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Abstract

Purpose – The purpose of this paper is to highlight the possibilities of a novel Lagrangian
formulation in dealing with the solution of the incompressible Navier-Stokes equations with very large
time steps.

Design/methodology/approach – The design of the paper is based on introducing the origin of
this novel numerical method, originally inspired on the Particle Finite Element Method (PFEM),
summarizing the previously published theory in its moving mesh version. Afterwards its extension to
fixed mesh version is introduced, showing some details about the implementation.

Findings – The authors have found that even though this method was originally designed to deal
with heterogeneous or free-surface flows, it can be competitive with Eulerian alternatives, even in their
range of optimal application in terms of accuracy, with an interesting robustness allowing to use large
time steps in a stable way.

Originality/value – With this objective in mind, the authors have chosen a number of benchmark
examples and have proved that the proposed algorithm provides results which compare favourably,
both in terms of solution time and accuracy achieved, with alternative approaches, implemented in
in-house and commercial codes.
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1. Introduction
Standard formulations for the solution of the incompressible Navier-Stokes equations
may be split in two classes depending on the approach chosen for the description of the
inertial terms, namely Eulerian and Lagrangian approaches. In the first class, the
acceleration is described as the sum of the spatial derivative of the velocity plus a
convective term. In the second approach, the acceleration is simply described as the
total derivative of the velocity.

Over the last 30 years, computer simulation of incompressible flows has been
mainly based on the Eulerian formulation (Donea and Huerta, 2003). Despite such large
effort, the solution of large 3D problems involving free-surfaces, moving interfaces or
complex fluid-structure interaction problems is still very demanding.

Lagrangian formulations have been used to determine the position of the free
surface in fixed mesh approximations. Over the years, several proposals were made to
use the Lagrangian approach to solve the Navier-Stokes equations. For compressible
flows the main references may be found in the particle-in-cell methods (PIC or FLIP)
(Harlow, 1964; Brackbill et al., 1988) or the material point methods (MPM) (Sulsky and
Kaul, 2004), whereas for incompressible flows the main reference are in the particle
finite element method (PFEM and PFEM-2) (Idelsohn et al., 2004, 2008; Oñate et al.,
2008). The difference between the MPM and the PIC methods with respect to the
particle finite element methods (PFEM and PFEM-2) (Idelsohn et al., 2004, 2008a, b,
2012; Oñate et al., 2008; Larese et al., 2008) is that in the first ones the particles are
material points, with an associated mass, which is preserved during the calculations.
On the contrary in the PFEMs, the particles are immaterial points that are used only to
evaluate the convective terms.

The advantages of these solutions in solving problems featuring free-surfaces or
multi-fluids with complicated internal interfaces have been demonstrated extensively
(Idelsohn et al., 2004, 2008a, b, 2012; Oñate et al., 2008; Larese et al., 2008). In general, these
formulations are more expensive than Eulerian alternatives when applied to the solution
of homogeneous flows. They justify their popularity due to their efficiency in solving
problems where standard Eulerian formulations are inaccurate or cannot be applied.

When attempting to classify Navier-Stokes solvers it is important to take into
account the level of locality of the information needed. One may define as “implicit” a
solution strategy in which a change in the solution in any part of the domain can
potentially influence the solution in any other part of it. “Explicit” strategies can hence
be understood as strategies in which the solution at a point, within a time step, is only
influenced by a portion of the domain around the point. A fundamental feature of
implicit solver is thus that they enforce a strong coupling between time and space,
while in explicit solvers this coupling is somewhat relaxed. In the second class we
include not only the explicit time integration schemes but also methods that lead to a
linear system of equations that may be factorized once and integrated in time with the
same factorized matrix.

Even though implicit time integration schemes are often preferred in the literature
against explicit ones, the latter may be advantageous on recent hardware and in
particular on general purpose graphic processor units (GPGPU) (Mossaiby et al., 2012).

The main objective of this work is to show that Lagrangian formulations are not only
valuable to solve heterogeneous fluid flows with free-surfaces. We will prove on the
contrary that even for homogeneous fluid flows, without free-surfaces or internal interfaces,
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they are able to yield accurate solutions while being competitively fast when compared to
state-of-the-art Eulerian solvers. In this sense, we shall also observe that the proposed
algorithms were implemented by the authors in two distinct computational codes, one of
them within a general-purpose framework (Dadvand et al., 2010, 2012).

The paper will be divided as follows: in a first section we will describe the explicit
integration following the velocity and acceleration streamlines (X-IVAS) time
integration to be used for de convective terms. This time integration was described
before in a previous work of the authors (Idelsohn et al., 2012) but it is included here for
completeness. The PFEM for fixed mesh is then refreshed and its combination with the
X-IVAS time integration of the convective term is presented. We denote as “PFEM-2”
the resulting methodology. Finally, before showing the numerical examples, the
strategy to obtain a fast algorithm, suitable for parallelization is described.

2. The X-IVAS time integration of the convective terms
2.1 General description
Let xp be the vector defining the position of a particle in a 3D space, function of the time
t. For simplicity we will use the notation xt

p to denotes such point. Thus, at time
t ¼ t n we will write xn

p , at time t ¼ t n þ Dt ¼ t nþ1 we will denote the position as xnþ1
p

and in general, in any time between t ¼ t n and t ¼ t nþ1 we will write xnþt
p .

Let Vnþt xnþt
p

� �
and Anþt xnþt

p

� �
be two vectors defining the velocity and the

acceleration of the particle xp at any time t nþ t:

Vnþt xnþt
p

� �
¼

Dxnþt
p

Dt
ð2:1Þ

Anþt xnþt
p

� �
¼

DVnþt xnþt
p

� �
Dt

ð2:2Þ

where Df/Dt represents the material (Lagrangian) derivative in time of any function f.
The material derivative is connected with the spatial derivative by the convective
terms:

Df

Dt
¼

›f

›t
þ Vi

›f

›xi

¼
›f

›t
þ VT7f

In all initial value problems like the transient Navier-Stokes equations, the time
solution of a problem consists in: given all the variables at time t ¼ t n, find the same
variables at time t ¼ t nþ1. In other words, to integrate in time equations (2.1) and (2.2):

xnþt
p ¼ xn

p þ

Z nþt

n

Vt xt
p

� �
dt ð2:3Þ

Vnþt xnþt
p

� �
¼ Vn xn

p

� �
þ

Z nþt

n

At xt
p

� �
dt ð2:4Þ

The accuracy of the results will depend to a great extent on the accuracy of the
discretization of the velocity and acceleration in the space, but also in the
approximation introduced in the integration of equations (2.3) and (2.4).
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Time integration of the velocity. The idea of X-IVAS method is to use the velocity
streamlines obtained at time step t n to approximate the final position of a particle xnþ1

p .
Let then:

xnþt
p < ynþt

p ¼ xn
p þ

Z nþt

n

Vn xt
p

� �
dt ð2:5Þ

Equation (2.5) is explicit because we are using only information at time step t n. In this
case, we are using neither a constant nor a linear approximation of the velocity field.
Instead, we are using the same high order approximation the velocity field has at time
t n. The only difference with the exact integration (2.3) is that here we are performing
the integral (within each time step) following a pseudo trajectory of the particles
calculated with the velocity streamline, instead of following the true trajectory
(Figure 1).

Once discretized, equation (2.5) may be integrated analytically or using any
standard time integration scheme like explicit Runge-Kutta or alternatively by any
substepping technique. The way to integrate analytically equation (2.5) inside each
triangular element is explained in Idelsohn et al. (2012).

Time integration of the acceleration. The idea proposed in equation (2.5) may be also
used for the acceleration. That is, for improving the time integration of the acceleration
while remaining explicit in time. This means to approximate equation (2.4) by:

Vnþt xnþt
p

� �
< Vn xn

p

� �
þ

Z nþt

n

An xt
p

� �
dt ð2:6Þ

Equation (2.6) represents an integration following the acceleration streamlines
(Figure 2) obtained at time t n. This may be solved using any of the particle position
integrations described before:

xnþt
p < xn

p þ
R nþt

n Vn xt
p

� �
dt

Vnþt xnþt
p

� �
< Vn xn

p

� �
þ

R nþt

n An xt
p

� �
dt

8>><
>>:

ð2:7Þ

We must note that equations (2.7) are still explicit because they are using the velocity
and acceleration at time t n (Figure 2). The way to integrate analytically equation (2.7)
inside each triangular element is explained in the Donea and Huerta (2003).

Figure 1.
Integration following the
velocity streamlines

x2

x1

Vn (xp
n)

Vn (xp
n+1)
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2.2 The X-IVAS integration applied to the incompressible Navier-Stokes equations
In the Navier-Stokes equation, the acceleration is obtained from the momentum
conservation equation:

At xt
p

� �
¼

1

r t xt
p

� � 7 ·s t xt
p

� �
þ bt xt

p

� �h i
ð2:8Þ

with the stress tensor:

s t xt
p

� �
¼ t t xt

p

� �
2 pt xt

p

� �
I ð2:9Þ

and the deviatoric tensor:

t t xt
p

� �
¼ m 7Vt xt

p

� �
þ 7TVt xt

p

� �h i
ð2:10Þ

where r is the density, m the viscosity, p the pressure, b a volumetric force and I the
identity tensor.

The mass conservation reads:

›r t xt
p

� �
›t

þ 7 · r t xt
p

� �
Vt xt

p

� �h i
¼ 0 ð2:11Þ

Since for an incompressible flow:

r t xt
p

� �
¼ rðxpÞ ¼ rp 5 cte . 0 ð2:12Þ

Equation (2.11) becomes:

7 ·Vt xt
p

� �
¼ 0 ð2:13Þ

Using the X-IVAS method presented before, the Navier-Stokes equations between the
two time stations t n and t ¼ t nþ1 read:

Figure 2.
Integration following the
acceleration streamlines

An (xp
n)

An (xp
n+1)

V1

V2
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xnþt
p ¼ xn

p þ
R nþt

n
Vn xt

p

� �
dt

Vnþ1 xnþ1
p

� �
¼ Vn xn

p

� �
þ 1

rp

R nþ1

n 7 ·sn xt
p

� �
þ bn xt

p

� �h i
dt

8>><
>>:

ð2:14Þ

The incompressibility constraint in equation (2.13) shows no time dependence and
hence needs to be treated implicitly, unless a certain degree of compressibility is
admitted.

On the contrary, the solution of equation (2.14) by explicit techniques is
possible and the use of the X-IVAS scheme guarantees the possibility of using large
time steps.

The presence of the viscous term implies however a practical limitation to the step
size, namely that the Fourier number (Fo ¼ 2mDt/rh 2) must remain smaller than one.
For this reason we have modified equation (2.14) in order to remain implicit not only for
the pressure but also for the viscous terms. The new explicit-implicit integration
scheme is described next. Through the paper, we will refer as “implicit-diffusion
algorithm” to the algorithm that considers implicitly the contribution of the viscosity,
and as “explicit-diffusion algorithm” to the explicit alternative.

Equation (2.14) is replaced by the following:

xnþt
p ¼xn

p þ
R nþt

n Vn xt
p

� �
dt

rpV
nþ1 xnþ1

p

� �
¼rpV

n xn
p

� �
þ
R nþ1

n 7 ·tn xt
p

� �
þ7 ·dt xt

p

� �
27pn xt

p

� �n

27dp xt
p

� �
þbn xt

p

� �o
dt

8>>>>><
>>>>>:

ð2:15Þ

We remark the implicit terms for stress and the pressure in the second of the
equation (2.15), i.e.:

dt xt
p

� �
¼ t t xt

p

� �
2 tn xt

p

� �
¼ m 7dV xt

p

� �
þ 7TdV xt

p

� �h i

dV xt
p

� �
¼ Vt xt

p

� �
2 Vn xt

p

� �
8>><
>>:

ð2:16Þ

dp xt
p

� �
¼ pt xt

p

� �
2 pn xt

p

� �
ð2:17Þ

The integral of the dt and dp terms in equation (2.15) will be approximated by a fully
implicit backward integration scheme:

Z nþ1

n

7 · dt xt
p

� �
2 7dp xt

p

� �n o
dt <

Dt

2
7 · dt xnþ1

p

� �
2 7dp xnþ1

p

� �h i
ð2:18Þ
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Then, the second equation of equation (2.15) will be split in the following two steps:

rpV
_nþ1 xnþ1

p

� �
¼ rpV

n xn
p

� �
þ

R nþ1

n 7 · tn xt
p

� �
2 7pn xt

p

� �
þ bn xt

p

� �n o
dt

þ
Dt

2
7 · dt xnþ1

p

� �n o

rpV
nþ1 xnþ1

p

� �
¼ rpV

_nþ1 xnþ1
p

� �
2 Dt

2 7 dp xnþ1
p

� �� �

8>>>>><
>>>>>:

ð2:19Þ

Applying the divergence operator to both sides of the second equation of equation (2.19)
and taking into account equation (2.13) gives:

rp7 ·V
_nþ1 xnþ1

p

� �
¼ 7 · 7 dp xnþ1

p

� �h in o Dt

2
ð2:20Þ

Then the four steps using the X-IVAS technique remains:

. Step I. Evaluate explicitly the velocity V
__nþ1 xnþ1

p

� �
and the new particle position

xnþ1
p :

xnþt
p ¼xn

pþ
R nþt

n Vn xt
p

� �
dt

rpV
__nþ1 xnþ1

p

� �
¼rpV

n xn
p

� �
þ
R nþ1

n 7 ·tn xt
p

� �
27pn xt

p

� �
þbn xt

p

� �n o
dt

8>><
>>:

ð2:21Þ

. Step II. Solve implicitly the first equation (2.19) to obtain the velocity correction

dV
_

xnþ1
p

� �
:

rp 2 m
Dt

2
7 · ð7þ 7T Þ

� �
dV̂nþ1 xnþ1

p

� �
¼ rpdV

__nþ1 xnþ1
p

� �
ð2:22Þ

where dV
__ xnþ1

p

� �
¼ V
__nþ1 xnþ1

p

� �
2 Vn xnþ1

p

� �
. Step III. Solve implicitly the Laplace equation to obtain the pressure increment

dp xnþ1
p

� �
:

rp7 ·V
_nþ1 xnþ1

p

� �
¼ 7 · 7 dp xnþ1

p

� �h in o Dt

2
ð2:23Þ

where V
_nþ1 xnþ1

p

� �
¼ V
__nþ1 xnþ1

p

� �
þ dV

_nþ1 xnþ1
p

� �
. Step IV. Evaluate the new incompressible velocity Vnþ1 xnþ1

p

� �
and pressure

pnþ1 xnþ1
p

� �
:

rpV
nþ1 xnþ1

p

� �
¼ rpV

_nþ1 xnþ1
p

� �
2 7 dp xnþ1

p

� �h i Dt

2
ð2:24Þ

pnþ1 xnþ1
p

� �
¼ pn xnþ1

p

� �
þ dp xnþ1

p

� �
ð2:25Þ

It must be noted that for homogeneous fluid flows (e.g. fluid with constant viscosity and
constant density) both implicit parts, equations (2.22) and (2.23) lead to a matrix with
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constant coefficients. Such matrix may be factorized once during the whole calculation
(or an expensive pre-conditioner could be computed) thus allowing a much faster solution
phase for the following steps. In an Eulerian formulation, the presence of the convective
terms in the tangent matrix make impossible to factorize the whole tangent matrix once.
This fact, combined with the possibility of using much larger time steps, provides a
competitive lead of the X-IVAS algorithm with respect to the Eulerian counterparts.

3. The PFEM with X-IVAS integration (PFEM-2) applied to the
incompressible Navier-Stokes equations
A method using a Lagrangian formulation may be solved using either a moving mesh
approach or relying on a fixed “background” mesh. The idea is the following: once the
velocity at the new position Vnþ1 xnþ1

p

� �
has been found by solving the Lagrangian

equation, a new discretization of the continuum is needed. This can be achieved either
by building a new mesh to connect the new particle positions or by devising a
technique to project the velocity results onto the fixed background mesh. The previous
versions of the PFEM (Oñate et al., 2008; Idelsohn et al., 2008a, b; Larese et al., 2008;
Ryzhakov et al., 2010, 2012) relied on continuous re-meshing thus implying reforming
the finite element data structures and solving a different linear algebra problem at each
time step. These tasks were identified to be very expensive in terms of CPU time and
very hard to parallelize satisfactorily, thus limiting the performance of the algorithm.
The fixed mesh algorithm was thus designed to avoid the re-meshing step and
appeared to provide, as an extra bonus, the definition of linear algebra problems with
constant coefficients.

We should remark that the viscous problem to be solved in the implicit viscosity
correction step, has constant coefficients exclusively in the case of constant viscosity
distribution. Even though most of the flows are turbulent and viscosity depends on the
flow itself, thus implying that this case is often not met, there is some interest in laminar
flows as in microfluidics and also in direct numerical simulation (DNS) or LES with an
explicit treatment of the Reynolds stress tensor. An extended description of the PFEM
with moving mesh and with fixed mesh may be obtained in Idelsohn et al. (2012).
We include in the following section a brief description of the algorithm with fixed mesh.

3.1 The PFEM-2 with fixed mesh
Suppose a fixed “background” mesh is given. Since such mesh covers the domain of
interest, several of the Lagrangian particles will fall within each of the elements that
compose the mesh. At the beginning of each step the velocity at the mesh nodes and at
the internal particles is known. Once the algorithm explained before is applied to all the
particles to obtainVnþ1 xnþ1

p

� �
, we project on the fixed mesh nodes these velocities using

an assembly of all the particles surrounding each mesh node. Different approaches are
available to perform such projections, for example SPH or moving least square (MLS)
techniques could be used for the interpolation, as well as weights based on the position
on the top of the underlying mesh. While a complete discussion of this problem falls
beyond the scope of current work, as a general observation we should remark that, in
order to avoid unwanted artificial numerical diffusion of the results, many particles are
needed around each node of the fixed mesh.

Figure 3 shows one possible approach to carry out the projection step. We are
interested in computing the projection of a given particle field on the background mesh,
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we hence propose to compute for each node of the fixed mesh the contribution of the
subset of particles placed “in its vicinity”. In this work we consider as “close”, the
particles that belong to the shadow region highlighted in Figure 3 and corresponding to
the node called node A. These particles, shown as red circles and called prtcle þ (n þ 1),
represent the particles that at the time step t nþ1 fall inside the shadow region and come
from another part of the domain. Their original position is represented in the same figure
by yellow circles and are identified as prtcle þ (n). In our work we define the shadow
region around a given node A as the union of “sub-elements” that cover the domain
around A. Such sub-elements are formed by the vertex A, the centroid of the triangle and
the mid of the edges. Their union associates to a given point A an area which is
equivalent to one-third of the total area of the triangles around the node of interest. The
particles marked in the figure as empty circles represent those particles that belong to
the elements surrounding A but do not contribute because they are out of the shadow
region formed by the sub-elements just introduced. The streamlines corresponding to
the subset of particles that at the present time are inside the shadow region and
contribute to the value of the node A in the mesh at the current time step are drawn as the
paths between the stars and the filled circles.

3.2 Spatial discretization of the incompressible Navier-Stokes equations using X-IVAS
integration
Given a fixed mesh we can define the approximation on the component of velocity field
and pressure as:

VnðxÞ ¼
~~NTðxÞ ~Vn ð3:1Þ

pnðxÞ ¼ ~N
T

p ðxÞ~p
n ð3:2Þ

where
~~NT ðxÞ and ~NpðxÞ identify the finite element (FE) shape functions for the velocity

and the pressure, respectively.
Starting with first step of the algorithm described in Section 2, the terms D · {mðxÞ �

½7VnðxÞ þ 7TVnðxÞ�} and 7pnðxÞ in equation (2.21) will be approximated by a
continuous field. The two contributions will be named gn (x) and Pn (x), respectively,
such that:

Figure 3.
Fixed mesh and

Lagrangian moving
particles: how to compute

the projection from
particle-to-mesh nodes
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gnðxÞ ¼
~~NTðxÞ~gn and PnðxÞ ¼

~~NT ðxÞ ~Pn: ð3:3Þ

To evaluate ~gn and ~Pn we will use the same approximation used in the standard FEM,
that is:

Z
V

~~N{7 · ½mð7Vn þ 7TVnÞ�2 gn}dV ~Vn ¼ 0 ð3:4Þ

and:

Z
Vn

~~N{7pn 2Pn}dV ¼ 0 ð3:5Þ

Integrating by parts the first term in both equations (3.4) and (3.5):

2

Z
V

7
~~Nm 7

~~NT þ 7T ~~NT

� �	 

dV ~Vn þ

Z
G

~~N qn dG2

Z
V

~~N
~~NT dV ~gn ¼ 0 ð3:6Þ

and:

2

Z
V

7
~~N ~N

T

p

	 

dV ~pn þ

Z
G

~~NpnI n dG2

Z
V

~~N
~~NT dV ~Pn ¼ 0 ð3:7Þ

we obtain:

~gn 2 ~Pn ¼
~~M

� �21
~~K ~Vn 2

~~B~pn 2 ~sn

� �
ð3:8Þ

with:

~~K5

Z
V

7
~~Nm 7

~~NT þ 7T ~~NT

� �	 

dV ð3:9Þ

~~M5

Z
V

~~N
~~NTdV ð3:10Þ

~~B5

Z
V

7
~~N ~N

T

p dV ð3:11Þ

and:

~sn ¼

Z
G

~~N qndG2

Z
G

~~N pnI n dG ¼

Z
G

~~N½mð7Vn 1 7TVnÞ2 pnI�n dG

qn ¼ mð7Vn þ 7TVnÞn

ð3:12Þ
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Then, after discretization in space, the first step (equation (2.21)) will read:

xnþt
p ¼ xn

p þ
R nþt

n

~~NT xt
p

� �
dt ~Vn

rpV
__nþ1

xnþ1
p

� �
¼ rpV

n xn
p

� �
þ

R nþ1

n

~~NT xt
p

� �
dt ~gn

2
R nþ1

n

~~NT xt
p

� �
dt ~Pn þ

R nþ1
n bn xt

p

� �
dt

8>>>>>><
>>>>>>:

ð3:13Þ

Note 1. All the time integrals in equation (3.13) may be computed by different
methods. For linear shape function elements it may be computed analytically inside
each finite element. It may also be evaluated dividing the time step Dt in several small
sub-steps dt. This is not an expensive operation taking into account that computations
are explicit and each particle may be evaluated separately from each other in parallel.

Note 2. On the boundaries GV where the velocity is known (Dirichlet boundary
conditions), it is also known the acceleration. Let us call it DV=DtjGV

. On these
boundaries, it is necessary to impose the value of ðg2PÞjGV

such that:
g 2 P ¼ r(DV/Dt) 2 b on GV.

After the first step, we project the V
__nþ1 xnþ1

p

� �
on the fixed mesh to obtain a vector

with dV
__nþ1 xnþ1

p

� �
at the nodes of the fixed mesh dV

__nþ1 xnþ1
p

� �
) d ~V

__nþ1
ðxÞ.

The next step is to solve implicitly equation (2.22) which using a finite element
approximation reads:

MðrÞ þK
Dt

2

� �
d ~V
_n11ðxÞ ¼ MðrÞd ~V

__nþ1
ðxÞ ð3:14Þ

where:

~~MðrÞ ¼

Z
V

~~N rðxÞ
~~NTdV ð3:15Þ

The following step is to solve also implicitly (equation (2.23)). Using a classical FEM
approximation reads:Z

V

~NprðxÞ7 ·V
_nþ1dV2

Z
V

~Np7 ·
Dt

2
7½dpnþ1�dV ¼ 0 ð3:16Þ

Integrating by parts both terms in equation (3.16) gives:

2

Z
V

7 ~NprðxÞ
~~NTdV ~̂Vnþ1 þ

Z
V

7 ~Np
Dt

2
7 ~N

T

p dVd~pnþ1 þ

Z
GV

~Np
�Vnþ1dG ¼ 0 ð3:17Þ

or in matrix form:

2
~~BðrÞ ~̂Vn11 þ

Dt

2

~~L d~pn11 þ
�~Vn11 ¼ 0 ð3:18Þ

with:

~~BðrÞ5

Z
V

7 ~NprðxÞ
~~NTdV ð3:19Þ
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~~L5

Z
V

7 ~Np7 ~N
T

p dV ð3:20Þ

�~Vn11 ¼

Z
GV

~Np
�Vnþ1dG ¼

Z
GV

~Np rðxÞV̂
n11 2

Dt

2
7ðdpÞ

� �
dG ð3:21Þ

The momentum equation does not need any stabilization, since a Lagrangian
formulation is used. Equation (3.18) on the contrary must be stabilized in space since
an unstable velocity-pressure pair is chosen. Any spatial stabilization method can
be used in principle (Oñate et al., 2007; Codina, 2000), leading, in general, to a term of

the type
~~S ðtÞ~pnþ1 (where

~~SðtÞ is a Laplacian-like matrix scaled by a suitable
stabilization parameter t) that must be added to equation (3.18) (Codina, 2000):

Dt

2

~~L1
~~SðtÞ

� �
d~pnþ1 ¼

~~BðrÞ ~̂Vn11 2
�~Vn11 þ

~~SðtÞ~pn ð3:22Þ

After solving equation (3.21) the pressure at time t ¼ t nþ1 may be evaluated.
The last step is the evaluation of the final velocity at time t ¼ t nþ1. Using equation

(2.24):

rp
~Vnþ1 xnþ1

p

� �
¼ rp

~V
_nþ1 xnþ1

p

� �
2

Dt

2
dPnþ1 xnþ1

p

� �
ð3:23Þ

The Vector d ~Pnþ1 may be calculated using equation (3.5). In matrix notation:Z
V

~~N7 ~N
T

p dVd~pnþ1 ¼

Z
V

~~N ~NTdVd ~Pnþ1 ð3:24Þ

or:

dPnþ1 ¼
~~M

� �21
~~D d~pn11 ð3:25Þ

with:

~~D5

Z
V

~~N7 ~N
T

p dV ð3:26Þ

The stabilization parameter used here may be found in several publications
(Hughes and Tezduyar, 1984; Tezduyar et al., 1992; Badia and Codina, 2008;
Codina et al., 2007).

As a resume, the PFEM with the X-IVAS integrations with fixed mesh reads:

(I) Evaluate the viscous and pressure gradients vector ð~gn 2 ~PnÞ:

~gn 2 ~Pn ¼
~~M

� �21
~~K ~Vn 2

~~B~pn 2 ~sn

� �

(II) Evaluate (explicitly) the fractional velocity V
_nþ1 xnþ1

p

� �
and the position xnþ1

p for
each of the particles in the model:
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xnþt
p ¼ xn

p þ
R nþt

n Vn xt
p

� �
dt

rpV
__nþ1

xnþ1
p

� �
¼ rpV

n xn
p

� �
þ

R nþ1

n

~~NT xt
p

� �
dt ~gn 2

R nþ1

n

~~NT xt
p

� �
dt ~Pn

þ
R nþ1

n
bn xt

p

� �
dt

8>>>>><
>>>>>:

(III) Project the fractional velocity V
__nþ1 xnþ1

p

� �
to the underlying mesh on a vector

d ~V
__nþ1

:

V
__nþ1 xnþ1

p

� �
2 Vn xnþ1

p

� �
) d ~V

__nþ1
ðxÞ

(IV) Solve implicitly the linear system of equations to obtain d ~V
__nþ1

:

MðrÞ þK
Dt

2

� �
d ~V
_nþ1 ¼ MðrÞd ~V

__nþ1

(V) Solve implicitly the linear system of equations to obtain the pressure increment
d~pnþ1 on the nodes of the fixed mesh:

Dt

2

~~L1
~~SðtÞ

� �
d~pnþ1 5

~~BðrÞ ~̂Vnþ1 2
�~Vn11 þ

~~SðtÞ~pn

(VI) Evaluate the new pressure gradients vector d ~Pnþ1:

d ~Pnþ1 ¼
~~M

� �21
~~D d~pnþ1

(VII) Evaluate at each particle the new velocity Vnþ1 xnþ1
p

� �
:

rp
~Vnþ1 xnþ1

p

� �
¼ rp

~V
_nþ1 xnþ1

p

� �
2

Dt

2
dPnþ1 xnþ1

p

� �

(VIII) Evaluate at each node of the mesh the new velocity vector ~Vnþ1:

~Vnþ1 ¼ ~̂Vnþ1 2 d ~Pnþ1 Dt

2rðxÞ

(IX) Evaluate at each node of the mesh the new pressure vector ~pnþ1:

~pnþ1 ¼ ~pn þ d~pnþ1

(X) Increase the time t nþ1 ¼ t n þ Dt and update the variables at the nodes:

~Vn ( ~Vnþ1

~pn ( ~pnþ1
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Update also the velocity at the particles:

Vn xn
p

� �
( Vnþ1 xnþ1

p

� �

go to (I)

It must be noted that for the case of homogeneous fluids (e.g. m ¼ constant and
r ¼ constant) and under the hypothesis that a fixed background mesh is used, the
matrixes K, M, L, B and D are constant during all the time increments. However, for
heterogeneous fluid flows, when the fluid characteristics vary, some of them (e.g. K(m),
M(r), B(r) and S(t)) will require recomputation.

4. Numerical examples
This section is devoted to show by numerical examples the reliability and the
efficiency of the PFEM-2 method. While Idelsohn et al. (2012) focused mostly on the
moving mesh implementation of the algorithms, we concentrate here on the fixed mesh
version of the code. The examples chosen were the circular cylinder and a typical
NACA 0012, often used in aeronautical engineering. Even though the formulation is
also implemented in 3D as shown in Idelsohn et al. (2012) here only 2D simulations are
shown. A similar 3D analysis will be performed in the future.

In order to assess the accuracy and performance of the proposed method, which
represent the main goal of the current paper, we include for each example two
sub-sections, one to discuss the accuracy and the other to address the performance in
terms of CPU time. The proposed algorithm was benchmarked internally using the same
mesh against OpenFOAM (OpenCFD, 2009) and against Kratos (Dadvand et al., 2010,
2012), an in-house solver that implements the implicit fractional step method. It was
verified empirically that for the selected examples the nonlinearities in the computation
did not allow the use of large CFLs. As a consequence, since performance results measured
for Kratos were similar to the ones measured for OpenFOAM we only report the latter.

For all the examples we report the CPU-times obtained treating implicitly the
viscous term (implicit diffusion) as described at the beginning of the paper and, for
reference, the CPU-times obtained by treating it explicitly (explicit diffusion).

For the examples chosen, we plot drag, lift and moment curves, which represent the
typical quantities of interest for engineering use and we compare them quantitatively
to reference values.

4.1 Flow around a circular cylinder at Re ¼ 1,000
This example involves the flow past a circular cylinder as shown in Figure 4.
The computational domain is rectangular and extended five cylinder diameters
upwards and in both transverse directions and 15 diameters downwards, with the
cylinder diameter D of 1 and centered at the origin.

The velocity is imposed to a value of U ¼ 1, identified as the free-stream velocity
both at the inlet (right side of the domain) and on the top and bottom boundaries.

A no-slip boundary condition is applied on the sides of the cylinder. Pressure is set
to zero at the outflow. Viscosity is set so to obtain a Reynolds number (Re) of 1,000,
based on the cylinder diameter and on the prescribed inflow velocity.

The finite element mesh employed consists of 88,000 linear triangles, with
44,520 nodal points, being refined near the cylinder.
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The results achieved here were compared against those obtained by Mittal and
Kumar (2001).

The number of particles inside each mesh element is controlled to be in the range of
1-3 by sub-element. The sub-element is defined as the region inside each triangle round
each vertex, i.e. there are three sub-elements per triangle, defined as the region bounded
by the vertex, both half edges converging at the vertex and the centroid of the triangle.
In this way a more controlled interpolation error is obtained.

Accuracy results. Drag and the lift curves are compared against the results of Mittal in
Figure 5. Comparison to the reference shows the drag where a good agreement in the
oscillation frequency is observed with a drag mean value 10 percent above the reference
mean value. The amplitude of this oscillated drag is in good agreement with the reference.

Although this is out of scope in the current paper, we would like to observe that
the method used in projecting from the particles to the mesh affects to some extent the

Figure 5.
Comparison drag

coefficient Re ¼ 1,000
PFEM-2 vs OpenFOAMw

vs Mittal

Figure 4.
Flow around a cylinder:

computational domain

5D

5D

5D

15D

ux = U, uy = 0

ux = U, uy = 0

ux = U, uy = 0

D
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level of “noise” in the lift and drag evaluation. This aspect will be discussed in detail in
a future publication.

As shown in Figure 6, the lift force oscillates (as expected) around the zero with
amplitude 20 percent above the reference value. Figures 5 and 6 also show a
comparison to the results of OpenFOAMw (OpenCFD, 2009).

The analysis of the results shows how the results of PFEM2 are very similar to the
ones obtained with using OpenFOAMw using the same mesh.

Figure 6 shows the lift curves from which we can draw similar conclusions.
The results shown in Table I summarize the results obtained proving that a good

quantitative agreement is achieved both for the drag and lift and for the Strouhal number.
Performance results. The OpenFOAMw solution was used as a benchmark for the

computational time. 1 s of simulation time was used as the reference interval.
A maximum Courant of around 10 was used for fixed mesh version with implicit
diffusion.

The other versions were used with a more conservative time step. OpenFOAMw

was found to have a practical limitation for the Courant number around 1 as for larger
values the nonlinear iterations diverged. In order to get accurate solutions two PISO
corrections and two non-orthogonal corrections were used, with a tolerance about
1026. Here a summary of the main parameters is included:

(1) CPU: Intel I7-2600, 3.4 GHz.

(2) Real time simulated: 1 s.

Figure 6.
Comparison lift coefficient
Re ¼ 1,000 PFEM-2 vs
OpenFOAMw vs Mittal

Strouhal Cd Cd amplitude CL amplitude

Mittal 0.25 1.48 0.21 1.36
PFEM-2 0.2475 1.639 0.245 1.63
OpenFOAM 0.26 1.696 0.25 1.62

Table I.
A brief summary of
the comparison among
OpenFOAMw, Mittal
and Kumar (2001) and
PFEM-2
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(3) PFEM-2 fixed mesh implicit diffusion: Dt ¼ 0.025 s (mean Courant 2, maximum
Courant 9.5).

(4) PFEM-2 fixed mesh explicit diffusion: Dt ¼ 0.0125 s.

(5) PFEM-2 moving mesh: Dt ¼ 0.01 s.

(6) OpenFOAMw: Dt ¼ 0.002 s:
. Solver: icoFoam.
. Selected maximum Dt to get maximum Courant ¼ 1.
. Number of PISO correctors: 2.
. Number of non-orthogonal correctors: 2.
. U tolerance: eU ¼ 1026.
. p tolerance: ep ¼ 1026.

Figure 7 shows that, for the settings described, PFEM-2 is around five times faster than
OpenFOAMw using four cores. A scaling factor of around 3 is found, corresponding to
a parallel efficiency around 75 percent. At the end of this section a summary of
profiling and scalability of PFEM-2 is presented.

4.2 Flow around a NACA 0012 airfoil
The second example chosen is the popular NACA 0012 airfoil, which was selected to
take advantage of the large body of experimental data available.

The first study case corresponds to the profile with an angle at attack of 08 and a Re
of 6 millions. The second one is the same profile with an angle of attach of 48 and a
Reynolds of 10,000. No turbulence model was included in the simulation.

The airfoil chord is of unit length and the computational domain is large in order not
to interfere the boundary conditions with the airfoil. The computational domain and a
detail of the mesh for the latter case are shown in Figure 8. For the former case the
domain and the mesh employed were similar.

NACA 0012 at zero angle of attack and Re ¼ 6 millions. The reference for this test
was the experimental set-up reported in Sheldhal and Klimas (1981).

Figure 7.
Cylinder – Re ¼ 1,000

Note: CPU-times comparison between different PFEM-2 algorithms and OpenFOAM

for one, two and four cores
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37,568 linear triangles and 18,989 nodes compose the mesh used. Approximately
212,000 particles were seeded along the entire domain.

The mean pressure coefficient compared with the reference value is shown in
Figure 9. This coefficient is obtained as the time average of the ratio between the
relative pressure and the reference dynamic pressure as:

Cp ¼
�p 2 p1

ð1=2Þp1U 2
1

As expected a good agreement to the experimental results is achieved.
The corresponding drag curve is shown in Figure 10 where it can be verified that

the numerical results lay within a 8 percent of difference to the experimental result.
The lift in Figure 11 oscillate around zero, as experimentally observed.

Figure 9.
Mean pressure coefficient
for Re ¼ 6 million

Figure 8.
Computational domain
and mesh for four degrees
of angle of attack Note: General view
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The results obtained, appear to provide sufficient accuracy for engineering
applications, particularly when the Re is not too high. A turbulence model will be
added in the future to improve the accuracy at high Re.

NACA 0012 at 48 angle of attack and Re ¼ 10,000. This example allows enforce
the results obtained in the previous sub-section especially when the angle of attack is
different from zero as it is normally expected in aeronautical and wind turbine
applications. Here the reference is Srinath and Mittal (2010). The mesh is similar to that
defined above.

Accuracy results. The results in terms of accuracy show that the mean
pressure coefficient follows the reference results in an acceptable way as shown in
Figure 12.

The lift is bounded by the limits taken from the reference as shown in Figure 13.
The drag is a little underestimated with its amplitude similar to that published

in the reference but with a mean value that is about 9 percent away from that
(Figure 14).

Figure 10.
Drag coefficient for

Re ¼ 6 millionNote: The dotted line represents Sheldhal’s experimental Cd

Figure 11.
Lift coefficient for

Re ¼ 6 million
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In the Figure 15 some snapshots about the vortex shedding is presented. The
frequency of vortex shedding is of 2.1 Hz that compared with that of 2.3 Hz reported in
the reference represents a 10 percent of difference.

Time results. From the point of view of efficiency, the present method is faster
than OpenFOAMw for both the configurations considered. The speedup factor with
respect to OpenFOAMw is around 3 (against the factor 5 obtained for the cylinder test).
It is expected that this factor increases with large angle of attack due to an increasing

Figure 12.
Mean pressure coefficient
for Re ¼ 10 thousands

Figure 13.
Lift coefficient for
Re ¼ 10 thousands

Note: Mittal’s dotted line represents max and min values of lift coefficient
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Figure 14.
Drag coefficient for
Re ¼ 10 thousands

Note: Mittal’s dotted line represents max and min values of drag coefficient

Figure 15.
Snapshots of vortex

shedding for NACA 0012
airfoil at four degrees of

angle of attack and
Re 10 thousands
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of the unsteadiness of the flow that introduces more restriction on the time step for
OpenFOAMw due to the nonlinearities with no significant restrictions on our
Lagrangian method (PFEM-2).

The parameters used in the performance comparison were the following:

(1) CPU: Intel I7-2600 K.

(2) Real time simulated: 1 s.

(3) PFEM-2 fixed mesh implicit diffusion: Dt ¼ 0.015 s.

(4) PFEM-2 fixed mesh explicit diffusion: Dt ¼ 0.01 s.

(5) OpenFOAMw: Dt ¼ 0.002 s:
. Solver: icoFoam.
. Selected maximum Dt to get maximum Courant ¼ 1.
. Number of PISO correctors: 2.
. Number of non-orthogonal correctors: 2.
. U tolerance: eU ¼ 1027.
. p Tolerance: ep ¼ 1027.

Figure 16 shows the CPU time comparison. The profiling data for the present method is
presented graphically in Figure 17. Such data shows that the streamline integration
consumes more than half the time. Since this part is highly parallel (thinking in shared
memory systems), it is desirable that this portion increases. Similarly, the acceleration
computation consumes approximately 6 percent and the correction stage takes
9 percent of the total simulation time.

Therefore, the more scalable part of the code sums about 65 percent of the total
computational cost. The remaining part of the code is formed by the
updating/projection and the implicit part, i.e. Poisson solver and the diffusive part

Figure 16.
NACA 0012 – four
degrees of attack angle
and Re ¼ 10 thousands Note: CPU-times comparison between different PFEM-2 algorithms and OpenFOAM for

one, two and four cores
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of the momentum equation, here solved using an implicit scheme in order not to be
restricted by Fourier number stability considerations.

Considering the performance measured in terms of the scalability (Figure 18) we can
note that the scalability of the streamline integration stage is almost ideal while the
scalability of the acceleration and of the correction stages is less optimal. The three
remaining parts, the implicit, updating and projection only enjoy limited scalability
due to the nature of the computations. The updating phase is hard to speed up due to
the complex memory management required for removing, adding and reordering the

Figure 17.
Time proportion for each

stage of the algorithm

Aceleration

Streamline Integration

Updating

Projection

Implicit Steps

Correction

Note: PFEM-2 fixed-mesh implicit diffusion

Figure 18.
Scalability for each stage

of the algorithm
Note: PFEM-2 fixed-mesh with implicit diffusion
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memory storage. The implicit solution phase has also limited scalability due to
inherent limitations in the structure of the calculations.

5. Conclusions and future work
A new version of the novel method PFEM-2 originally introduced in Idelsohn et al.
(2012) was presented in this paper.

As it was mentioned above the restrictions on performance imposed by the parallel
re-meshing and the assembling/solver stages of the implicit part of the moving mesh
version of PFEM-2 has motivated to review the method incorporating this fixed mesh
version that mainly has the advantages of getting away the re-meshing stage and
reducing significantly the cost of the implicit part due to the freezing of the factorized
matrices involved in those computations.

This new version shows to reduce even more the CPU time as compared with a
popular and fast CFD code OpenFOAMw reaching at present a very attractive position
in terms of accuracy and efficiency.

The performance characteristics of the method make it appealing as a fast
alternative to Eulerian CFD memory, at least on recent shared memory systems.

Some particular conclusions are:
. Cp, Cd and CL curves are reasonably shaped and provide acceptable accuracy for

engineering usage. These results were compared with the software
(OpenFOAMw), numerical results (Mittal and Kumar, 2001; Ladson, 1988;
Park, 1998) and experimental results (Sheldhal and Klimas, 1981), obtaining
good approximations in all cases.

. The fluid instabilities previous to fully developed turbulence may introduce
some changes in the vortex dynamics that currently our PFEM-2 method is
unable to capture. This consideration may justify the small differences observed
in our results.

. The performance on the PFEM-2 depends on the choice of the particle-to-mesh
transfer operator. No “natural” choice exists in performing this step and hence
different possibilities are open for testing. This aspect will be subject of future
research.

. The efficiency measured in terms of CPU time for reaching a given final time
in the simulation (here takes as 1 s) had shown important advantages of the
present method against OpenFOAMw being this new fixed mesh version even
more fast than the previous moving mesh one. In this paper a factor between
3 and 5 was obtained at the same level of accuracy. A similar speedup was also
measured with respect to a in-house implementation of the implicit fractional
step method.

. In terms of scalability the present method has in general a 75 percent of
efficiency compared with 65 percent of scalability measured for OpenFOAMw

on the reference test system. This 75 percent is achieved with an almost ideal
speed-up of the streamline computation phase, reduced by a poor scalability
of implicit computations, which however in this method tends to have a small
impact. Another limitation to scalability was provided by the memory management
routines.
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Future work will be oriented to the following:
. Extend this method to multi-physics, especially thermally driven flows, RANS

turbulence modeling and multispecies computations.
. Since shared memory parallelism is limited by hardware, a distributed memory

parallel code should be developed. It is expected that the parallel performance of
streamlines computation will be worst on distributed systems due to higher
complexity of the algorithm and to the inherent communication needs.

. The application of the algorithm to multi-fluid configurations represents one of
the future targets. Some major redesign of the algorithm is however needed to
tackle such goal.
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Oñate, E., Valls, A. and Garcı́a, J. (2007), “Modeling incompressible flows at low and high
Reynolds numbers via finite calculus-finite element approach”, Journal of Computational
Physics, Vol. 224, pp. 332-51.
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