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From a practical as well as a conceptual point of view, one of the most interesting
problems of physicochemical hydrodynamics is the drag out of a liquid film by
a moving solid out of a pool of liquid. The basic problem, sometimes denoted the
Landau-Levich problem [L. Landau and B. Levich, “Dragging of a liquid by a moving
plate,” Acta Physicochim. USSR 17, 42–54 (1942)], involves an interesting blend of
capillary and viscous forces plus a matching of the static solution for capillary rise
with a numerical solution of the film evolution equation, neglecting gravity, on the
downstream region of the flow field. The original solution describes experimental
data for a wide range of Capillary numbers but fails to match results for large and
very small Capillary numbers. Molecular level forces are introduced to create an
augmented version of the film evolution equation to show the effect of van der Waals
forces at the lower range of Capillary numbers. A closed form solution for static
capillary rise, including molecular forces, was matched with a numerical solution of
the augmented film evolution equation in the dynamic meniscus region. Molecular
forces do not sensibly modify the static capillary rise region, since film thicknesses
are larger than the range of influence of van der Waals forces, but are determinant in
shaping the downstream dynamic meniscus of the very thin liquid films. As expected,
a quantitatively different level of disjoining pressure for different values of molecular
constants remains in the very thin liquid film far downstream. Computational results
for a wide range of Capillary numbers and Hamaker constants show a clear transition
towards a region where the film thickness becomes independent of the coating speed.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794972]

I. INTRODUCTION

Dip coating is a widely known process in which a solid is withdrawn with constant velocity out
of a liquid bath in order to deposit a film of uniform thickness. When the system is free of surface
active agents, and operates at intermediate removal speeds, the driving force for liquid entrainment
is viscosity while gravity promotes drainage. The simple hydrodynamic problem does not have
a unique solution unless capillary forces are introduced to determine film thickness downstream.
The original solution introduced by Landau and Levich (L&L)1 assumes that at low velocities the
meniscus can be split in two regions: a thin region called the dynamic meniscus where the interface
profile is slightly curved, and the static region which is slightly perturbed by the motion of the solid
plate (see Fig. 1). Since the dynamic meniscus is nearly flat, the main flow is in the upward direction,
and the interface shape results from the competition between viscous and surface forces (gravity
effect is neglected in their analysis). A main assumption of the L&L1 approach requires matching
the curvature of the static meniscus at the point where the interface becomes parallel to the solid,
with the constant curvature of the dynamic meniscus. At the point of matching, the curvature of the
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FIG. 1. Geometrical sketch of flow field due to the vertical removal of a flat solid from a viscous liquid pool.

static meniscus and the curvature of the dynamic meniscus reach a maximum while the angle of
inclination of the interface in the static meniscus side is equal to zero.

The flat plate moves upward out of a liquid bath at a constant velocity, u = Uw. The liquid
properties (viscosity, μ, density, ρ, and surface tension, σ ), are constant; shear from the surrounding
air is neglected and its pressure is arbitrarily set equal to zero. Following L&L1 analysis, we identify
three domain regions: the static meniscus, the dynamic meniscus, and the flat film region. In the flat
film region, viscous, gravity, and inter-molecular forces are balanced. For very thin films, gravity is
negligible and the velocity profile is near plug-flow and velocity is assumed to be everywhere equal
to the substrate velocity. At the lower region near the liquid pool, the liquid interface raising from
the pool is assumed to be independent of the motion of the solid such that the shape of the interface
is determined by gravity and surface tension only (i.e., it is the shape of capillary rise). In the
intermediate dynamic meniscus region, the curvature of the interface is determined by integration of
the film evolution equation and matched to the static shape. The magnitude of the surface curvature
is subsequently used to determine flow rate and liquid film thickness in the downstream flat film
region. Apparently unaware of the Landau-Levich1 paper, van Rossum2 published an experimental
paper where the velocity profile far downstream in the flat film region includes gravity forces and
determines a parabolic drainage profile

u(x, y) = Uw +
(

1

μ

dp

dx
+ ρg

μ

)[
y2

2
− yh

]
; q =

y=h∞∫
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FIG. 2. Schematic representation of the experiments by Quéré et al.6 showing dimensionless film thickness versus dimen-
sionless velocities for a small cylindrical fiber.

where h∞ is the film thickness far downstream and its definition assumes a uniform velocity profile.
The L&L1 problem was analyzed thoroughly and valuable experimental data generated by the late
Professor Tallmadge3, 4 and students. Based on the definition of film thickness introduced by van
Rossum,2 Wilson5 performed a rigorous analysis of the drag out problem recognizing the presence
of two characteristic lengths, the capillary length, LC = √

σ/ρg, used to render interface curvature
dimensionless and a film thickness length resulting from the ratio of the square root of the Capillary
number and the capillary length, d = (μUw/ρg)1/2. Wilson’s5 analysis resulted in a formal description
of the drag out problem including gravity, but did not bring any new theoretical results for vertical
withdrawal.

The Landau-Levich1 solution delivers a dimensionless expression for asymptotic film thickness
as a function of Capillary number

Ĥ (x → ∞) = q

Uw LC
= 0.93 Ca2/3; Ca = μUw

σ
. (2)

The functional relationship described by Eq. (2) is valid for a wide range of Capillary numbers,
roughly from 10−6 < Ca < 10−1, but fails to describe the regions of very small, Ca < 10−6, or large,
Ca > 10−1, Capillary numbers.

Quéré et al.6 experimentally studied the dip coating of fibers of small radius at very low
velocities. Their results, schematically represented in Figure 2, show that the coated thickness
measured in units of the radius of the fiber (H̃ ) departs from Landau and Levich law (dashed line)
at very small withdrawal velocities; in fact, at low Capillary numbers the film thickness becomes
independent of the coating speed (solid line).

At large Capillary numbers, inertial forces become important and dimensionless film thickness
levels off at a constant value. The limit of large Capillary numbers was analyzed by Cerro and Scriven7

based on a rapid-flow integral formulation of the film evolution equation. The large Capillary limit
results in a rational expression for the dimensionless film thickness

Q = q

Uw

(
ρg

μUw

)1/2

=
[

61/2 − 1

2 · 61/2

]1/2

= 0.5439 · · · . (3)

There have been a few attempts to analyze the very small Capillary numbers limit. Diaz
Martin8 extended the treatment first introduced by Teletzke,9 developing an augmented film evolution
equation with the addition of a disjoining pressure term resulting from van der Waals molecular-level
forces. Although the goal of Diaz Martin8 was to demonstrate the effect of molecular and Marangoni
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forces on Langmuir-Blodgett film deposition, her computations include numerical solutions of the
film evolution equation for a wide range of Capillary numbers and Hamaker constants. Krechetnikov
and Homsy,10 performed an asymptotic matching of static profile and dynamic film including
an electrostatic potential. Recently,11 a detailed theoretical analysis was performed including the
ad hoc electrostatic potential10 as well as a Debye-Huckel potential.

An interesting and extended numerical analysis of dip coating was done by Schunk et al.12

where drying and mass transfer effects were included on their shaping of L&L1 films as well as the
related Langmuir-Blodgett and sol-gel depositions.

In Sec. II, we develop the augmented film evolution equation, based on the Landau-Levich1

formulation, plus the introduction of a disjoining pressure term resulting from van der Waals forces.
In Sec. III, we describe the static meniscus region using the augmented Young-Laplace equation.
In Sec. IV, we perform computational solutions of the augmented film evolution equation. Analysis
and conclusions are described in Sec. V.

II. THE AUGMENTED FILM EVOLUTION EQUATION

The development of the film evolution equation follows the guidelines formalized by Higgins
and Scriven13 where the y-component of the equation of motion is integrated to obtain pressure, the
derivative of pressure is inserted in the x-component of the equation of motion and the resulting
differential equation is integrated once across the film thickness, 0 ≤ y ≤ h(x). The augmented
version of the film evolution equation9 includes a disjoining pressure term created by molecular
forces (Note: the word disjoining is used here generically for disjoining/conjoining fields). In this
work, the liquid phase is constituted by non-polar hydrocarbon molecular species and molecular
forces are represented by van der Waals forces using a truncated form of the 6-12 Lennard-Jones
potential.14 Throughout the domain of flow defined for this problem, the starting point is the
augmented film evolution equation in dimensional form

(h − h∞) −
(

h3 − h3
∞

3

) (
ρg

μUw

)
− h2

m

h

(
σ

μUw

)
dh

dx
− h3 (σ/μUw)

3

d2 sin θ

dx2
= 0, (4)

where the first term in Eq. (4) is the viscous contribution, the second term is the gravity force
contribution, the third term is the disjoining pressure resulting from molecular forces, and the last
term is the capillary pressure term. The interface for capillary rise on a flat solid surface is two
dimensional, i.e., the horizontal curvature is everywhere zero. The derivative of sin θ , where θ is
the angle of inclination of the interface with respect to the solid surface, is an exact expression for
vertical curvature. The characteristic molecular thickness, hm, is typical of capillary problems with
molecular forces (Diaz Martin et al.14) and is defined as

h2
m = A[6]

L L G6 (θ0) − A[6]
SL

6πσ
, (5)

where A[6]
L L and A[6]

SL are the liquid/liquid and solid/liquid Hamaker constants, respectively, for a
truncated [6-12] Lennard-Jones potential. The angular function corrects the liquid/liquid contribution
for the angle of inclination of the interface with respect to the solid surface. In all our computations,
the angle of inclination of the interface at the point of matching was zero, as a consequence we can
safely take G6(0) = 1. Equations (4) and (5) are developed in Diaz Martin et al.14

We will use Eq. (4) to obtain the equations that describe static capillary rise and dynamic
film evolution phenomena. Neglecting viscous forces, the augmented Young-Laplace equation is
recovered from Eq. (4). If on the other hand gravity is neglected, the film evolution equation is
recovered. Without the gravity term and molecular forces, Eq. (4) is identical to the equation used
by L&L1 in their analysis. Neglecting gravity, the dimensionless version of Eq. (4) includes only
one dimensionless parameter

d3 H

d X3
= 3α

H 4

d H

d X
− 3

(
H − 1

H 3

)
; α = h2

m

h2∞Ca2/3
, (6)
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where the dimensionless film thickness is defined on the basis of the downstream film thickness, H
= h/h∞, and the dimensionless coordinate, X = xCa1/3/h∞ includes the Capillary number. Notice
that the expression for the curvature of the interface is now an approximation where dh/dx = 1
is used to simplify meniscus curvature. This dimensionless form of the film evolution equation is
consistent with the L&L1 approach where the definition of the approximate plug flow profile is
used to characterize both film thickness and flow rate. Equation (6) has two distinct advantages for
computation, (1) it has only one parameter, α, and (2) the downstream limit of the dimensionless
film thickness has a known and simple value, H(X → ∞) = 1.

Following Landau-Levich,1 we assume that the flow field has three distinctive regions, (1) a
static meniscus region that can be described, in our case, by the augmented Young-Laplace equation,
(2) a dynamic meniscus region whose interfacial profile, obtained by integrating Eq. (6), joins the
static meniscus at the maximum curvature of this one, and (3) a downstream uniform film region that
will be used as the starting point of our dynamic computations. In other words, below the maximum
point of curvature of the meniscus, the shape of the air/liquid interface is described by the augmented
Young-Laplace equation that is a capillary-gravity shape including disjoining pressure. Above the
point of maximum curvature, the shape of the interface is described by the augmented film evolution
equation, Eq. (6).

III. THE STATIC MENISCUS REGION

Neglecting viscous forces and considering (h∞/h)3 � 1 in the static meniscus, the augmented
film evolution equation, Eq. (4), can be integrated once between the liquid pool (i.e., x = 0,
2H = 0, h → ∞) to recover the augmented Young-Laplace equation describing capillary rise on a
flat, vertical surface

− d

dx
sin θ = 2H = x

L2
C

− h2
m

h3
. (7)

Equation (7) can be easily integrated exactly, to get an expression for the static contact angle as
a function of capillary and molecular forces

1 − sin θ0 = x2
L

2L2
C

−
xL∫

x=0

h2
m

h3
dx . (8)

Note that at x = 0, the angle of inclination of the free surface is π /2; in Eq. (8) θ0 is the static
macroscopic contact angle, and xL is the point of maximum capillary rise. Neglecting molecular
force contributions, Eq. (8) reduces to the well-known relationship for the static contact angle in
capillary rise developed by McNutt and Andes.15 One of the key assumptions of the L&L1 approach
is that under drag out conditions the contact angle is zero. This assumption is valid as long as the
film thickness at the point of matching is larger than a few tens of nanometers (Diaz Martin et al.16).
For the same reason, the contribution of molecular forces in Eq. (8) is very small; thus, we neglect
them to compute the value of xL. At the point of maximum capillary rise, xL, the curvature of the
interface is obtained substituting the value of xL into Eq. (7)

2H|xL
=

√
2

LC
− h2

m

h3 (xL )
. (9)

Equation (9), i.e., the curvature of the static meniscus at xL, is multiplied by h∞/Ca 2/3 to put it
into the dimensionless form employed for the evolution equation; then, it is equated to the constant
value of the curvature (β) provided by Eq. (6). The result is

2H|xL

h∞
Ca2/3

=
[√

2

LC
− h2

m

h3 (xL )

]
h∞

Ca2/3
= β. (10)

In order to find the value of the constant curvature, L&L1 integrated numerically their simplified
version of the film evolution equation. In our case, we must integrate numerically the dimensionless
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TABLE I. Values of physicochemical constants for n-heptane/PTFE system.

σ (N/m) LC (m)
0.0203 0.00174

ASL (J) ALL · G6 (J) hm (m)
4.030 × 10−20 4.296 × 10−20 8.34 × 10−11

form of our augmented version [Eq. (6)]. Numerical integration of this expression returns the
dimensionless curvature at the point of matching, β. Equation (10) together with the expression
of α provides two equations from which h∞ and Ca can be obtained since h(x) is also known—
as H(x)/h∞—from the integration of Eq. (6). Our computed predictions were obtained in this
way; although, for the Ca values here explored a similar result would have been obtained by not
considering the term hm

2/h3(xL) in Eq. (10) because it is negligible compared with
√

2 / LC . With
the purpose of showing the rightness of our assertion, we compare our computed predictions for
the n-heptane/polytetrafluoroethylene (PTFE) system with the values of h∞ obtained from Eq. (11)
which is just a rearrangement of Eq. (10) without the molecular term

h∞ = βCa2/3

√
2/LC

. (11)

Table I gives the values of the physicochemical constants for a system of heptane over PTFE.
Table II gives values of the dimensionless curvature at the point of matching, β, and the film

thickness at the point of matching plus values of film thickness far downstream, h∞, obtained from
Eq. (11) and from our computations.

Agreement between theoretical and computational values of the equilibrium film thickness far
downstream indicates that molecular forces have little or no effect on configuring the shape of the
static meniscus. Indeed, the term including molecular thickness and film thickness at the point of
matching is two to four orders of magnitude smaller than the term including capillary length; i.e.,
h2

m/h3 (xL ) � √
2/LC . Film thicknesses at the point of matching are very small and difficult to

detect and measure experimentally, 10−6 m ≤ h(x) ≤ 10−7 m, but very large when compared with
molecular thickness, hm = 8.34 × 10−11 m. Also, film thicknesses at the points of matching, h(xL),
shown in Table II, are much larger than downstream film thicknesses, h∞; therefore, the larger
contribution of disjoining pressure is at the dynamic meniscus region downstream the matching
point. We could expect that for extremely small Capillary numbers, when film thickness at the point
of matching is below a few tens of nanometers, h(xL) < 50 × 10−9 m, the projection of the solution
of the augmented Young-Laplace equation could yield contact angles larger than zero at that point,16

and in such case the static meniscus region also will be affected by molecular-level forces.

IV. NUMERICAL INTEGRATION OF THE AUGMENTED FILM EVOLUTION EQUATION

Equation (6) can be integrated using a backward shooting method, starting far downstream
where the thickness of the film, H(X → ∞) = 1. The first and second derivatives of film thickness
are subject to a small perturbation parameter and integration proceeds using the MATLAB function
ODE45. Integration was stopped when the curvature of the film approaches a constant value. The
condition of constant curvature was verified by computing the third derivative of H(X) with respect

TABLE II. Computed values of β and h at the point of matching, and final film thicknesses, calculated [h∞ Eq. (11)] and
computed [h∞ (Comp)], for selected values of Ca.

Ca β h(xL) (m) h∞ (m) Eq. (11) h∞ (m) (Comp)

10−6 1.3213 2.7686 × 10−6 1.6257 × 10−7 1.6257 × 10−7

10−7 1.4413 6.6685 × 10−7 3.8207 × 10−8 3.8205 × 10−8

10−8 3.81168 4.0201 × 10−7 2.1771 × 10−8 2.1768 × 10−8
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FIG. 3. Log-log plot of dimensionless film thickness versus Capillary number for A equal to 6.13 × 10−16 (—), 6.13
× 10−15 (− −), 6.13 × 10−14 (- · · ), 6.13 × 10−13 (- - - -), and 6.13 × 10−12 (- · -). The dotted line is the L&L1 solution.

to X and using a termination point where d3H/dX3 ≤ 10−2. The matching condition specifies that the
point of maximum curvature of the static region and the point of constant curvature of the dynamic
meniscus region must be the same(

d2 H

d X2

)static

H→0

=
(

d2 H

d X2

)dynamic

H→∞
. (12)

The first set of computations were completed for intermediate Capillary numbers without
molecular forces and results were compared with previous numerical computations using the full 2D
Navier-Stokes equations and a finite element computational method.17 In all cases, film thicknesses
computed using the film evolution equation were within 2% of film thickness computed using the
finite element method.

As it was done by L&L,1 computations of the film evolution equation within the dynamic
meniscus region are performed using a dimensionless form for the film thickness, H(X) = h(x)/h∞.
To compare our results with L&L1 results (Eq. (2)) and to highlight departures from these results at
very small Capillary numbers, dimensionless film thickness and dimensionless molecular parameters
were redefined using capillary length, LC, as the characteristic length value

Ĥ = h

LC
= H

q

Uw LC
; A = h2

m

L2
C

= A[6]
L L − A[6]

SL

6πσ L2
C

. (13)

One of the most important findings from these computations is that dimensionless film thickness,
Ĥ∞ reaches a constant value at a Capillary number that depends on the value of the dimensionless
parameter A. These results are shown in Figure 3 in a log-log plot of Ĥ∞ vs Ca for characteristic
constant values of A.

To cover a wider range, the range of molecular forces described by the molecular parameter,
A, is purposely larger than typical values for non-polar liquids on partially wetting solid surface
(see, for example, Tables at Diaz Martin et al.14). For values of hm = 10−10 m, similar to the one
already shown for the n-heptane/PTFE system, at 10−7 ∼ Ca ∼ 10−6, dimensionless film thicknesses
depart from the L&L1 solution and approach a constant asymptotic value of Ĥ∞ ≈ 2 × 10−5. This
dimensionless value corresponds to actual film thickness of h∞ ≤ 3.8 × 10−8 m. This is the range of
film thicknesses where one can expect molecular forces to be of the same order of magnitude than
capillary forces but with different sign, thus forcing a thicker downstream film thickness.
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Experimental confirmation of these results is difficult for at least two reasons; (1) the film is
too thin to be detected by conventional optical methods since film thickness is below the wave-
length of visible light, and (2) a film with such small thickness would evaporate rapidly to achieve
thermodynamic equilibrium with surrounding air. Quéré et al.6 determined, via an indirect method,
film thicknesses of dodecane on fibers of a few micrometers in diameter. The experimental results
of Quéré et al.6 are schematically represented in Figure 2. Although the systems are not directly
comparable because the large effect of the second fundamental curvature in fibers, their experimental
data show an identical trend for the film thickness to remain constant below a certain removal speed.

The curves illustrated in Figure (3) strongly suggest that the film thickness can be correlated
with the molecular parameter, A, when it becomes independent of the Capillary number. In fact, a
log-log plot of Ĥ∞ in the region where it becomes constant, as a function of A (not shown here)
gives a straight line, and a linear fit of the data gives the following expression:

Ĥ∞ = h∞
LC

= 0.89 · A1/3. (14)

The foregoing equation can also be obtained from Eq. (11) and the definition of α, as follows.
Since we are in the region where Ĥ∞ becomes constant regardless of the Capillary value, Eq. (11)
and the definition of α might be rewritten as

βCa2/3 = h∞
√

2

LC
,

(15)

αCa2/3 =
(

hm

h∞

)2

.

The terms on the right of Eq. (15) are all constants; then, the ratio between them gives another
constant

β

α
= h∞

√
2

LC (hm/h∞)2 = K 3; (16)

from expression (16) h∞/LC = K (A/
√

2)1/3 or h∞/LC = K 0.891(A)1/3, which would be exactly
Eq. (14) if K → 1 (i.e., β/α → 1) when Ca → 0. That this is the case can be envisaged by integrating
Eq. (6) from the film zone (H = 1 at X → ∞) up to the matching point with the static meniscus
(H = H* at X = X*); this integration gives

d2 H

d X2
= β = α

(
1 − 1

H∗3

)
−

X∗∫
X→∞

H − 1

H 3
d X . (17)

The first term on the right of Eq. (17) represents the molecular forces in the dynamic meniscus
and it is approximately α since H* is much larger than one. The second term represents the viscous
forces in the same region and it is the integration of a function whose value is zero at the film zone,
reaches a maximum when H = 1.5 and decreases to zero again as the matching zone is approached.
Since the extent of the dynamic meniscus is finite, one might assure that the value of this integral
remains finite for any value of Ca; on the other hand, as Ca → 0 the value of α must go to infinity
and consequently β/α → 1. This result can be corroborated with the values of Tables I and II; we
can check that β/α is 6.51 when Ca = 10−7, 1.2052 when Ca = 10−8, and 1.018 when Ca = 10−9

and h∞ = 2.0579 × 10−8 (these last values are not shown in Table II) and the correctness of
Eq. (14) is confirmed.

With the purpose of performing a more detailed analysis on the interaction between the main
forces involved in this flow system, Eq. (6) was redefined using capillary length as the characteristic
length parameter. The resulting equation has two dimensionless parameters, the ratio of molecular
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FIG. 4. Relative magnitude of capillary (- · · CC), molecular (— MC) and viscous (- - VC) components [Eq. (18)] along the
dynamic meniscus region for Ca = 10−8 and A = 6.13 × 10−13.

and capillary lengths,
(
h2

m/L2
C

)
, and Capillary number

d3 Ĥ

d X̂3︸ ︷︷ ︸
Capillary component

− 3A

Ĥ 4

d Ĥ

d X̂︸ ︷︷ ︸
Molecular component

+ 3Ca

(
Ĥ − Ĥ∞

Ĥ 3

)
︸ ︷︷ ︸

V iscous component

= 0;

⎧⎪⎪⎨
⎪⎪⎩

Ĥ = h

LC

X̂ = x

LC

. (18)

The first term is the gradient of the curvature, the second the gradient of the disjoining pressure,
and the third term, the viscous component, is the viscous force per unit volume. The relative
magnitudes of these terms are shown in Figure 4 where their values are plotted as a function of
dimensionless position X̂ along the dynamic meniscus. Interestingly, within this region gradients of
capillary and molecular forces are relatively large and of different sign while values of the viscous
component are comparatively small. This behavior is similar to the evolution of capillary and
molecular terms in a static liquid puddle, where a transition region is clearly defined in a region of
space where capillary and molecular forces are of similar magnitude but different sign (Diaz Martin
et al.14). Since the molecular term includes the first derivative of the film thickness with respect
to X̂ , when the film approaches the constant film thickness, disjoining pressure remains nearly
constant but film slope vanishes and so does the molecular component. Obviously the capillary
term, being affected by the curvature of the interface vanishes just as rapidly. Notice there is also
a small maximum value of the viscous component within the dynamic region, slightly upstream to
the minimum of the capillary term. Indeed, this is the region where viscous stresses are larger due
to larger velocity gradients within the film.

To illustrate in more detail the behavior of the capillary, molecular, and viscous components,
computed values of these terms at the point of maximum gradient of molecular forces are shown in
Figure 5, for a constant value of A = 6.13 × 10−13 and increasing Capillary numbers. Notice that
for small Capillary numbers, the maximum values of the gradients of capillary and molecular forces
follow the same trend shown in Figure 4, i.e., they cancel each other out. However, for larger values
of Capillary numbers, the molecular component becomes increasingly irrelevant and the viscous
component and the gradient of capillary forces equilibrate as one would expect to find within the
L&L1 regime. Terms involving Capillary and molecular forces dominate the balance of forces in the
dynamic meniscus region for very small values of Capillary numbers. For larger values of Capillary
number, film thicknesses are everywhere too large, h(x) > 10−7 m, for molecular forces to have any
sensible effect on the flow field.
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FIG. 5. Comparison of capillary (- · · CCM), molecular (— MCM) and viscous (- - - VCM) terms [Eq. (18)] at the point
of maximum value of molecular forces along the film length. The maximum values are shown as a function of Capillary
numbers for a constant value of A = 6.13 × 10−13.

One of the advantages of numerical simulations is the ability to visualize the evolution of the
characteristic variables as a function of position along the flow field. A very interesting picture of
the smooth matching between the static and dynamic meniscus regions is shown in Figure 6.

Figure 6 shows the static meniscus described by the solution of the Young-Laplace equation
between the liquid pool and the point of matching. The line to the right of the matching points
(indicated with (x) for A = 10−15, and (*) for A = 10−12) is the numerical solution to the film
evolution equation. The inset in Figure 6 is a blowup of the dynamic meniscus region where film
thicknesses are shown for two different values of A (10−15 and 10−12). Actually, the film profile
shown for A = 10−15 exactly coincides with L&L1 predictions since the molecular forces are not
strong enough when Ca = 10−6 (see Figure 3); however, if the molecular forces become stronger
(A = 10−12), their influence is evident and predictions show that not only the final film thickness
is augmented but also most of the film profile along the dynamic meniscus moves towards larger

FIG. 6. Dimensionless film thickness, Ĥ , versus dimensionless longitudinal variable, X̂ for Ca = 10−6, and A equal to
10−12 (- -), and 10−15 (- · · ). In the inset, the dotted line is Ĥ∞ of the L&L1 solution.
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values of Ĥ . As one approaches the point where the dynamic meniscus matches the static one, the
film thickness increases and the action of the molecular forces become ineffective; therefore, the
film profile merges with the L&L1 film profile before the matching point is reached.

Another interesting feature observed in the inset of Figure 6 is the stretching of the dynamic
meniscus; indeed, when the molecular forces act (A = 10−12), it becomes considerably larger than
the case of A = 10−15, where they are too weak to be effective for Ca = 10−6.

The smooth matching is not observed if we analyze the evolution of the curvature and disjoining
pressure in both the dynamic and static regions. Curvature for the static meniscus region is repre-
sented in terms of the augmented Young-Laplace equation, Eq. (7). We include molecular forces in
Eq. (19) even when we have already shown in Sec. III that molecular forces are negligible in the
static meniscus region where the dominant terms are capillarity and gravity,

P̂static(X̂ ) = −X̂ − A

Ĥ 3
. (19)

In the static meniscus region, it is clear that curvature is corresponded by a static pressure
term, P̂static(X̂ ), made up by the contribution of gravity and disjoining pressure, although the
last is negligible. Integration across the film thickness to develop the film evolution equation is
accomplished by introducing an interface curvature term, representing pressure other than disjoining
pressure. The rigorous physical meaning of fluid pressure is lost but we might define by analogy
a dynamic pressure term, P̂dyn(X̂ ), similar to the static term, representing hydrodynamic pressure
plus disjoining pressure. The dynamic pressure term is defined by integration of the dimensionless
film evolution equation, Eq. (18), where gravity and viscous forces are neglected, and curvature and
disjoining pressure prevail

P̂dyn
(
X̂ L

) − P̂dyn(X̂ ) =
X̂∫

X̂ L

{
d3 Ĥ 3

d X̂3
− 3A

Ĥ 4

d Ĥ

d X̂

}
d X̂ ∼=

[
d2 Ĥ

d X̂2
+ A

Ĥ 3

]
−

√
2. (20)

In the presence of a gravity field, hydrostatic pressure and interface curvature are linear functions
of elevation, as indicated by Eqs. (7) and (19). Within the dynamic meniscus region, when molecular
forces are increasingly important, there is a transition region where disjoining pressure becomes
increasingly large and capillary and molecular forces make up the force balance with a small
contribution of viscosity. Figure 7 shows dimensionless pressure terms, P̂static(X̂ ) and P̂dyn(X̂ ), i.e.,
the terms shown to the right hand side of Eqs. (19) and (20), as a function of elevation along the
solid surface. The straight line on the left side of Fig. 7 shows the linear variation of pressure with
elevation in the static meniscus. The S-shaped curve on the right hand side of Fig. 7 represents
the variation of P̂dyn(X̂ ) within the dynamic meniscus region where it sharply increases up to a
constant value within a very small region. There are two important issues that beg to point out.
First, rather surprisingly, matching of curvature between static and dynamic pressure, P̂static(X̂ ) and
P̂dyn(X̂ ), show a small, but distinctive discontinuity. This discontinuity can be traced back to the
approximation introduced by neglecting the first derivative of the film thickness, dh/dx � 1, from
the curvature of the interface. Indeed, the expression for curvature of the static meniscus described
by Eq. (7) is exact, while the description of curvature introduced with the film evolution equation,
Eq. (18), is only approximate. Second, even when the matching values are unaffected, sharp variations
in pressure inside the film take place to catch up with atmospheric pressure and a growing disjoining
pressure. Dynamic pressure rapidly accommodates to reach the level of disjoining pressure in the
thin film downstream and is obviously different for different values of the molecular constant, A.
It is the evolution of dynamic pressure, P̂dyn(X̂ ), the mechanism that acts as a metering device and
limits the amount of liquid carried by the moving solid. Indeed, the measurable value of disjoining
pressure within the constant film thickness region, P̂dyn(X̂ → ∞) shown in Figure 7, is enough
to justify a film thickness behavior departing from traditional L&L1 theory. More important, and
consistent with the theory outlined in this paper, molecular forces only affect the dynamic meniscus
region.
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FIG. 7. Dimensionless pressure versus dimensionless elevation for Ca = 10−6. The small square shows a detail of the region
where static and dynamic menisci meet. The augmented terms on the right hand side are for values of A equal to 10−12 (- -)
and 10−15 (- · · ).

V. CONCLUSIONS

The L&L1 approach is based on two basic assumptions. The first assumption prescribes that the
shape of the interface in the static meniscus region is described by the augmented Young-Laplace
equation. This assumption was demonstrated to be valid (Sec. II) in the presence of non-polar
molecular forces. For very small Capillary numbers, even when the dimensionless film thickness no
longer complies with Eq. (2), the shape of the gas/liquid interface in the static meniscus region is
described by the augmented Young-Laplace equation within a very small error. Similar conclusions
were reached by Vannozzi11 using a theoretical Debye-Huckel electrostatic potential. The second
assumption implies that at the point of matching the contact angle is vanishingly small and the
film thickness is at least an order of magnitude larger than the range of the molecular forces. If
the matching constant angle becomes larger than zero, it could be within the so-called dynamic
dewetting regime, not within the film drag out regime.

For Capillary numbers about 10−6 or smaller, there is a large departure from the L&L1 solution,
Eq. (2). The departure consists of a flattening-out of the curve representing dimensionless film
thickness versus Capillary numbers for constant values of molecular force parameters. This physical
behavior was experimentally observed on fiber coating by Quéré et al.6 Within the L&L1 regime,
dimensionless film thickness, Ĥ∞, increases with the 2/3 power of Capillary number Ĥ∞ ∼ Ca2/3,
i.e., the larger the wall velocity the larger the film thickness. Within the lower Capillary number
regime, dimensionless film thickness becomes a constant and it is only function of molecular and
capillary lengths, Ĥ∞ (A) ∼ const.

Molecular forces result in sensible changes in film thickness profiles along a significant part of
the dynamic meniscus, even when film thickness at the point of matching is too large to be affected
by molecular forces; this result indicates that molecular forces are important within the dynamic
meniscus. Another important effect of molecular forces is the stretching detected in the dynamic
meniscus when the parameter A is augmented.

Regardless of the value of A, film matching is smooth as indicated by the smooth transition in
Figure 6. Moreover, the film thickness at the point of matching, h(xL), is over an order of magnitude
larger than film thickness downstream, h∞. Since the curvature of the interface was simplified,
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dh/dx � 1, matching static and dynamic pressures is not as smooth as the matching of film thickness
and a small jump in the pressure field is observed. However, the pseudo-pressure term within the
dynamic meniscus region, P̂dyn(X̂ ), shows differences in evolution as well as in the limiting value,
P̂dyn(X̂ → ∞), as seen in Figure 7. This limiting value is determined by disjoining pressure in
the constant film region, and it is responsible for final film thicknesses (Ĥ∞) different from L&L1

results.
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