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Abstract 

Although from its origin metagenomics was concerned with composition of communities of 

microbial OTUs (Operational Taxonomic Units) living in a given habitat and their diversity 

and functional heterogeneity (concepts already well rooted in ecology), the new field was 

more "environmentally" than "ecologically" oriented. Probably by circumstantial reasons, 

metagenomics and ecology followed rather independent trajectories and conceptual and 

methodological gaps appeared. Recently, calls for the need of integrating the theoretical 

basis and methodologies coming from metagenomics (and other meta-omics) and ecology 

have been made. Here I will address some of the principles and methods of field ecology 

that, although useful in the context of environmental metagenomic studies, have been rather 

disregarded. In particular, I will emphasize the contribution of some well established 

concepts and methods of field ecology to a an appropriate field sampling and experimental 

design of environmental metagenomic studies 
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Introduction 

The early beginning of metagenomics can be traced back to 1980 decade. The pioneering 

work of Pace et al. using ribosomal RNA to study natural microbial populations without 

cultivation (Pace et al. 1985), the work from Woese and Fox (1977), proposing the usage of 

ribosomal RNA as a tool for establishing phylogenetic relationships among microbial 

kingdoms, and the formal definition of metagenome by Handelsman and colleagues in 1998 

(Handelsman et al., 1998) are the main milestones in the development of one of the most 

innovative scientific fields in the last decades. Since then, the number of works involving 

metagenomics and other meta-omics has grown exponentially, as a direct consequence of 

the advantages arising from the new ability of accessing microbial information bypassing 

cultivation, and the development of new and cheaper sequencing techniques. The variety of 

habitats explored with metagenomics and other meta-omics has also increased 

exponentially, with virtually no limits in the diversity of samples taken, from field to 

microcosm experiments through organism-specific microbiomes. In parallel, the number of 

useful applications of metagenomics and meta-omics studies has also increased greatly, 

from agriculture to medicine passing through obtention of bioproducts like new enzymes. 

 A typical pipeline for metagenomic studies (Figure 1) begins with the delimitation 

of the microbiome of interest, the field and/or experimental sampling design, and the 

extraction of the genetic material.  

(Fig. 1) 

Extracting the desired material from an ever increasing range of metagenomic samples 

involves developing new and suitable methodologies. In the case of metagenomics, 

obtaining the metagenomic data requires more and more sophisticated and cheaper 

sequencing methods, and even sequencing-free strategies are being developed. But at 
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present, one of the biggest challenges lies on the next steps of organising, classifying, 

analysing and interpreting the vast amount of data generated by metagenomis and meta-

omics. The other great challenge, and perhaps the most disregarded, is however at the very 

beginning of the pipeline. While new statistical and bioinformatic techniques to treat the 

increasing amount of data produced are continuously appearing (see Odintsova et al. and 

Sudarikov et al. in this volume),  the matter of how to get reliable data from an adequate 

sampling either from field, microcosm or other types of habitats is still largely overlooked. 

Several authors have drawn attention to this aspect during the last years, especially on the 

need of statistically adequate replicates for metagenomic studies (Prosser, 2010; Fierer et 

al., 2012; Knight, 2013; Creer et al., 2016), although with some controversy (Lennon, 

2011).   

 This call for adequate, replicated sampling designs and the subsequent controversy 

may be related to the very beginning of the metagenomics approach, from the molecular 

biology field applied to microbial genomics (Pace et al., 1985; Woese and Fox, 1997) to the 

challenge of linking the genomic information with the organism or ecosystem from which 

the DNA was isolated (Handelsman, 2004). Although from its origin metagenomics was 

concerned with composition of communities of microbial OTUs (Operational Taxonomic 

Units) living in a given habitat and their diversity and functional heterogeneity (concepts 

already well established in ecology), the new field was more "environmentally" than 

"ecologically" oriented (O´Malley and Dupré, 2009). By the time  metagenomics emerged 

as a new field, ecology was an already well established discipline with a high degree of 

formalisation and a powerful theoretical and methodological background. However, 

probably by circumstantial reasons, the two disciplines followed rather independent 

trajectories and conceptual and methodological gaps appeared. "Environmental genomics", 
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"microbial population genomics", "ecogenomics", were some of the new terms coined to 

refer to metagenomics (DeLong, 2004), all of them resembling or alluding to ecological 

concepts. Some well-defined ecological concepts like "biodiversity" or "niche" were 

adopted in metagenomics studies, although with different meanings or interpretations to 

those already established in ecology. In particular, the term "niche" began to be used in 

metagenomic and environmental genomics studies, in spite of its original definition in 

ecology, centred on the traditional concept of species (Marco, 2008), and it is still being 

applied without further revision. In another, methodological example, the usage of 

statistical multivariate analyses, appropriate for multivariate data common in metagenomics 

and ecology, was still in its infancy in metagenomics as late as the beginning of 21st the 

century (Ramette, 2007), while they constituted one of the most used statistical methods in 

ecology since the middle of 20th century (Goodall, 1954). Thus, among others, the before 

mentioned controversy over the matter of taking replicates for metagenomic studies clearly 

appears as a consequence of the parallel trajectories followed by environmental genomics 

and ecological fields.  

 Recently, a call to environmental sequencing studies to adhere to robust ecological 

study design, allowing for an adequate number of sites/replicates to provide statistical 

power, as well as ensuring the collection of a robust set of environmental metadata (e.g. 

climate variables, soil pH) has been made (Creer 2016). Clearly, there is a strong need of 

integrating the theoretical basis and methodologies coming from metagenomics (and other 

meta-omics) and ecology, and early it was recognised that metagenomics´ power would be 

realized when it is integrated with classical ecological approaches (Reisenfield et al., 2004). 

 Here I will address some of the principles and methods of field ecology that, 

although useful in the context of environmental metagenomic studies, have been in my 
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opinion rather disregarded. In particular, I will emphasize the contribution of some well 

established concepts and methods of field ecology to a an appropriate field sampling and 

experimental design of environmental metagenomic studies. For space reasons I will not 

extensively address here other "meta-omics" approaches, although clearly for 

metatranscriptomics, metaproteomics, metametabolomics, lipidomics, and other emerging 

approaches (Meiring et al., 2011), the considerations made here about metagenomics 

studies are, with some caveats, amply valid. I will refer mainly to soil studies for examples 

since soil is one of the habitats where environmental metagenomics is firstly showing 

integration with ecological concepts and methods.  

 

Some concepts and methods of field ecology useful in the context of environmental 

metagenomic studies 

 

Looking for composition and function 

Metagenomic studies usually have two main purposes, asking who is there? (composition 

approach), or  what are they doing? (functional approach).  The first approach aim to 

answer questions about OTUs/genes like phylogenetic relationships, community structure 

(composition and relative abundances), diversity, etc. The second approach is oriented to 

the study of genes performing specific functions. The two approaches may be assimilated to 

the proposed classification of metagenomic studies into "open" and "closed" formats (Zhou 

et al. 2015). The "open" format does not require a previous knowledge of the metagenomic 

community, and is more used in exploratory studies of composition and diversity, but 

allowing for gene discoveries (that may be later related to functions). Massive sequencing 

techniques are the most conspicuous methodologies used in this approach. The "closed" 
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format, on the contrary, is focused on already known genes performing functions of 

interest, and their detection is for example performed by functional gene arrays. 

  In the same way, in ecological studies the focus may be on community structure 

(species composition and abundance) and diversity (commonly, α, within community and 

β, between communities), or on function, through the definition of functional guilds 

(groups of species performing similar functions) (Simberloff and Dayan, 1991). The 

functional approach in ecology is mainly based on functional traits of the species in a 

community allowing to group them in guilds or functional groups (Wilson, 1999), for 

example, birds with similar beak morphology are expected to feed on the same resources. 

In metagenomics, from the beginning, studies focused on community composition and 

diversity. However, by quantification of particular genes intervening in a given metabolic 

route, functional metagenomic studies allow to infer the existence of specific microbial 

functional guilds in the metagenomic community. One well known example is the 

determination of genes intervening in denitrification pathways from soil microbiomes 

(Demanèche et al, 2009). Recently, fungi functional diversity has began to be investigated 

through a bioinformatic tool, FUNGuild, that allows to taxonomically parse fungal OTUs 

by ecological guild from high-throughput sequencing data (Nguyen et al., 2016). In the last 

years, a comprehensive approach combining metagenomics and other meta-omics like 

metatranscriptomics and metaprotreomics has allowed to understand the functioning of the 

methylotroph guilds, to discover new pathways and new players in the methane and other 

methylated compounds cycle, and to understand its relations with the N cycle 

(Chistoserdova 2014; this volume). 

 However, although functional diversity is increasingly recognised as an important 

component of biodiversity, in comparison to taxonomic diversity, methods of quantifying 
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functional diversity are less well developed. Petchey and Gaston (2002) proposed a 

measure of functional diversity (FD), defined as the total branch length of a functional 

dendrogram, constructed using species functional traits. Various characteristics of FD make 

it preferable to other measures of functional diversity, such as the number of functional 

groups in a community. This method has began to be used recently with metagenomic 

functional data as well. For example, Salles et al. (2015)  found that for functions such as 

denitrification, the diversity of functional, nir gene sequences are better predictors of 

functioning than the diversity of sequences of phylogenetic markers. A unified, flexible and 

multifaceted framework to estimate microbial diversity based on taxonomic, phylogenetic 

or functional data and across temporal and spatial scales has been recently proposed 

(Escalas et al., 2013).   

 

Spatial and temporal scales 

Spatial scaling issues have been recognised since early in ecology, mainly because the 

spatial scale chosen for sampling may have profound effects on the patterns found (Wiens, 

1989). Two interesting concepts to deal with the scaling problem are the extent and the 

grain of a study (O'Neill et al., 1986). Extent is the overall area encompassed by a study to 

be described by sampling. Grain is the size of the individual units of observation, for 

example the size of the grids used to count species in a plant community. Both extent and 

grain of a study should be defined by our knowledge of the system to study, for example 

discerning the effects of physical processes that could act at broader scales from more local, 

edaphic or biological interactions. Thus, while vegetation patterns at biogeographical scales 

are mainly determined by climatic variables, the extent of a distinctive grassland may be 

determined by local, edaphic variables.  
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 Finding (or not) a pattern will depend on the homogeneity or heterogeneity of the 

extent considered, and on the grain size. As grain increases, a greater proportion of the 

spatial heterogeneity of the system is contained within a sample or grain and is lost to the 

study resolution, while between-grain heterogeneity decreases (Wiens 1989).  If the 

occurrence of species in quadrats is recorded, rare species will be less likely to be recorded 

as grain size increases; this effect is more pronounced if the species are widely scattered in 

small patches than if they are highly aggregated (Levin, 1989). Figure 2 shows the effect of 

choosing a given grain size when the variable of interest is distributed in patches (grey) in 

an homogeneous matrix (white).  

(Fig. 2) 

 

Given an extent (large, black outer quadrat encompassing the study area), a given grain size 

(small red sampling quadrats), will reflect for example the smaller patchiness but it will 

miss the heterogeneity at a broader scale (larger patches and matrix).  Conversely, choosing 

a larger grain (larger red sampling quadrats) will result in missing the smaller patch 

heterogeneity, since now the sampling quadrat will encompass more spatial heterogeneity, 

while variance between sampling quadrats will decrease. In more technical terms, the 

variance (the degree of spatial autocorrelation among sampling points) will change with the 

extent and grain size chosen for the study. Of course, the election of the extent and the 

grain size (sampling quadrats for example) should depend on the hypothesis and aim of the 

study. Choosing the relevant scale, extent and grain size for a study requires some previous 

knowledge about the spatial distribution of the variable under study and the habitat 

variables that could influence its distribution.  
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 At field, there may be domains of scale, regions of the spectrum over which, for a 

particular phenomenon in a particular ecological system, patterns either do not change or 

change monotonically with changes in scale. Domains are separated by relatively sharp 

transitions from dominance by one set of factors to dominance by other sets. If the focus is 

on phenomena at a particular scale domain, studies conducted at finer scales will fail to 

include important features of pattern or causal controls; studies restricted to broader scales 

will fail to reveal the pattern or mechanistic relationships because such linkages are 

averaged out or are characteristic only of the particular domain (Wiens, 1989). Different 

methods have been early used in ecology to assess spatial heterogeneity and to detect scale 

domains. For a series of point samples, the average squared difference (semivariance) or 

the spatial autocorrelation between two points may be expressed in semivariograms as a 

function of the distance between them to estimate the scale of patchiness in a system (Sokal 

and Oden, 1978). Other methods used are spectral analysis (Legendre and Demers, 1984, 

Legendre and Gauthier, 2014), dimensional analysis (Lewis and Platt, 1982), and fractal 

geometry (Burrough, 1983). All these early developed methods, although with some 

refinements, are still in use in field ecology, while new methods, like graph theory are 

beginning to be used (Fortin et al., 2012). 

 Intimately related with the spatial heterogeneity of many ecological systems in 

nature, there is the problem of spatial pseudoreplication. Pseudoreplication is defined as the 

use of inferential statistics to test for treatment effects with data from experiments where 

either treatments are not replicated (though samples may be) or replicates are not 

statistically independent (Hurlbert, 1984). In statistical terms, depending on the type of 

pseudoreplication incurred, two effects may arise, increase the probability of rejecting our 

null hypothesis when it is true (inflated Type I error), or increase the probability of 
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accepting the null hypothesis when it is false (inflated Type II error) (for a detailed 

explanation see Odintsova et al., this volume). In "simple" pseudoreplication, there are no 

true replicates of treatment, while in "sacrificial pseudoreplication", there is true replication 

of treatments but data from replicates are pooled prior to statistical analysis, or two or more 

samples or measurements taken from each experimental unit are treated as independent 

replicates. Information on the variance among treatment replicates exists in the original 

data, but is confounded with the variance among samples (within replicates) or else is 

effectively thrown away when the samples from the two or more replicates are pooled 

(hence “sacrificial”) (Hurlbert, 1984). Without entering into technical details, replication 

reduces the effects of “noise” or random variation or error, thereby increasing the precision 

of an estimate of, e.g., the mean of a treatment (or field variable) or the difference between 

two treatments (or field variables) (Hurlbert, 1984). Thus, coming back to the example in 

Fig. 2, to detect any spatial pattern of a given field variable, like for example, a soil 

contaminat that could be conditioning the presence and abundance of metagenomic 

communities of microbes able of metabolising the contaminant, not only the extent and 

grain of the study must be taken into account but also an appropriate replicated sampling 

design is needed. A random sampling design, with a high number of sampling quadrats of 

the right grain covering a great part of the extent may be adequate, but a systematic design 

may be more convenient to reflect the spatial pattern. However, systematic designs run the 

risk that the spacing interval may coincide with the period of some periodically varying 

property of the experimental area (Hurlbert, 1984), taking back to the scale issue. 

 

  The ecological principles and methods above mentioned are entirely valid for 

choosing the spatial scale, extent and grain in environmental metagenomic studies. 
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Moreover, as metagenomic communities are increasingly being  recognised as spatially 

heterogeneous, special care should be taken when choosing the spatial scale for a study. 

Although only from recently, the soil microbiome is one of the most studied at different 

spatial scales, from biogeographical extent to scales smaller than 1 m. At each length scale 

different drivers of microbiome community organisation are expected to act. The soil main 

drivers  acting at ecosystem (regional and biogeographic) scales (> m) are factors like 

climatic patterns and biogeochemical processes, at meta-community scales (cm to m) 

environmental gradients (pH, soil moisture, etc.) are the main factors, while at microbiome 

community level (10-103 μm) very local ecological interactions shape the pattern and 

functioning of microbial aggregations characteristic of such small scales (Cordero and 

Datta, 2016). While some evidence of defined distribution patterns have been found at 

regional and continental scales, examples of clear patterns for smaller scales are scarce 

(O'Brien et al. 2016). However, as the issue of the grain size election in general has not 

clearly been addressed, it is not surprising that many studies have not been able to detect 

significant patterns either in OTUs or genes distribution, nor significant correlations among 

metagenomic community variables and habitat variables like soil pH, moisture, and other 

factors assumed to be potentially relevant in shaping soil microbiome distributions.  

 Besides, but related to the issue of the small spatial scales typical of the microbiome 

communities, their highly patchy distribution, attributable to different factors in each 

habitat, complicates even more the election of the grain size for sampling. For example, the 

soil appear to be a rather homogeneous habitat at cm scales, but it is extremely 

heterogeneous and patchy at smaller scales of μm, more relevant to the microbiome. As 

described by Vos et al. (2016), at these small scales, the soil is composed by micro-

aggregates (at 10 μm scale) with micro-pores filled with water, clustered into macro-
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aggregates with meso- and macro-pores (at 100 μm scale) filled with water or air, 

depending on the moisture status of the soil. Thus, the patchy distribution of resources, 

large distances between bacterial cells and incomplete connectivity often restrict nutrient 

access and the ability to interact with other cells. Cell division also result in a short distance 

dispersal, and thus many bacteria remain in micro-aggregates where micro-pores offer 

refuge against predators and dehydration, contributing to the micro-scale patchiness of 

microbial communities. These small-scale patchiness appears to be inherent to the widely 

extended microbial activity of creating biofilms. Biofilms are ubiquitous, spatially 

heterogeneous systems that have high cell densities, and typically comprise many microbial 

species. Biofilm heterogeneity may arise through local conditions of the substrate. Further 

sources of heterogeneity are the ability of cells in biofilms to undergo differentiation, and 

ecological interactions (competition, facilitation) among microbes in the biofilm, 

sometimes creating heterogeneity from homogenous initial conditions (Nadell et al., 2016; 

Flemming et al., 2016).  

 The same principles behind extent and grain selection, and replication for a classical 

ecological study should be taken into account when formulating the hypothesis and 

designing a spatial sampling for a metagenomic study (Cordero and Datta, 2016). Scales of 

domain and spatial heterogeneity can be assessed at field in environmental metagenomics, 

using the same methods already used in field ecology for decades (Gonzalez et al., 2012). 

In the last years an increasing number of environmental metagenomic studies on spatial 

distribution of metagenomic communities at different extents and grains have appeared, 

from cm to hundreds of km (Correa-Galeote et al., 2013; Shi et al., 2015).  On smaller 

scales, using a microcosm approach, Reim et al. (2012), sub-sampled the top 3-mm of a 
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water-saturated soil at near in situ conditions in 100-μm steps, focusing on pmoA as a 

functional and phylogenetic marker in methane-oxidizing bacteria.  

 Unfortunately, the lack of adequate replication in environmental metagenomic 

studies is still very common, either by "simple pseudorelication" (no true replicates), but in 

many cases by "sacrificial pseudoreplication" (by pooling samples from true replicates). 

However, an increasing number of researchers are taking into account the necessity of 

design experiments and field studies with adequate replication. A global initiative, the Earth 

Microbiome Project (EMP; www.earthmicrobiome.org), seeks to systematically 

characterize microbial taxonomic and functional biodiversity across global ecosystems 

through an standardization of the protocols used to generate and analyze the data between 

studies. EMP is fully aware of the problem of pseudoreplication and is working towards a 

standardised protocol for sampling design to be adopted by all the research groups 

contributing samples (Knight et al., 2013). 

 Temporal scales are inherently connected with spatial scaling in ecology, and the 

tendency is to integrate both scales in ecological studies (Legendre and Gauthier, 2014). 

Increasing the spatial scale, the time scale of important processes also increases because 

processes operate at slower rates, time lags increase, and indirect effects become 

increasingly important (Wiens, 1989). The dynamics of different ecological phenomena in 

different systems follow different trajectories in space and time. For example, relevant 

processes to perennial plants in grasslands, like species competition and grazing, may occur 

in hundreds of square metres and through decades, while processes relevant to soil 

arthropods, restricted to smaller, local spaces and with much more shorter lives, may be 

defined in days and hours. In soil characteristic short timescales occur over hours to 

seasons. Soil microbes greatly vary their abundance and activity over timescales of hours to 



16 
 

days (Bardgett et al., 2005). This variation is related to factors such as predation of 

microbes by bacteriophages,  soil animals, the action of abiotic stresses (e.g. wet–dry and 

freeze–thaw cycles) (Mikola et al., 2002), and importantly, temporal variation in the supply 

of carbon and other nutrients from roots to soil (Bardgett et al., 2005). Such variations also 

occur at seasonal time scales. There is a general idea that soil microbes are inactive during 

the winter. However, Schadt et al. (2003) found in alpine soils that the biomass of microbes 

reached its annual maximum when soil is still frozen in late winter, and showed a 

significant decay thereafter. Between winter and summer there is an almost complete 

turnover of the microbial community, with many novel DNA sequences (Schadt et al., 

2003)  with different functional attributes (Lipson and Schmidt, 2004). Thus, and at least in 

alpine soils, one, snapshot sampling in a given time of the year may underestimate 

microbial diversity. Following temporal microbiome dynamics recently allowed to address 

the important role in community diversity of taxa that are typically in very low abundance 

but occasionally achieve prevalence (Shade and Gilbert, 2015).   

 In ecological studies, often a series of observations on the abundance of the species 

or variable of interest is made at equal intervals over a period of time, to detect any hidden 

temporal pattern through statistical procedures. Most of these statistical methods are based 

on time-series analysis, which allow to extract information and to identify scales of 

temporal patterns. One of the essential tools in time-series analysis is the periodogram or 

spectrum, in what is called spectral analysis. The signal (the time series) is decomposed 

into harmonic components based on Fourier analysis, similarly to a partition of the variance 

of the series, into its different oscillating components with different frequencies (periods). 

Peaks in the periodogram or in the spectrum indicate which periods contribute most to the 

variance of the series (Cazelles et al., 2008). Spectral analysis has a long way in ecology, 
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back to the work from Bartlett (1954) that analyzed lynx temporal abundances using 

periodograms, and since then, amply used in ecology and population dynamics.  

 Although the analysis of temporal variability has an old tradition in ecology only 

recently has it began to be implemented with metagenomic data. Classical time series and  

other related techniques are increasingly used to study microbiome data obtained by 

metagenomics and other meta-omics approaches to assess diversity, function and ecological 

interactions (exhaustively reviewed in Faust et al. (2015)). These techniques have some 

specific requirements, that should be taken into account at the time of planning the field or 

experimental design. Increasing sampling frequencies in general provide higher resolution 

on metagenomic community dynamics although at an increased costs, thus a compromise 

should be reached. Sampling regularity is another important requirement for analysis 

techniques involving autocorrelation. Estimates for time points missing in samplings with 

irregular intervals can be used, but this technique can mislead conclusions if specific 

statistical modelling assumptions are not met. Another issue is that, although most of the 

time series analysis require long time records with short and regular sampling intervals, in 

general metagenomic time series tend to have few time points, with many sampling point 

gaps and many records with zero values, characteristics that create challenges for statistical 

analyses. Besides these problems, in metagenomic studies, just as in many ecological 

systems, linear correlation analyses are difficult to justify since non-linear dynamics seems 

to be the norm and not the exception. Rapidly variable relationships between variables in 

microbial community dynamics cause transient correlations that may result in spurious 

patterns. To overcome this problem, techniques like convergent cross-mapping can be 

applied to time-series data by examining the degree to which temporal components of a 

given variable are useful to predict the state of another variable (Sugihara et al., 2012). 
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Another important issue in temporal metagenomic studies is again pseudoreplication. 

However, as replicates in time are not easily available for temporal metagenomic studies, 

combining information across replicate, multiple time series can improve the inference of 

interactions from observations, and help to distinguish stochastic fluctuations from real 

temporal patterns (Hekstra et al., 2012).  

 On more point on the temporal scales framework in ecology and metagenomics. 

Classically, evolutionary time and ecological time have been differentiated. Evolutionary 

time operates on a longer time scale, over which changes in gene frequencies in species 

populations can be described as trends. Ecological time operates on a shorter time scale, 

over which changes in populations occur with little or no gene frequency changes 

(Schneider, 1994). These concepts have been developed in the context of plant and animal 

ecology and evolution, based on general and well known mechanisms of changes in gene 

frequencies: mutation, migration, genetic drift, and natural selection. However, it is not 

clear if this distinction can directly be extrapolated to microbial ecology and evolutionary 

time scales. Bacteria and fungi acquire genetic heterogeneity through other mechanisms 

besides mutation, like horizontal gene transfer by plasmids, transport of genetic material by 

phage, and capture of nucleic acids from the environment (Zaneveld et al., 2008; 

Fitzpatrick, 2011). The horizontally (not genealogically) acquired genes in general 

contribute to the adaptation of bacteria to local competitive or environmental pressures 

(Cohan, 2002), encoding for  antibiotic resistance, novel metabolic functions, toxin 

production, symbiotic abilities, and other functions. Thus, this horizontally acquired genetic 

material confer fitness advantage to receipt bacteria in the appropriate circumstances 

(Dobrindt et al., 2004), acting as a true evolutionary force. The horizontal transfer or 

acquisition of this extra genetic material occurs over very short times and may establish a 
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new lineage with new functional abilities in few years (Sullivan et al., 1995). This creates a 

conflict with the classical distinction between ecological and evolutionary time, that should 

be taken into account when considering the issue of time scales in metagenomic studies. 

 The spatial and temporal scales of a study thus determine the range of patterns and 

processes that can be detected. If we study a system at an inappropriate scale, we may not 

detect its actual dynamics and patterns but may instead no detect any pattern at all or 

identify patterns that are artifacts of scale. One interesting concept, used in ecology for 

long, is multiscale analysis: performing an analysis with respect to multiples of a unit of 

measurements (Schneider, 1994).  By changing the unit of analysis, and thus changing the 

resolution, it is expected to find different patterns of the variable of interest. For example, 

changing the sampling quadrat size (the grain) and recording soil microbiome diversity in 

nested quadrats of 1 cm2, 10 cm2 and 100 cm2, probably diversity indexes or other 

metagenomic community variables will change. This is different from simply spanning 

many quadrats of any of this sizes in a greater space (changing the extent of the study). For 

example, Shi et al. (2015), in a study mentioned as multiscaled, investigated the 

biogeographical patterns of microbial functional genes in 24 heath soils from across the 

Arctic using GeoChip-based metagenomics. Principal coordinates of neighbour matrices 

(PCNM)-based analysis was used to analyse data across several spatial scales. However, 

although the sampling locations were scattered around the Canadian, Alaskan and European 

Arctic in a very broad extent, the grain used was the same (sampling quadrats of 12 x 12 

cm). Thus, this approach can be interpreted as not truly multiscaled, since the correlations 

were measured between quadrats similar in size at different distances.  Multiscale analysis 

can be used to assess changes in time as well, although studies with a temporal multiscale 

approach in metagenomics are only beginning to appear (Stempfhuber, 2016). Multiscale 
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approaches, in combination with unified spatial and temporal frameworks for metagenomic 

studies, will soon allow to improve our understanding of the variability of microbial 

communities (Gonzalez et al., 2012; Gilbert and Henry, 2015).  

 

 Finally, it should be stressed here that all the considerations made about sampling 

metagenomic data should be taken into account for the collection of environmental 

metadata (climate variables, soil parameters, etc.). There is an interesting tendency to 

integrate metadata information in integrative workflows for processing and analysing 

metagenomic data on most of the currently available platforms (Ladoukakis et al., 2015). 

The issue of metadata collection is an important and urgent problem, that should be taken 

into account by the metagenomics research community, to elaborate standardised samplings 

protocols and share them.   

  

Mathematical modelling 

An entire paper would be needed to address in detail the issue of mathematical modelling in 

ecology and its influences on the recent surge of microbial community modelling. 

However, being mathematical modelling an increasingly important topic in metagenomics, 

a I will give a brief account here.  

 In a broad sense, a model is any abstraction of a system, built using a conceptual, 

mathematical, or logical, alone or combined, frameworks. In particular, mathematical 

modelling has been used since early in ecology. The origins of modern population ecology 

models can be traced back to the end of 18th century, with the model describing human 

population exponential growth built by Thomas Malthus (1798), and to the middle of 19th 

century, with the logistic growth model formulated by Pierre-François Verlhust (1845), also 
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for human populations. In the first decades of the 20th century, these models were 

rediscovered by the first population ecologists, like John Gray McKendrick (for bacterial 

growth) and Alfred J. Lotka who, together with Vito Volterra, are considered the founders 

of population ecology. Since then, mathematical modelling has been implemented in every  

ecological field and organization level, from population to ecosystem ecology.  

 An exhaustive review of the huge variety of mathematical models used in ecology 

(deterministic, stochastic; discrete, continuous;  mean-field, individually-based; etc.) 

(Müller and Kuttler, 2015), is out of the scope of this work, but perhaps one of the most 

helpful classifications of ecological models is in phenomenological and mechanistic 

models. Phenomenological (also called statistical) models are based on observed patterns in 

the data, while mechanistic models are built addressing directly the mechanisms generating 

observed processes and patterns. Phenomenological models provide no information about 

the underlying ecological mechanisms, since there is no a unique relationship between 

statistical patterns and mechanisms, and their predictive power is somewhat restricted to 

conditions comparable to those from the data to build the model were taken. On the other 

hand, since mechanistic models attempt to understand the phenomenon modelled, they are 

usually regarded as enclosing more explanatory and predictive powers than 

phenomenological models. For example, building a phenomenological model for a species 

dispersal distance using a regression model based on actual dispersal records taken at field 

does not tell much about the mechanisms underlying  the dispersal pattern found, and the 

model would be applicable only to a similar scenario and within the ranges of dispersal 

actually recorded. Building a mechanistic model, however, including the main mechanisms 

involved in dispersal of, for example, wind dispersed seeds, like seed morphology, wind 

direction and velocity, and elevation and topographic landscape, would inform about more 
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general features of the dispersal, like interactions among the variables included, and allow 

for greater and more extrapolating predictive ability. However, in some cases, both kinds of 

models can be complementary, since some parts of a mechanistic model, not suitable for 

being backed by an explicit mechanism, may contain statistical relationships (Kendall et al., 

1999).  

 From some time to now, the tendency in ecology has been to move on from purely 

phenomenological models to more explanatory and predictive mechanistic models. This 

tendency is also beginning to permeate the work in microbial systems, thus contributing to 

the foundation of a modern microbial ecology (Gonzalez et al., 2012, Liberles et al., 2013). 

The development of mathematical models with a basis on mechanistic understanding, 

integrated with controlled experiments will allow to convert the huge empirical knowledge 

gained through microbial metagenomics and other meta-omics into fundamental insights 

and testable predictions about microbione composition, function and dynamics (Widder et 

al., 2016). In a succint but informative review, Widder and colleagues show how 

metagenomic and other meta-omics data can be integrated with different modelling 

approaches. Dynamical models of deterministic and mechanistic nature (like difference 

equations and flux balance analysis), stochastic dynamical systems (like Markov chains, 

random walks), individual-based models, and other approaches can be used to find patterns 

at different spatial and temporal scales, and at different ecological organization levels (from 

single cells to microbiomes at community and ecosystem levels), and to generate 

explanations and predictions about microbiome structure and function.  Some modelling 

approaches, although essentially phenomenological, may however contribute to the 

generation of new hypotheses on microbiome structure and function. Network analysis has 

been used in ecology to study co-occurrence networks established by calculating 



23 
 

correlations between the abundance of individual species to detect interactions among them 

in the community for long (Jordano, 1987). This approach has recently began to be used in 

microbial ecology. For example, Barberán and colleagues calculated associations between 

microbial taxa and applied network analysis approaches to a 16S rRNA gene barcoded 

pyrosequencing dataset containing 4,160,000 bacterial and archaeal sequences from 151 

soil samples from a broad range of ecosystem types. The analysis revealed habitat 

generalists and specialists, co-occurrence patterns including general non-random 

association, common life history strategies at broad taxonomic levels and unexpected 

relationships between community members. Thus, although regarded as not purely 

mechanistic, network analysis has the potential of exploring inter-taxa correlations to gain a 

more integrated understanding of microbial community structure and the ecological rules 

guiding community assembly (Barberán et al., 2012). New modelling approaches tend to 

integrate different modelling tools to integrate information from different sources. For 

example, Noecker et al. (2015),  in a systems biology approach, propose a comprehensive 

framework to systematically link variation in metabolomic data with community 

composition by utilizing taxonomic, genomic, and metabolic information. Their approach 

integrate available and inferred genomic data, metabolic network modelling, and a method 

for predicting community-wide metabolite turnover to estimate the biosynthetic and 

degradation potential of a given community. 

 

Conclusions 

Metagenomics and other meta-omics constitute, due to their inherent nature, a complex 

field placed at the intersection of many disciplines, like molecular biology, microbiology, 

ecology, chemistry, bioinformatics, among others, and new ones are hastily being 
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implicated. The theoretical and methodological complexity arising from this multifaceted 

and dynamic field requires the integration of  useful theoretical basis and methodologies 

coming from already well established disciplines like ecology, and dealing with change of 

paradigms like the traditional organism-centred approach to a new, organism- and species-

free context. Thus, while some concepts and methodologies coming from ecology should 

be revised for application on metagenomics and meta-omics fields, like niche theory, other 

do not require great changes and it is predicted to be increasingly adopted by environmental 

metagenomics. Ecological principles behind spatial and temporal scales should be taken 

into account when formulating the hypothesis and sampling design for metagenomic and 

meta-omics studies, and the wealth of modelling approaches developed through decades by 

ecologists is being proven extremely useful in the context of metagenomics.  
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Figure Legends 
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Fig. 1. A typical pipeline for metagenomic studies. 
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Fig. 2 The effect of choosing a given grain (sampling unit) size when the variable of 

interest is distributed in patches (grey) in an homogeneous matrix (white). Given an extent 

(black outer quadrat encompassing the study area), a given grain size (small red sampling 

quadrats), will reflect for example the smaller patchiness but it will miss the heterogenity at 

a broader scale (larger patches and matrix).  Conversely, choosing a larger grain (larger red 

sampling quadrats) will result in missing the smaller patch heterogeneity, and variance 

between sampling quadrats will decrease. 


