (MeJA+, MeJA-) were the 

treatments. The MeJA treatment was carried out by means of exogenous application. Half of the 

plants from each endophyte status (9 E+ and 9 E-) were sprayed with 10 mL of 1 mmol L
-1

 of 

MeJA (Sigma-Aldrich®) and the other half with 10 mL of water. Three days after the MeJA 

application, a single fourth instar larva was placed on each plant, and the plant was immediately 

enclosed with the white voile bag to avoid insect escape. All the larvae used in the experiment 

came from a single hatching clutch and insects were followed for 70 days. Prior to placement on 

the plants, larvae were weighed [12.40 ± 0.57 mg (mean ± SE)] and starved for 4 hours. The 3-

day period between the MeJA application and the larval placement allowed the plants to reach a 

high physiological level of JA prior to contact with the herbivores. We did not observe signals of 

senescence in aboveground tissues after MeJA exposure.  

We used insect body mass, development time, and survival to characterize the individual 

performance of S. frugiperda. Every 48 hours, larvae from each plant were gently removed to 

measure individual body mass, determine their developmental instar/stage, and quantify their 
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survival. When the larvae reached the pupal stage, pupae were removed from plants and placed 

individually in Petri dishes until adult emergence (keeping the identity of each experimental unit; 

a plant = a Petri dish). For insect body mass, we used the larval live mass at day 15 of the insect 

challenge (or day 18 post-MeJA exposure), pupal live mass, and adult live mass. At day 15, most 

of the larvae were at instar 6 and close to their maximum weight. With respect to insect 

development, we calculated the days to pupation, days as pupa, and days to adult eclosion as 

response variables. When larvae reached the pupal stage, the aboveground biomass of plants was 

removed, dried (in an oven for 48 h at 60 °C), and weighed.  

The physiological concentrations of hormones and fungal alkaloids were quantified from plant 

tissues sampled in three serial harvests. At the first harvest, two leaves (including both sheath 

and blade) from one tiller were removed just before the insect challenge (day 3 after the MeJA 

application), to measure the concentrations of defense hormones (SA and JA) by means of GC-

mass spectrometry (MS, see below). At day 5 post-MeJA application, one tiller base 

(pseudostems formed by leaf sheaths) per E+ plants was harvested to measure the concentration 

of fungal alkaloids by means of gas chromatography (see below). While the same procedure was 

performed on E- plants, loline alkaloids were not quantified since E- plants do not produce these 

compounds (Clay, 1988). The third harvest was performed at day 21 post MeJA application to 

quantify both fungal alkaloids and hormones, respectively, following the same protocols 

previously mentioned. Considering that tillers have some degree of independence (Yang & Hwa, 

2008), all the samples were removed from distant tillers, thus minimizing the effects of serial 

“clipping” of tissues on the physiological status of the whole plant. In addition, we avoided 

sampling senescing plant tillers, and particularly for alkaloid measurements, we harvested 

samples from tissues with signs of larval herbivory. The sampling biomass for hormones and 
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alkaloids represented 4-5% of the total plant aboveground biomass [~0.3 g dry weigh (DW) of 

harvested tissues from 6.40 ± 0.25 g DW of aboveground biomass]. 

QUANTIFICATION OF SA AND JA  

Extraction and derivatization 

Freeze dried leaf samples of 50-100 mg were extracted using 1 mL of 100% acetonitrile (ACN), 

spiked with 10 μL of internal standards (d6-SA: 100 ng and d5-JA: 100 ng) (CDN Isotopes Inc.) 

for GC-MS/MS. Two 4 mm steel balls were included in each 2 mL vial (FastPrep tubes, 

Qbiogene Inc.), and samples were shaken for 10 min at 1000 stokes min
-1

 with a Geno/Grinder 

(model 2010, SPEX®SamplePrep). Plant extracts were centrifugated at 13,200 rpm for 20 mins 

at 4 °C, and supernatants were transferred to 2 ml glass vials (Phenomenex Inc.). The extraction 

step was repeated adding 1 mL of 100% ACN without internal standards, and supernatants were 

combined. The supernatants were evaporated to complete dryness using a SpeedVac
TM

 (Thermo 

Fisher Scientific Inc.), and dry samples were further derivatized using 100 μL of N-Methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA) at 60 °C for two hours. After silylation, samples 

were cooled down at room temperature and then injected into the GC.  

GC-MS-MS method 

One microlitre of derivatized sample was injected in a split mode at 1:20 ratio into an Agilent 

DB-5MS column (30 m long with 10 m guard column, 0.25 mm inner diameter, 0.25 μm film 

thickness). The inlet had a temperature of 290 °C. The gas flow rate was 1 ml min
-1

 with helium 

as a carrier gas, and the column temperature was held at 80 °C for 2 min, followed by an increase 

to 230 °C using a linear gradient of 10 °C min
-1

. After keeping constant for 1 min at 230 °C, the 

temperature was risen to 310 °C at 40 °C min
-1

 and held for 5 min resulting in a total run time of 
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25 min. The column effluent was added into the ion source of a Scion TQ GC-MS/MS (Bruker 

Daltonics Inc.). The MS transfer line temperature was set to 290 °C and the source temperature 

was at 230 °C. The data were acquired in electron impact (EI) positive ionization mode at 70eV 

energy and multiple reactions monitoring (MRM) mode using 2 mTorr collision pressure, and 

30eV energy for precursor ion fragmentation. For salicylic acid and jasmonic acid, the ion pair 

transition (precursor to product) and the retention time for each transition were as follow:  SA 

(267->73 m/z, 11.2 min), d6-SA (271->73 m/z, 11.1 min), JA (222->73 m/z, 13.7 min), d5-JA 

(287->73 m/z, 13.2 min). 

Isotope dilution analysis 

SA and JA were quantified using isotope dilution analysis by adding 10 μL of isotopically-

labeled SA and JA molecules to the plant extracts. We took advantage of the chromatographic 

differences between the hormones naturally present in the samples and the deuterium-labeled 

hormones. The isotope effect in chromatographic separations results in different retention times 

between both types of compounds. The retention time shift for a given labeled compound (in our 

case, SA or JA) depends on the number of deuterium atoms in the molecule. SA and JA 

hormones and their isotopically-labeled counterparts had a less than 0.1 min difference in 

retention time. Initially, hormone standards (SA and JA) and isotopically-labeled compounds 

(SA-d6 and JA-d5) were run to determine optimal separation, retention times, and transitions to 

monitor. The small differences in retention times between SA, SA-d6, JA, and JA-d5 were 

sufficient to reveal the presence and quantity of these hormones. The plant matrix interference 

was not observed. Two separate GC single reaction monitoring (SRM) MS methods meant to 

explore the transition of SA (267->73 m/z) and d6-SA (271->73 m/z) as well as the transition of 

JA (222->73 m/z) and d5-JA (287->73 m/z), were conducted to ensure that the detection of each 
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compound was optimized for maximum sensitivity. Lastly, the separation differences between all 

compounds were optimized in MRM, achieving a detection limit of 5 nmol with excellent 

chromatographic peak shape and signal to noise ratio. Similar protocols have been used to 

quantify plant hormones, and these studies report hormone concentrations comparable to those 

reported here (Bastías et al., 2018; Davis, Bosque-Pérez, Popova, & Eigenbrode, 2015; Eberl, 

Hammerbacher, Gershenzon, & Unsicker, 2017; Ohnmeiss & Baldwin, 2000; Paulmann et al., 

2018). 

QUANTIFICATION OF LOLINES 

Lolines were analyzed using a modification of the method of Moore et al. (2015). Plant samples 

were freeze-dried and ground using a Geno/Grinder® (model 2010, SPEX®SamplePrep) with 6 

mm steel balls, in order to ensure a fine powder to increase the alkaloid extraction efficiency. 50 

mg of ground samples were extracted using 50 μL of 40% methanol/5% ammonia and 1 mL of 

1,2-dichloroethane (containing 54.8 ng mL
-1

 of 4-phenyl morpholine as an internal standard) for 

1 hour. Plant extracts were centrifuged at 8000 G for 5 min, and the supernatants were 

transferred to glass GC vials via a 10 mm filter. The analysis was conducted using a gas 

chromatography-flame ionization detector (GC2010Plus, Shimadzu Corporation), equipped with 

a ZB-5 capillary column (30 m x 0.32 mm x 0.25 μm film; Phenomenex Inc.). The detection 

limit observed using this technique was 25 µg g
-1

 DW (dry weight). 

STATISTICAL ANALYSES 

The response variables of SA and JA concentrations were analyzed separately with linear mixed-

effects models, using the nlme package in R software, and assuming independent, identically 

distributed normal random errors (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2009). The 
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fixed part of each model included the categorical variables of symbiotic status (E+, E-), MeJA 

treatment (MeJA+, MeJA-), and the experimental time (days 3 and 21 since the MeJA 

application), and the random part included the time nested in the pot. VarIdent variance structure 

was used in the interaction between symbiotic status and MeJA treatments to accommodate 

heteroscedasticity of residuals (Zuur, Ieno, Walker, Saveliev, & Smit, 2009). After that, the 

model assumptions were met (residuals independence, normality, and variance homegeneity). 

The aboveground plant biomass was analyzed with a linear effect model, using the function gls 

from the package nlme in R software, and assuming independent, identically distributed normal 

random errors (Pinheiro et al., 2009). The model included the plant symbiotic status (E+, E-) and 

MeJA treatment (MeJA+, MeJA-) as categorical variables. A VarIdent variance structure on 

MeJA treatment was used to minimize the heteroscedasticity of residuals. After that, the model 

assumptions were met (residuals independence, normality, and variance homegeneity). 

The concentrations of alkaloids (total lolines, NFL, and NANL) were separately analyzed with 

linear mixed-effects models, using the nlme package in R software, and assuming independent, 

identically distributed normal random errors. This time the fixed part of each model included the 

categorical variables of the MeJA treatment (MeJA+, MeJA-) and the experimental time (5d and 

21d post-MeJA exposure), and the random part included the time nested in the pot. For each 

response variable, a VarIdent variance structure on MeJA treatment was used to accommodate 

heteroscedasticity of residuals, and a CorARMA (p = 1, q = 0) was adjusted to fix autocorrelation 

problems across repeated measurements. After that, all the model assumptions were met 

(residuals independence, normality, and variance homegeneity).  
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The response variables related with insect body weight (larval mass at 15d, pupal mass, and adult 

mass) were analyzed separately with linear effect models, using the function gls from the 

package nlme in R software, and assuming independent, identically distributed normal random 

errors. The initial insect body mass (at day 1) was used as a covariate for larval weight and pupal 

weight, and pupal mass as covariate for adult weight. The models included the categorical 

variables of symbiotic status (E+, E-) and MeJA treatment (MeJA+, MeJA-) and their respective 

covariate as a continuous factor. In all analyses, the model assumptions were met (residuals 

independence, normality, and variance homogeneity). For the variables related to insect 

development (time to pupation, time at pupa, and time to adult eclosion), each one was analyzed 

separately with generalized linear models, using the R software function glm from the package 

lme4, and assuming independent, identically distributed Poisson random errors (Bates, Maechler, 

Bolker, & Walker, 2015). The models included the categorical variables of symbiotic status (E+, 

E-) and MeJA treatment (MeJA+, MeJA-). Data overdispersion was not observed. All the 

analyses met the model assumption (residuals independence). Insect survival curves were 

estimated using the Kaplan-Meier model and the treatment effect was tested with the non-

parametric Mantel-Cox test using the package Survival in R (Therneau & Grambsch, 2000). 

Since the Mantel-Cox test cannot evaluate the effect of interactions, we separately analyzed the 

effect of the symbiotic status on the insect survival for MeJA- and MeJA+ treatments. Pupae that 

did not emerge into adults after 70 days were considered dead. When significant interactions 

were detected, we used the lsmeans function from the lsmeans package (in R software) to test for 

differences between groups (Lenth, 2016). For all variables we report the mean ± SEM.  
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Results 

EFFECTS OF MEJA AND FUNGAL ENDOPHYTES ON THE PHYSIOLOGICAL LEVELS 

OF HORMONES AND PLANT GROWTH 

The endophyte reduced the physiological concentration of SA irrespective of the MeJA treatment 

(i.e. Symbiosis x MeJA) and the experimental time (i.e. Symbiosis x time) (Table 1). On 

average, the SA concentration in endophyte-symbiotic plants was ~ 38% lower than in non-

symbiotic plants (E+: 41.67 ± 2.64 ng SA g
-1

 DW, and E-: 66.94 ± 3.62 ng SA g
-1

 DW) (Fig.1a). 

In addition, the concentration of SA increased with time (Table 1). The concentration of SA at 

day 21 was 35% higher compared to the concentration on day 3 following the application of 

MeJA ([SA] at days 3 and 21: 43.11 ± 2.99 and 65.50 ± 3.62 ng SA g
-1

 DW, respectively; Fig. 

1a).  

The effect of the MeJA treatment on the physiological concentration of JA was independent of 

the symbiotic status of plants (i.e. Symbiosis x MeJA), and varied with time (i.e. MeJA x time) 

(Table 1; Fig.1b). Whereas the concentration of JA at day 3 was 2.8-fold higher in MeJA-treated 

plants than in the untreated counterparts (MeJA- and MeJA+: 1672 ± 85.81 and 4685 ± 186.50 

ng JA g
-1

 DW, respectively), it went back to the initial level by 18 days later (MeJA- and 

MeJA+: 1410 ± 73.50 and 1407 ± 131.80 ng JA g
-1

 DW, respectively; Fig. 1b). 

The plant aboveground biomass at the end of the larval stage of insects (23-28 days post MeJA 

exposure) was 16% higher in endophyte-symbiotic than non-symbiotic plants (E+: 6.92 ± 0.34 g 

DW and E-: 5.88 ± 0.33 g DW), and it was not affected by the exogenously added jasmonate 

(Table 1). 

EFFECTS OF MEJA ON THE CONCENTRATION OF FUNGAL LOLINE ALKALOIDS 
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Neither the total lolines as a whole nor the constituents by themselves (i.e. NFL and NANL) 

were affected by the interaction between MeJA treatment and time (Table 1). Irrespective of the 

time since application, the jasmonate treatment significantly reduced the concentration of total 

lolines (Table 1). The concentration of total lolines was 57% lower in MeJA-treated plants than 

in the untreated plants (Fig. 2). The same pattern of results were observed for each individual 

loline (Table 1). The MeJA treatment reduced the concentrations of NFL and NANL to 58% and 

a 54% respectively (Fig. 2). The concentrations of these two loline derivatives did not change 

with the experimental time (Table 1).  

EFFECTS OF MEJA AND THE FUNGAL ENDOPHYTES ON FALL ARMYWORM 

PERFORMANCE  

The body mass of S. frugiperda larvae (at day 15 post MeJA exposure) was affected by the 

endophyte fungus interacting with the MeJA treatment (Table 2). In plants not treated with 

MeJA, the endophyte reduced the larval body mass by 21%; but in MeJA-treated plants, larvae 

grown on endophyte-symbiotic plants weighed 31% more than those grown on non-symbiotic 

plants (Table 2). However, neither the body weights of pupae nor the adults were affected by the 

treatments (Table 2). Apart from the indicated effects, the final weight reached by each 

individual at the larval and adult stages was influenced by the initial body mass (Table 2).  

The fungal endophyte interacted with the MeJA treatment in affecting the elapsed time of insects 

as larva and the time to adult eclosion (Table 2). For the plants not exposed to MeJA, endophyte 

presence delayed insect pupation and adult eclosion for about 4 days; but in plants that were 

exposed to MeJA, the insects pupated and the adults emerged 3 days earlier on endophyte-
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symbiotic plants than on non-symbiotic ones (Table 2). The time taken for insects to emerge as 

pupa was not affected by any of the treatments or the interaction (Table 2).  

The overall survival of S. frugiperda individuals evaluated 70 days from the start of the 

experiment was 58.5% and it was independent of the endophyte presence on either MeJA-

exposed or MeJA-non-exposed plants (Table 2). Of the adult insects grown on endophyte-

symbiotic plants, 50% showed wing deformations (Table 2).  

Discussion 

The JA hormone plays a central role in plant defenses controlling necrotrophic pathogens and 

chewing insect herbivores (Halitschke & Baldwin, 2004; Thaler et al., 2012). We hypothesized 

that an exogenous application of MeJA, an activator of the JA signaling pathway, would increase 

the level of resistance of endophyte-symbiotic and non-symbiotic plants to the chewing insect S. 

frugiperda. In addition, as biotrophic Epichloë fungal endophytes produce alkaloids, which are 

chemical compounds with anti-herbivory properties, we predicted that an enhancement of the JA 

defense would complement the resistance provided by the alkaloids. We found that L. 

multiflorum plants, symbiotic with the endophyte E. occultans were more resistant to S. 

frugiperda than their non-symbiotic counterparts. However, despite the fact that the JA 

concentration significantly increased with exposure of plants to MeJA, neither endophyte-

symbiotic nor non-symbiotic plants showed enhanced resistance to the insects. Unexpectedly, the 

exposure of endophyte-symbiotic plants to MeJA led to a reduction in the concentration of loline 

alkaloids, consequently increasing the herbivore performance. Irrespective of the JA hormone 

concentration, the fungal endophyte was associated with a lower plant concentration of the SA 

hormone.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The presence of beneficial microorganisms within plants is generally associated with a 

repression of the plant SA pathway (Navarro-Meléndez & Heil, 2014; Stacey, McAlvin, Kim, 

Olivares, & Soto, 2006; Yasuda et al., 2016). Like other symbiotic associations, we found that 

plants associated with fungal endophytes showed a lower concentration of SA hormone 

compared to non-symbiotic plants (see also Bastías et al., 2018). Consistent with our result, other 

grass-endophyte symbioses have shown a general downregulation of genes related to the SA 

pathway (Dupont et al., 2015; Johnson et al., 2003) (but see Schmid et al., 2017), as well as a 

susceptibility to certain species of biotrophic pathogens (Welty et al., 1991, 1993; Wäli et al., 

2006; Krauss et al., 2007; Pańka Dariusz et al., 2011; Sabzalian et al., 2012). The endophyte 

production of specific enzymes controlling the SA pathway may be a plausible mechanism that 

explains the suppression of the SA pathway (Ambrose & Belanger, 2012). In addition to the 

endophyte effect on the SA, we found the hormone in increased concentrations when the plants 

were challenged with S. frugiperda larvae. A similar response was found on poplar trees 

(Populus nigra) in response to the biotrophic pathogen Melampsora larici-populina (a rust 

fungus) alone or in combination with larvae of the herbivore Lymantria dispar (Eberl et al., 

2017). However, the high SA concentration found in the Eberl et al. study was mainly attributed 

to the pathogen infection rather than to the chewing herbivore. Other studies on Nicotiana 

attenuata plants have reported increases in SA concentrations in response to the single attacks of 

certain generalist Lepidopteran herbivores such as S. exigua, S. littoralis and Trichoplusia ni 

(Diezel, von Dahl, Gaquerel, & Baldwin, 2009; Heidel & Baldwin, 2004). It has been 

hypothetisized that specific effector molecules or biotrophic-symbiotic microorganisms 

inhabitants of the insects oral secretions could be the potential elicitors of the plant SA-immune 

responses (Chung et al., 2013; Diezel et al., 2009). Thus, while our results suggest that the plant 
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concentration of SA would be mainly controlled by the fungal endophyte presence (see also 

Bastías et al., 2018), it could also respond to the activity of herbivores such as S. frugiperda 

larvae. 

The presence of fungal endophytes in different grass species generally impairs the performance 

of S. frugiperda individuals (Afkhami & Rudgers, 2009; Ball et al., 2006; Boning & Bultman, 

1996; Brem & Leuchtmann, 2001; Bultman & Bell, 2003; Bultman & Conard, 1998; Bultman & 

Ganey, 1995; Crawford et al., 2010; Davidson & Potter, 1995; Hardy, Clay, & Hammond, 1986; 

Mark & Lincoln, 1996; Salminen, Richmond, Grewal, & Grewal, 2005). Similarly, we found that 

the fungal endophyte E. occultans reduced the larval weight and extended the development time 

of S. frugiperda individuals. Moreover, it is interesting to note that even though insect survival 

and performance of pupae (i.e. body mass and development time) were not affected by the 

endophyte, about 50% of the adults that emerged from individuals reared on endophyte-

symbiotic plants displayed deformed wings. This suggests that the effect of the endophyte on 

individual performance might continue beyond the larval stage, increasing the chances for 

insects to show further developmental failures (Thakur, Kaur, Kaur, & Singh, 2013). 

Considering that the larvae developed faster when reared on non-symbiotic plants than on 

endophyte-symbiotic plants, one would expect that, after a fixed interval, the larval body masses 

would be higher in the former than in the latter type of plants (Boning & Bultman, 1996). In 

addition, the lack of endophyte effects on the pupae can be explained by the fact that larvae of S. 

frugiperda generally loose sensitivity to fungal alkaloids as they progress in growth and 

development (Bultman & Conard, 1998; Hardy et al., 1986).  

The enhancement of plant resistance against chewing insects by means of exogenous application 

of MeJA has been shown in several plant species (Heijari, Nerg, Kainulainen, Vuorinen, & 
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Holopainen, 2008; Singh, Singh, & Verma, 2008; Stout, Workman, Bostock, & Duffey, 1998; 

Tan, Chiang, Ravuiwasa, Yadav, & Hwang, 2012; Tan, Lo, Yadav, Ravuiwasa, & Hwang, 2011; 

Thaler, Stout, Karban, & Duffey, 1996, 2001; van Dam, Hadwich, & Baldwin, 2000; Wu et al., 

2008). In the case of grass species of the subfamily Poöideae, there has only been one study, to 

the best our knowledge, showing that the exogenous application of MeJA increased the 

resistance level of tall fescue plants (S. arundinaceus) to a species of sap-sucking insect 

herbivore, namely the aphid Rhopalosiphum padi (Simons, Bultman, & Sullivan, 2008). In our 

study, despite the fact that the exogenous application of MeJA increased the plant concentration 

of JA hormone approximately 3-fold, the treatment did not enhance the level of resistance of 

non-symbiotic plants against the chewing herbivore S. frugiperda, nor did the MeJA treatment 

affect the plant aboveground biomass. Although counter to our expectations, the lack of effects 

of the MeJA exposure on the plant resistance to S. frugiperda could be explained by two non-

exclusive mechanisms: (i) the plant tolerance to insect herbivory, and/or (ii) the insect tolerance 

to plant defenses. The level of plant tolerance to herbivores can increase in response to MeJA 

exposure. This enhanced level of tolerance has been termed “herbivory-induced resource 

sequestration (HIRS)” (Babst et al., 2005; Ferrieri, Agtuca, Appel, Ferrieri, & Schultz, 2013; 

Frost & Hunter, 2008; Gómez, Ferrieri, Schueller, & Orians, 2010; Meuriot et al., 2004), and has 

been identified in several plant species (Babst et al., 2005; Ferrieri et al., 2013; Frost & Hunter, 

2008; Gómez et al., 2010; Meuriot et al., 2004) including grasses (Bazot, Mikola, Nguyen, & 

Robin, 2005; Fahnestock & Detling, 1999; Green & Detling, 2000; Hokka, Mikola, Vestberg, & 

Setälä, 2004; Wilsey, Coleman, & McNaughton, 1997). A HIRS response is explained by the 

transport of chemical resources, such as carbon and nitrogen-based compounds, toward roots in 

order to protect them from aboveground-herbivores (Orians, Thorn, & Gómez, 2011; Schwachtje 
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& Baldwin, 2008). Thus, if the application of MeJA contributed to a rapid reallocation of 

resources rather than to an activation of defenses in plants of L. multiflorum, it could explain in 

part the lack of resistance observed in MeJA-exposed plants to S. frugiperda. Alternatively, S. 

frugiperda larvae could have been naturally tolerant to the defense metabolites produced by L. 

multiflorum plants. Among these metabolites, the most important are the polyphenol oxidases 

and proteinase inhibitors (Faville et al., 2004; Humphries, 1980; Lee, Olmos Colmenero, 

Winters, Scollan, & Minchin, 2006), for which S. frugiperda larvae have shown certain 

biochemical and physiological mechanisms to metabolize them (Brioschi et al., 2007; Giraudo et 

al., 2015; Paulillo et al., 2000).  

We expected that symbiotic plants treated with MeJA would activate the host plant defenses, 

complementing the resistance effects due to the fungal endophyte and its alkaloids. However, 

despite the fact that MeJA exposure increased the JA concentration significantly, the jasmonate 

treatment reduced the concentration of loline alkaloids and consequently, it decreased the level 

of resistance of endophyte-symbiotic plants to S. frugiperda. A similar result was found in tall 

fescue plants where the endophyte production of alkaloids as well as the endophyte-conferred 

resistance to a sap-sucking insect herbivore were impaired by the exogenous application of 

MeJA (Simons et al., 2008). In studies with mycorrhizal symbionts, the JA can positively or 

negatively regulate fungal growth, depending on the degree of fungal colonization in plant roots 

(Fernández et al., 2014; Hause, Mrosk, Isayenkov, & Strack, 2007). This conditional effect of JA 

on fungal growth would be related to the dual role that the hormone plays on the plant 

metabolism, the re-allocation of resources or the activation of defenses (Hause et al., 2007). 

Since mycorrhizal fungi associate with plant roots, the JA-mediated re-allocation of resources 

toward belowground tissues could increase fungal growth; but an opposite effect could be 
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triggered by the hormone activation of plant defenses (Fernández et al., 2014; Gutjahr, Siegler, 

Haga, Iino, & Paszkowski, 2015; Isayenkov, Mrosk, Stenzel, Strack, & Hause, 2005; Landgraf, 

Schaarschmidt, & Hause, 2012). In the case of leaf fungal endophytes, the JA stimulation of 

either of the two processes (i.e. re-allocation of resources or activation of defenses) could 

negatively affect the fungus. Since leaf fungal endophytes, such as E. occultans, live in the 

apoplast of the aboveground plant tissues, the reallocation of plant nutrients toward roots would 

reduce the pool of compounds available for fungal metabolism. In fact, the endophytes growth 

and the production of alkaloids are processes highly dependent on the amount of carbohydrates 

and nitrogen available in the aboveground grass tissues (Krauss et al., 2007; Rasmussen et al., 

2007; Ryan et al., 2014).  

Although, the possibility that the JA-dependent defenses can negatively affect biotrophic fungal 

endophytes seems counterintuitive, there is evidence of this in mycorrhizal fungi, but the 

underlying mechanisms are not completely understood (Gutjahr et al., 2015; Herrera-Medina, 

Tamayo, Vierheilig, Ocampo, & García-Garrido, 2008). Alternatively, the MeJA exposure could 

have directly affected the biosynthetic routes of fungal alkaloids. For instance, the gene LolC 

encoding for an enzyme of biosynthesis of lolines has been found to be downregulated in 

endophyte-symbiotic plants of S. arundinaceus exposed to MeJA (Simons et al., 2008). Thus, the 

unexpected MeJA effect on the herbivory resistance level of endophyte-symbiotic plants may be 

explained by indirect mechanisms, including the reallocation of plant resources or the activation 

of plant defenses, and/or by a direct mechanism influencing the biosynthesis of alkaloids.  

In conclusion, the present study highlights that the interaction between the plant JA hormone and 

the presence of Epichloë endophytes can affect the anti-herbivore defenses of symbiotic plants. 

However, our results suggest that, rather than complementing the alkaloid-based defense, JA 
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interferes with the anti-herbivore mechanism conferred by endophytes. An important ecological 

consequence of our results is that any biotic or abiotic factor activating the JA pathway may 

reduce the effectiveness of the defense provided by Epichloë fungi. An example of a JA pathway 

elicitor is UV-B radiation (Ballaré, 2014). Consistent with this hypothesis, the level of resistance 

against the locust Shistocerca gregaria was significantly reduced when plants of Festuca 

pratensis symbiotic with the endophyte E. uncinatum were exposed to UV-B radiation (McLeod, 

Rey, Newsham, Lewis, & Wolferstan, 2001). It is worth noting that our predictions and results 

might have been different if endophyte-symbiotic plants were challenged by specialist insect 

herbivores. Since specialist herbivores are likely to evolve specific detoxification mechanisms, 

they would likely be less affected by the fungal alkaloids than generalist herbivores (Ali & 

Agrawal, 2012; Faeth & Saari, 2012). For example, Sipha maydis aphids are specialist 

herbivores of grasses that naturally feed on Lolium multiflorum plants, and do not seem to be 

affected by the loline alkaloids produced by E. occultans endophytes (Miranda, Omacini, & 

Chaneton, 2008; Omacini, Chaneton, Ghersa, & Muller, 2001). Including the plant hormones as 

endogenous regulators of the endophyte, performance would be helpful to understand the 

mechanisms that explain the impacts of ecological factors on the defenses of endophyte-

symbiotic plants against herbivores. 
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Table legends 

Table 1. ANOVA table showing the effects of plant symbiosis status, methyl jasmonate 

application, and experimental time on the concentration of plant hormones salicylic and jasmonic 

acids, endophytic loline alkaloids [(total, N-formylloline (NFL), and N-acetylnorloline (NANL)] 

and weight of aboveground plant tissues of Lolium multiflorum plants symbiotic with the 

endophyte Epichloë occultans. Statistically significant effects are highlighted in bold. Values of 

means, SEM, and post hoc statistical differences are shown at Figures 1 and 2 and on the text. 
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Table 2. Performance of Spodoptera frugiperda individuals at the different life stages (larva, 

pupa, and adult) grown on Lolium multiflorum plants with (E+) and without (E-) the fungal 

endophyte Epichloë occultans and treated (MeJA+) and untreated (MeJA+) with methyl 

jasmonate. Statistically significant effects are highlighted in bold. Different letters on 

performance values indicate significant differences at P < 0.05 (post hoc test). Replicate numbers 

are indicated in parenthesis. For the analysis of larval weight and pupal weight, the insect body 

mass at day 1 was used as a covariate (larval weight: F1,30 = 11.08, P = 0.002; pupal weight: F1,29 

= 0.11, P = 0.742), and pupal mass (F1,15 = 4.74, P = 0.045) as covariate for the adult body 

weight. # indicates the χ
2 
value calculated from the non-parametric Mantel-Cox analysis. Values 

are mean ± SEM. 

 

Figure legends 

Figure 1. Physiological concentrations of salicylic acid [SA, top panel (a)] and jasmonic acid 

[JA, bottom panel (b)] at day 3 and 21 since the methyl jasmonate application [treated: MeJA+ 

(shaded bars), and untreated: MeJA- (unshaded bars)] in Lolium multiflorum plants with (E+, 

striped bars) and without (E-, plain bars) the endophyte fungus Epichloë occultans. Asterisks and 

letters indicate significant differences at P < 0.05 (post hoc test). Bars represent mean values ± 

SE (n = 9). 

Figure 2. Concentrations of loline alkaloids [total (black bars) and derivatives: N-formylloline 

(NFL, grey bars) and N-acetylnorloline (NANL, white bars)] produced by the fungal endophyte 

Epichloë occultans in Lolium multiflorum plants treated (MeJA+) and untreated (MeJA-) with 

methyl jasmonate. Total lolines are NFL+NANL derivatives. Non-symbiotic plants do not 
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produce loline alkaloids. Each loline was analyzed separately (see Material and Method section). 

Asterisks indicate significant differences at P < 0.05. The bars represent mean values ± SEM, 

averaging across time (at days 5 and 21 post MeJA application; n = 18). 

 

 

Tables 

Table 1. 

Response variable Treatment df1 df2 F P-value 

Salicylic acid (ng g-1 DW) Symbiosis 1 32 90.20 < 0.001 

 MeJA 1 32 0.83 0.370 

 Time 1 32 80.35 < 0.001 

 Symbiosis x MeJA 1 32 0.09 0.761 

 Symbiosis x Time 1 32 1.67 0.205 

 MeJA x Time 1 32 0.03 0.860 

 
Symbiosis x MeJA x 

Time 
1 32 2.63 0.114 

Jasmonic acid (ng g-1 DW) Symbiosis 1 32 0.18 0.673 

 MeJA 1 32 174.93 < 0.001 

 Time 1 32 78.98 < 0.001 

 Symbiosis x MeJA 1 32 1.76 0.193 

 Symbiosis x Time 1 32 0.55 0.463 

 MeJA x Time 1 32 201.87 < 0.001 

 
Symbiosis x MeJA x 

Time 
1 32 0.132 0.718 

Lolines (µg g-1 DW)      

Total MeJA 1 16 5.54 0.031 
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 Time 1 16 4.41 0.051 

 MeJA x Time 1 16 1.59 0.224 

NFL MeJA 1 16 5.64 0.030 

 Time 1 16 4.29 0.054 

 MeJA x Time 1 16 2.86 0.109 

NANL MeJA 1 16 4.94 0.040 

 Time 1 16 3.41 0.083 

 MeJA x Time 1 16 0.01 0.914 

Aboveground plant tissue (g 

DW) 
Symbiosis 1 32 4.76 0.036 

 MeJA 1 32 0.29 0.590 

 Symbiosis x MeJA 1 32 0.08 0.776 

 

Table 2. 

Response 

variable 
Treatment df1 df2 F or χ

2
 P-value 

E- E+ E- E+ 

MeJA- MeJA+ 

Body weight 

(mg) 
         

Larva 

Symbiosis 1 31 1.93 0.174 
390.90 

± 

31.60a 

(9) 

307.10 

± 

34.00b 

(9) 

363.10 

± 

41.14a 

(9) 

530.10 

± 

23.01c 

(9) 

MeJA 1 31 10.62 0.002 

Symbiosis 

x MeJA 
1 31 14.55 < 0.001 

Pupa 

Symbiosis 1 29 0.71 0.406 
247.50 

± 

6.76a 

(9) 

237.40 

± 

10.91a 

(9) 

219.10 

± 

9.22a 

(9) 

246.10 

± 

9.51a 

(7) 

MeJA 1 29 1.37 0.250 

Symbiosis 

x MeJA 
1 29 3.71 0.063 
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Adult 

Symbiosis 1 15 0.01 0.908 
112.30 

± 

6.98a 

(6) 

108.20 

± 

15.16a 

(5) 

112.00 

± 

11.62a 

(4) 

122.70 

± 

3.04a 

(5) 

MeJA 1 15 0.76 0.396 

Symbiosis 

x MeJA 
1 15 0.04 0.832 

Development 

time (d) 
         

Time to 

pupation 

Symbiosis 1 30 0.61 0.438 

23.89 

± 

0.35a,c 

(9) 

27.11 

± 

0.96b 

(9) 

25.44 

± 

0.89a,b 

(9) 

23.00 

± 

0.43c 

(9) 

MeJA 1 30 2.19 0.148 

Symbiosis 

x MeJA 
1 30 14.74 < 0.001 

Time at pupa 

Symbiosis 1 16 0.06 0.797 
27.33 

± 

0.84a 

(6) 

28.40 

± 

0.40a 

(5) 

28.50 

± 

0.50a 

(4) 

27.60 

± 

0.74a 

(5) 

MeJA 1 16 0.05 0.820 

Symbiosis 

x MeJA 
1 16 1.93 0.183 

Time to adult 

eclosion 

Symbiosis 1 16 0.35 0.352 
51.33 

± 

0.61a,c 

(6) 

55.20 

± 

1.56b 

(5) 

54.00 

± 

1.22a,b 

(4) 

51.00 

± 

0.89c 

(5) 

MeJA 1 16 0.33 0.337 

Symbiosis 

x MeJA 
1 16 11.83 < 0.001 

Survival (%) 

MeJA- 

(Symbiosis) 
1 -- 0.07# 0.770 

66.70a 

(6) 

55.60a 

(5) 

44.40a 

(4) 

57.90a 

(5) 
MeJA+ 

(Symbiosis) 
1 -- < 0.01# 0.980 
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Individuals 

with 

deformed 

wings (%) 

     0 (6) 60 (5) 0 (4) 40 (5) 
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Figure 1. 
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