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h i g h l i g h t s

• We consider a simple network of cortical spiking neurons.
• We use the Bandt and Pompe permutation approach.
• This allows us to characterize the dynamic of the spiking neural activity.
• Investigate the fine temporal ‘‘structures’’ of complex neuronal signals.
• Causal information needed to distinguish dynamical regimes of neuronal ensembles.
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a b s t r a c t

When inhibitory neurons constitute about 40% of neurons they could have an important
antinociceptive role, as theywould easily regulate the level of activity of other neurons.We
consider a simple network of cortical spiking neurons with axonal conduction delays and
spike timing dependent plasticity, representative of a cortical column or hypercolumnwith
a large proportion of inhibitory neurons. Each neuron fires following a Hodgkin–Huxley
like dynamics and it is interconnected randomly to other neurons. The network dynamics
is investigated estimating Bandt and Pompe probability distribution function associated to
the interspike intervals and taking different degrees of interconnectivity across neurons.
More specifically we take into account the fine temporal ‘‘structures’’ of the complex
neuronal signals not just by using the probability distributions associated to the interspike
intervals, but instead considering much more subtle measures accounting for their causal
information: the Shannon permutation entropy, Fisher permutation information and
permutation statistical complexity. This allows us to investigate how the information of the
system might saturate to a finite value as the degree of interconnectivity across neurons
grows, inferring the emergent dynamical properties of the system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The central assumption of theoretical neuroscience is that the brain computes. That is, in general, it is accepted that the
brain is a complex dynamical system whose state variables encode information about the outside world. The computation
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it is therefore equal to the coding more dynamic. For the detection of subtle changes in brain dynamics it is therefore of
importance to investigate the dynamic of functional interactions across neurons.

EEG and fMRI data are two important measures of brain activity. EEG reflects the brains electrical activity such as
postsynaptic potentials, and fMRI detects blood flow, motion and equilibrium under the action of external forces. The action
potential (or spike) is an ‘‘explosion’’ of electrical activity that is created by a depolarizing current. Single-unit recordings
measure spike responses of a single neuron, and constitute an important methodology for understanding mechanisms and
functions within the cerebral cortex. The development of micro-electrode arrays allowed recording from multiple units at
the same time, and constitutes an important method for studying functional interactions among neuronal populations. In
the field of experimental neurophysiology, one of the most commonmagnitude used for the study of the neuronal network
dynamics is the variance of the interspike intervals (ISIs) [1–4].

Detection of dynamic changes in complex systems is one of the most relevant issues in neuroscience. Due to the occur-
rence of noise and artifacts in various forms, it is often not easy to get reliable information from a series of measurements.
That is, brain activitymeasures are characterized by a variety of dynamic variableswhich are noisy, nonstationary, nonlinear
and rife with temporal discontinuities.

Bandt and Pompe [5] have proposed a robust approach to time series analysis on the basis of counting ordinal patterns
by introducing the concept of permutation entropy for quantifying the complexity of a system behind a time series. Thus,
the ordinal structures of the time series instead of the values themselves are considered [6]. This methodology has been
applied for investigating EEG and FMRi signals [7–18].

The nonlinear dynamic effects of the spiking activity of in vivo neuronal networks cannot be fully captured by simple
calculations of ISIs. More specifically, estimating the variance of the ISIs may not always provide reliable information about
the system dynamics. Importantly, the application of the Bandt and Pompe methodology [5] to spiking neural data has not
been widely investigated. In the current paper we considered the effective statistical complexity measure (SCM) introduced
by Lamberti et al. [19], (also called MPR complexity) that allows us to detect essential details of the dynamics of a neural
network.

One of the simplest computational models of neurons is the Simple Model of Spiking Neurons by Izhikevich [20,21]. This
model just uses a two-dimensional (2-D) system of ordinary differential equations and four parameters to generate several
different types of neural dynamics. In order to reproduce some of the dynamic properties of a population of neurons, we use
a neural network capable of emulating several of the biological characteristics of brain oscillation patterns and spontaneous
brain activity [21,22]. We consider a population of neurons with a large number of inhibitory neurons, as it helps to rapidly
phase lock neural populations and induce synchronization at small timewindows and produces stable firing patterns [23]. In
particular, large amounts of inhibitory neurons can have a crucial role in regulating the level of activity of other neurons [24].
Thus, inhibitory neurons have an important antinociceptive role when they constitute about 40% of the population [25].

The nervous system can extract only a finite amount of information about sensory stimuli, and, in subsequent stages
of processing, the amount of information cannot exceed the amount extracted and therefore information should saturate
as the number of interconnected neurons becomes large enough. This is, the correlations must behave in such way that
information should saturate, or reach a maximum, as the number of interconnected neurons increases [26].

In this paper we use the ISIs of a very simple spikingmodel [27] of a population of neurons to test the performance of the
variance of the ISIs in comparison with more subtle measures accounting for the nonlinear dynamic effects of the temporal
signal: the Shannon entropy [28,29], the MPR statistical complexity [28,29] and the Fisher information measure [30,31].
We show that simple estimations of the variance of ISIs do not capture the saturation properties of the information as the
number of interconnected neurons increases. Our proposal therefore is to use the Bandt–Pompe permutation methodology
for the evaluation of probability distribution function (PDF) associated with a time series [5] in order to characterize the
dynamics of the spiking neural activity when simulating a cortical network. By estimating Fisher information versus MPR
statistical complexity/Shannon entropy [32–34] of the ISIs signals, we show that it is possible to quantify the optimal amount
of interconnected neurons that maximizes information transmission within a simple model that we use as ‘‘representative
of a cortical hypercolumn with large proportion of inhibitory neurons’’.

Based on the quantification of the ordinal ‘‘structures’’ present in the ISIs and their local influence on the associated
probability distribution, we estimate the time series own temporal causality through a system of easy algorithm
implementation and computation. We show that estimating the variance of the ISIs does not help to understand the
dynamics of the system, and thus statistical measures taking into account the time causality of the signal are needed. Our
approach allows us to estimate the saturation properties of the neuronal network, quantifying the causality of the signal,
and inferring the emergent dynamical properties of the system as the number of interconnected neurons increases.

2. Neuronal network simulation model

Neurons fire spikeswhen they are near a bifurcation from resting to spiking activity, and it is the delicate balance between
noise, dynamic currents and initial condition what determines the phase diagram of neural activity. While there are a
huge number of possible ionic mechanisms of excitability and spike generation, there are just four bifurcation mechanisms
that can result in such a transition. That is, there are many ionic mechanisms of spike generation, but only four generic
bifurcations of equilibrium. These bifurcations divide neurons into four categories: integrators or resonators, monostable or
bistable [27].
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Bifurcationmethodologies [27] allow us to accurately reproduce the biophysical properties of Hodgkin–Huxley neuronal
models by just taking a two-dimensional systemof ordinary differential equations and four different parameters. Thismodel
is named simple model of spiking neurons [20], and the system of ordinary differential equations reads:

dv
dt
= 0.04 v2

+ 5 v + 140 u+ I (1)

du
dt
= a (b v − u) (2)

with the auxiliary after-spike resetting

if v ≥ +30 mV, then

v← c
u← u+ d (3)

where v is the membrane potential of the neuron, and u is a membrane recovery variable, which accounts for the activation
of K+ ionic currents and inactivation of Na+ ionic currents, and gives negative feedback to v. Thus we are just considering a
two-dimensional (2-D) systemof ordinary differential equations of two variables u and v, and all the known types of neurons
can be reproduced by taking different values of the four parameters a, b, c and d. After the spike reaches its apex at+30 mV
(not to be confused with the firing threshold) themembrane voltage and the recovery variable are reset according to Eq. (3).
The variable I accounts for the inputs to the neurons [20].

Summarizing, each neuron can be described by a simple spiking model that allows us to reproduce several of the
most fundamental neurocomputational features of biological neurons [21]. Here, we consider a network simulation model
in which the number for interconnected neurons is a parameter under control, and each neuron can be interconnected
randomly with two or more neurons [20–22]. The inhibitory inputs hyperpolarize the potential and move it away from the
threshold. In contrast, excitatory inputs depolarize themembranepotential (i.e., they bring it closer to the ‘‘firing threshold’’).

Regular spiking (RS) [20] neurons are the major class of excitatory neurons (b > 0). RS neurons are the most typical
neurons in the cortex. In our current simple model for the excitatory neurons we take a = 0.02 and b = 0.2 with fixed
values; while c = −65+ 15 · (rde)2 and d = 8− 6 · (rde)2, where rde is a random vector (between zero and one) of the size
of the number of excitatory neurons.

Fast spiking (FS) neurons are the ones that fire periodic trains of action potentials without any adaptation. FS neurons are
inhibitory neurons that have a = 0.1 and b = 0.25−0.05·rdi, where rdi is a randomvector (between zero and one) of the size
of the number of inhibitory neurons. Furthermore c = −65mV and d = 2. Positive synaptic weights are taken for excitatory
neurons and negative, for the inhibitory ones. This simple model reproduces some biologically plausible phenomena such
as patterns of spontaneous cortical activity including brain wave like oscillations.

The network simulation takes into account cortical spiking neurons with axonal conduction delays and spike-timing-
dependent plasticity (STDP). The magnitude of the synaptic weight between pre and postsynaptic neurons depends on the
timing of the spikes according to the STDP rules. That is, the weight of the synaptic connection from the pre to postsynaptic
neurons grows as 0.12 ·exp(t/t0) if the postneuron fires after the presynaptic spike, and if the order is reversed, it decreases
as 0.1 · exp(−t/t0), where t0 = 20 ms [22]. Importantly, the interplay between conduction delays and STDP helps the
spiking neurons to produce stable firing patterns that would not be possible without these assumptions. Each neuron in the
network is described by the simple model of spiking neurons of Ref. [20], which has been described above in Eqs. (1)–(3).

In this simple model we choose to account for the STDP as its interplay with conduction delays that helps the spiking
neurons to spontaneously self-organize into groups with patterns of time-locked activity. Thus, the STPD produces stable
firing patterns emulating spontaneous brain activity that would not be possible without this assumption. Although the
patterns are random, reflecting connectivity within the cortex, one could implement sophisticated anatomy and the two
sparse networks shown in this section are representative of a cortical hypercolumn [22].

Sincewe cannot simulate an infinite-dimensional system on a finite-dimensional lattice, we choose a large networkwith
a finite-dimensional approximation taking a time resolution of 1 ms. Themain idea of our methodology is to use this simple
model to emulate the spontaneous activity when a large number of neurons are taken in order to show the advantage of
using causal quantifiers when considering the ISIs.

To illustrate the simple model that we are using, (a) as the first network case we consider a network that consists of
n = 1000 neurons, with ne = 550 being of excitatory regular spiking (RS) type, and the remaining ni = 450 of inhibitory
fast spiking (FS) type (n = ne + ni). (b) As the second network, we take a network that consists of n = 900 neurons, with
ne = 500 being of excitatory (RS) type, and the remaining ni = 400 of inhibitory (FS) type (n = ne + ni); (c) Finally, as the
third network, we consider, a network that consists of n = 800 neurons, with ne = 450 being of excitatory (RS) type, and
the remaining ni = 450 of inhibitory (FS) type (n = ne + ni). In all the cases considered, each excitatory regular spiking
type neuron, as well as each inhibitory fast spiking neuron, is connected tom = 2, 4, 6, 8, 10, 20, 30, 40, 60, 80, 100 and 120
random neurons, so that the probability of connection ism/n. In the case of inhibitory FS neurons, the connections are with
excitatory neurons only. In all cases synaptic connections among neurons have fixed conduction delays, which are random
integers between 1 and 10 ms.

In the next sections we show that understanding how neural information saturates as the number of neurons increases
requires the development of an appropriate mathematical framework accounting for the ordinal ‘‘structures’’ present in the
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time series. We will also show how to quantify the causal information of the ISIs. For the sake of simplicity in this paper
we will study a simple row signal of spontaneous neural activity. We will investigate the effect of increasing the network
connectivity of a simulated cortical hypercolumn, with large percentage of inhibitory neurons, by quantifying the degree of
correlation with and without considering the causality information present in the ISIs.

3. Information theory quantifiers

3.1. Shannon entropy, Fisher information measure and MPR statistical complexity

Sequences of measurements (or observations) constitute the basic elements for the study of natural phenomena. In
particular, from these sequences, commonly called time series, one should judiciously extract information on the dynamical
systems under study.We can define an Information Theory quantifier as ameasure that is able to characterize someproperty
of the probability distribution function associated with these time series of a given row signal (i.e., ISIs). Entropy, regarded
as a measure of uncertainty, is the most paradigmatic example of these quantifiers.

Given a time series X(t) ≡ {xt; t = 1, . . . ,M}, a set of M measures of the observable X and the associated PDF, given
by P ≡ {pj; j = 1, . . . ,N} with

N
j=1 pj = 1 and N the number of possible states of the system under study, Shannon’s

logarithmic information measure [35] is defined by

S[P] = −
N
j=1

pj ln(pj). (4)

This functional is equal to zero when we are able to predict with full certainty which of the possible outcomes j, whose
probabilities are given by pj, will actually take place. Our knowledge of the underlying process, described by the probability
distribution, is maximal in this instance. In contrast, this knowledge is commonly minimal for a uniform distribution
Pe = {pj = 1/N,∀j = 1, . . . ,N}.

The Shannon entropy S is a measure of ‘‘global character’’ that is not too sensitive to strong changes in the PDF taking
place in small region. Such is not the case with the Fisher information measure [36,37]

F [f ] =

|∇⃗f (x)|2

f (x)
dx, (5)

which constitutes a measure of the gradient content of the distribution f (continuous PDF), thus being quite sensitive even
to tiny localized perturbations.

The Fisher information measure can be variously interpreted as a measure of the ability to estimate a parameter, as the
amount of information that can be extracted from a set of measurements, and also as a measure of the state of disorder
of a system or phenomenon [37,38], its most important property being the so-called Cramer–Rao bound. It is important to
remark that the gradient operator significantly influences the contribution of minute local f -variations to the Fisher infor-
mation value, so that the quantifier is called a ‘‘local’’ one. Note that Shannon’s entropy decreases with skewed distribution,
while Fisher information increases in such a case. Local sensitivity is useful in scenarios whose description necessitates an
appeal to a notion of ‘‘order’’ [32–34]. The concomitant problem of loss of information due to the discretization has been
thoroughly studied (see, for instance, Refs. [39–41] and references therein) and, in particular, it entails the loss of Fisher’s
shift-invariance, which is of no importance for our present purposes.

Let us now consider the activity of a population of neurons represented by an ℵ-dimensional vector xℵ = (x1; x2;
· · · ; xℵ) where the randomness of the spiking activity produces an inherent accuracy due to the trial to trial fluctuations.
Fisher information F provides a measure of the encoding accuracy

1
F
=

ℵ
i=1


∂ ln P(nsp|x, ∆T )

∂xi

2−1
(6)

where its inverse is the Cramer–Rao lower bound E[ϵ2
] = 1

F [42,43,31]. Note that ϵ = ϵ1 + · · · + ϵℵ is the square error in a
single trial, and nsp is the number of spikes. Considering the general case in which the probability distribution is a function
of the mean firing rate and the time windows, then these conditions are sufficient to show that [43]:

F = η σℵ−2Kφ(f , ∆T ,ℵ) (7)

where σ is the variance (or tuning width that can take any positive real value) and Kφ(f , ∆T ,ℵ) denotes the dependence
on the ℵ-dimensional space of the encoded variable, and η is a density factor proportional to the number of inactive
neurons.

Fisher information should saturate as the number of neurons, or the network interconnectivity m, becomes very large
[26]. Note that one would expect, therefore, that the variance should not diverge as the interconnectivity across neurons
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increases. That is, the variance should reach a maximum for some given value of m as the interconnectivity becomes
higher.

For Fisher information measure computation (discrete PDF) we follow the proposal of Ferri and coworkers [30] (among
others)

F [P] =
1
4

N−1
i=1

2
(pi+1 − pi)2

(pi+1 + pi)
. (8)

If our system is in a very ordered state and thus is represented by a very narrow PDF, we have a Shannon entropy S ∼ 0
and a Fisher information measure F ∼ Fmax. On the other hand, when the system under study lies in a very disordered state
one gets an almost flat PDF and S ∼ Smax, while F ∼ 0. Of course, Smax and Fmax are, respectively, the maximum values for
the Shannon entropy and the Fisher information measure. One can state that the general behavior of the Fisher information
measure is opposite to that of the Shannon entropy [44].

It is well known, however, that the ordinal structures present in a process is not quantified by randomnessmeasures and,
consequently, measures of statistical or structural complexity are necessary for a better understanding (characterization) of
the system dynamics represented by their time series [45]. The opposite extremes of perfect order (i.e., a periodic sequence)
and maximal randomness (i.e., a fair coin toss) are very simple to describe because they do not have any structure. The
complexity should be zero in these cases. At a given distance from these extremes, awide range of possible ordinal structures
exists. The complexity measure allows one to quantify this array of behavior [46]. We consider the MPR complexity [19] as
it is able to quantify critical details of dynamical processes underlying the data set.

Based on the seminal notion advanced by López-Ruiz et al. [47], this statistical complexity measure is defined through
the product

CJS[P] = QJ [P, Pe] · HS[P] (9)

of the normalized Shannon entropy

HS[P] = S[P]/Smax (10)

with Smax = S[Pe] = lnN , (0 ≤ HS ≤ 1) and the disequilibrium QJ defined in terms of the Jensen–Shannon divergence.
That is,

QJ [P, Pe] = Q0 J[P, Pe] (11)

with

J[P, Pe] = S[(P + Pe)/2] − S[P]/2− S[Pe]/2. (12)

The above-mentioned Jensen–Shannon divergence and Q0, a normalization constant (0 ≤ QJ ≤ 1), are equal to the inverse
of the maximum possible value of J[P, Pe]. This value is obtained when one of the components of P , say pm, is equal to one
and the remaining pj are equal to zero. The Jensen–Shannon divergence, which quantifies the difference between two (or
more) probability distributions, is especially useful to compare the symbolic composition between different sequences [48].
Note that the above introduced SCM depends on two different probability distributions, the one associated with the system
under analysis, P , and the uniform distribution, Pe. Furthermore, it was shown that for a given value of HS , the range of
possible CJS values varies between a minimum Cmin and a maximum Cmax, restricting the possible values of the SCM in a
given complexity-entropy plane [49]. Thus, it is clear that an important additional information related to the correlational
structure between the components of the physical system is provided by evaluating the statistical complexity measure.

3.2. The Bandt–Pompe approach to the PDF determination

The study and characterization of time series X(t) by recourse to Information Theory tools assume that the underlying
PDF is given a priori. In contrast, a part of the concomitant analysis involves extracting the PDF from the data and there is
no univocal procedure with which everyone agrees. Almost ten years ago Bandt and Pompe (BP) introduced a successful
methodology for the evaluation of the PDF associated with scalar time series data using a symbolization technique [5]. For
a didactic description of the approach, as well as, its main biomedical and econophysics applications, see Ref. [6].

The pertinent symbolic data are (i) created by ranking the values of the series and (ii) defined by reordering the embedded
data in ascending order, which is tantamount to a phase space reconstruction with embedding dimension (pattern length)
D and time lag τ . In this way it is possible to quantify the diversity of the ordering symbols (patterns) derived from a
scalar time series. Note that the appropriate symbol sequence arises naturally from the time series and no model-based
assumptions are needed. In fact, the necessary ‘‘partitions’’ are devised by comparing the order of neighboring relative
values rather than by apportioning amplitudes according to different levels. This technique, as opposed to most of those
in current practice, takes into account the temporal structure of the time series generated by the physical process under
study. This feature allows us to uncover important details concerning the ordinal structure of the time series [34,50,51] and
can also yield information about temporal correlation [28,29]. It is clear that this type of analysis of time series entails losing
some details of the original series’ amplitude information. Nevertheless, by just referring to the series’ intrinsic structure, a
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meaningful difficulty reduction has indeed been achieved by Bandt and Pompe with regard to the description of complex
systems. The symbolic representation of time series by recourse to a comparison of consecutive (τ = 1) or nonconsecutive
(τ > 1) values allows for an accurate empirical reconstruction of the underlying phase–space, even in the presence of weak
(observational and dynamic) noise [5]. Furthermore, the ordinal patterns associated with the PDF is invariant with respect
to nonlinear monotonous transformations. Accordingly, nonlinear drifts or scaling artificially introduced by a measurement
device will not modify the estimation of quantifiers, a nice property if one deals with experimental data (see, e.g., Ref. [52]).
These advantages make the Bandt and Pompe methodology more convenient than conventional methods based on range
partitioning (i.e., PDF based on histograms).

Additional advantages of the method reside in (i) its simplicity, we need few parameters: the pattern length/embedding
dimension D and the embedding delay τ , and (ii) the extremely fast nature of the pertinent calculation process [53]. The BP
methodology can be applied not only to time series representative of low dimensional dynamical systems, but also to any
type of time series (regular, chaotic, noisy, or reality based). In fact, the existence of an attractor in the D-dimensional phase
space is not assumed. The only condition for the applicability of the Bandt–Pompe methodology is a very weak stationary
assumption (that is, for k ≤ D, the probability for xt < xt+k should not depend on t [5]).

To use the Bandt and Pompe [5] methodology for evaluating the PDF, P , associated with the time series (dynamical
system) under study, one starts by considering partitions of the pertinent D-dimensional space that will hopefully ‘‘reveal’’
relevant details of the ordinal structure of a given one-dimensional time series X(t) = {xt; t = 1, . . . ,M}with embedding
dimension D > 1 (D ∈ N) and embedding time delay τ (τ ∈ N). We are interested in ‘‘ordinal patterns’’ of order (length) D
generated by (s) →


xs−(D−1)τ , xs−(D−2)τ , · · · , xs−τ , xs


, which assigns to each time s theD-dimensional vector of values

at times s, s− τ , . . . , s− (D− 1)τ . Clearly, the greater the D-value, is the more information on the past is incorporated into
our vectors. By ‘‘ordinal pattern’’ related to the time (s)wemean the permutationπ = (r0, r1, . . . , rD−1) of [0, 1, . . . ,D−1]
defined by xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . In order to get a unique result we set ri < ri−1 if xs−ri = xs−ri−1 .
This is justified if the values of xt have a continuous distribution so that equal values are very unusual. Thus, for all the D!
possible permutations π of order D, their associated relative frequencies can be naturally computed by the number of times
this particular order sequence is found in the time series divided by the total number of sequences.

Consequently, it is possible to quantify the diversity of the ordering symbols (patterns of length D) derived from a
scalar time series, by evaluating the so-called permutation entropy, the permutation statistical complexity and Fisher
permutation information measure. Of course, the embedding dimension D plays an important role in the evaluation of
the appropriate probability distribution because D determines the number of accessible states D! and also conditions the
minimum acceptable lengthM ≫ D! of the time series that one needs in order to work with reliable statistics [50].

Regarding the selection of the other parameters, Bandt and Pompe suggested working with 4 ≤ D ≤ 6 and specifically
considered an embedding delay τ = 1 in their cornerstone paper [5]. Nevertheless, it is clear that other values of τ could
provide additional information. It has been recently shown that this parameter is strongly related, if it is relevant, to the
intrinsic time scales of the system under analysis [54–56].

The Bandt and Pompe proposal for associating probability distributions to time series (of an underlying symbolic nature),
constitutes a significant advance in the study of nonlinear dynamical systems [5]. Themethod provides univocal prescription
for ordinary, global entropic quantifiers of the Shannon-kind. However, as was shown by Rosso and coworkers [33,34],
ambiguities arise in applying the Bandt and Pompe technique with reference to the permutation of ordinal patterns. This
happens if one wishes to employ the BP-probability density to construct local entropic quantifiers, like Fisher information
measure, that would characterize time series generated by nonlinear dynamical systems. The local sensitivity of Fisher
information measure for discrete-PDFs is reflected in the fact that the specific ‘‘i-ordering’’ of the discrete values pi must be
seriously taken into account in evaluating the sum in Eq. (8). The pertinent numerator can be regarded as a kind of ‘‘distance’’
between two contiguous probabilities. Thus, a different ordering of the pertinent summandswould lead to a different Fisher
information value. In fact, if we have a discrete PDF given by P = {pi, i = 1, . . . ,N}we will have N! possibilities.

The question is, which is the arrangement that one could regard as the ‘‘proper’’ ordering? The answer is straightforward
in some cases, histogram-based PDF constituting a conspicuous example. For such a procedure one first divides the interval
[a, b] (with a and b the minimum and maximum values in the time series) into a finite number on nonoverlapping sub-
intervals (bins). Thus, the division procedure of the interval [a, b] provides the natural order-sequence for the evaluation of
the PDF gradient involved in Fisher information measure.

3.3. Causal information planes

The above is based on Information Theory quantifiers HS , F and CJS evaluated using Bandt and Pompe’s PDF allow us
to define three causality information planes: H × C , H × F and C × F . The causality Shannon-complexity plane, H × C ,
is based only on global characteristics of the associated time series Bandt and Pompe PDF (both quantities are defined in
terms of Shannon entropies), while the causality Shannon–Fisher plane, H × F , and the causality complexity-Fisher, C × F ,
are based on global and local characteristics of the PDF. In the case of H × C the variation range is [0, 1] × [Cmin, Cmax]

(with Cmin and Cmax theminimum andmaximum statistical complexity values, respectively, for a givenHS value [49]), while
in the causality planes H × F and C × F the range is [0, 1] × [0, 1] in both cases. These causal information planes have
been profitably used to separate and differentiate amongst chaotic and deterministic systems [50,34]; visualization and
characterization of different dynamical regimes when the system parameters vary [32–34]; time dynamic evolution [57];
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identifying periodicities in natural time series [58]; identification of deterministic dynamics contaminated with noise
[59,60] and; estimating intrinsic time scales of delayed systems [54–56]; among other applications (see Ref. [6] and
references therein).

4. Results and discussion

Cerebral cortex contains many inhibitory neurons of distinct types. Understanding their connectivity and dynamics
within the cortex is essential to gain more knowledge of cortical information processing. Recent studies emphasize the
essential role inhibitory neurons have in the development of proper circuitry in the cortex [25]. In particular,when inhibitory
interneurons constitute about 40% of neurons they have an important antinociceptive role, and are much more likely
to have a role in regulating the level of activity of other neurons [25]. We choose a network with large proportion of
inhibitory neurons (about 40% of the neurons) as this helps the spiking neurons to spontaneously self-organize into groups
with patterns of time-locked activity, producing stable firing patterns. The objective is to use an information-theory-based
approach to investigate the ordinal ‘‘structures’’ present in the time series of the ISIs of a model that emulates some of the
characteristics of a cortical hypercolumn, considering a large proportion of inhibitory neurons.

In order to illustrate our method we run the simulation for 20,000 ms taking a time resolution of 1 ms (time windows
∆T = 1 ms), which is enough to guarantee the condition M ≫ D! will be satisfied. Fig. 1A, C and E show the spike rasters
considered for the total number of neurons N = 1000, 900, and 800 respectively, for a time window of 1000 ms. Fig. 1B,
D and F show the interspike intervals considering neuronal total numbers N = 1000, 900 and 800 respectively, for the
entire time we run the simulation. Note that the previous plots only confirm that the neurons within the model fire with
millisecond precision and we cannot gain any significant information about the dynamics.

Fig. 2A, C, and E show the variance Rp =

Var(tp)/⟨tp⟩ of the ISIs for three different simulated systems. Note that

an increasing degree of interconnectivity m implies greater data dispersion. Thus, this kind of analysis suggests that
information does not saturate as the degree of interconnectivity becomes higher. More specifically Eq. (7) implies that
Fisher information increases as the network connectivity becomes higher when considering a large population of neurons
of a cortical hypercolumn with a large proportion of inhibitory neurons. This analysis performed through a classical tool
not accounting for the ‘‘structures’’ present in ISIs is far from the expected neurophysiologic behavior, which suggests
that Fisher information should reach a maximum as the number of interconnected neurons grows [26]. The expected
neurophysiological result is a consequence of the noise correlation, which causes the amount of information to have a
maximum as the number of interconnected becomes higher [26,61].

In this section we use the Bandt and Pompe [5] methodology for evaluating the PDF, P , associated with the time series,
considering an embedded dimensionality D = 6 (with τ = 1). This embedded dimensionality is enough to efficiently
capture causality information of the ordinal structure of the time series [5]. Fig. 2B, D and F show the informational causal
plane of entropy versus complexity, H × C . Note that the MPR statistical complexity grows as the normalized entropy
becomes higher and not much information can be gained about the system dynamics.

Fig. 3A, C and E showFisher permutation information, Eq. (8), versus the permutationMPR statistical complexity equation
(11), i.e., the causal information plane F × C , for the same biophysical parameters used above. Notice that Fig. 3A, C and E
present a maximum at m = 40, m = 30 and m = 20, 30, respectively, for n = 1000, n = 900 and n = 800. A similar
behavior can be observed in Fig. 3B, D and F, which show Fisher permutation information, Eq. (8), versus permutation
entropy, Eq. (10), i.e., the causal plane F × H . Our estimations using information quantifiers in the causal plane C × F
(or causal plane H × F ) are in agreement with the idea that Fisher information saturates as the size of the system
grows. Overall our findings show that Fisher information reach a maximum as the number of interconnected neurons
grows.

But if we considered the case of uncorrelated neurons, then Fisher information would increase linearly with the number
of neurons in the population [62]. When accounting the efficiency of coding information in the second order statistics of
the population responses, it has been theoretically argued that Fisher information of this system would grow linearly with
its size [61]. Fig. 2A, C, and E show that the variance grows as the number of interconnected neurons becomes higher. Thus
Eq. (7) implies that Fisher information increases as well, considering the encoding variable is strictly larger than two [43].
This would lead to a very odd and unexpected neurophysiological behavior as when evaluating the computational capacity
of cortical population in sensory areas the total information should saturate at a level below the amount of information
available in the input [26]. Importantly, as positive correlations vary smoothly with space they drastically suppress the
information in the mean responses, and Fisher information of the system should saturate to a finite value as the system size
grows [61,26].

We showed that accounting for the ordinal structures present in the ISIs and their local influence on the associated
probability distribution allows us to estimate how information saturates when the number of interconnected neurons
increases. These findings are in agreement with the hypothesis of Shamir [61] and Averbeck [26]. That is, as the number of
interconnected neurons increases, correlations must be such that information reaches a maximum [61,26,63]. The amount
of information that can be processed by the nervous system is finite, and it cannot be larger than the amount of extracted
information. As data become available for a very large number of neurons, our theoretical approach could provide an
important mathematical tool to investigate how information of the system saturates to a finite value as the system size
grows. Further investigations should exhaustively account for the problem of finite size effects in the lattice and different
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C D
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Fig. 1. (A) Spike rasters, n = 1000, ne = 550, ni = 450, m = 40, taken in a time windows of 100 ms. (B) Histogram of the interspike intervals (ISI) for
n = 1000, ne = 550, ni = 450 and m = 40. (C) Same as in A but considering n = 900, ne = 500, ni = 400 and m = 30. (D) Same as in B but considering
n = 900, ne = 500, ni = 400 and m = 30. (E) Same as in A but considering n = 800, ne = 450, ni = 350 and m = 20. (F) Same as in B but considering
n = 800, ne = 450, ni = 350 andm = 20.

external stimuli. This will allow us to investigate how quickly information saturates as the number of neurons increases,
and whether it saturates or not at a level well below the amount of information available in the input.

Understanding the mechanisms of cortical processing of sensory information requires the investigation of the dynamics
between different excitatory and inhibitory cortical circuitry [64].When large numbers of inhibitory neurons are considered,
typically about 40% of the population, they are likely to have differing roles in inhibiting pain or itch [65]. Here, we use an
alternative methodology when considering a large population of neurons, we showed that by building the phase space of
Fisher information versus MPR statistical complexity/permutation entropy it is possible to characterize the dynamics of
the system, and to find the optimal values that would maximize information transmission within a neuronal network. Our
approach could be a useful tool to investigate how the loss of inhibitory neurons marks the dynamics of autism in mouse,
and to study the essential role that inhibitory neurons could play on the development of proper circuitry in the cortex
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Fig. 2. (A) Variance of the ISIs versus the number of interconnected neurons m considering n = 1000, ne = 550, ni = 450. (B) Causal MPR complexity
versus normalized Shannon entropy (H × C plane), embedded dimensionality D = 6. n = 1000, ne = 550, ni = 450. (C) Same as in A but considering
n = 900, ne = 500, ni = 400. (D) Same as in B but considering n = 900, ne = 500, ni = 400. (E) Same as in A but considering n = 800, ne = 450, ni = 350.
(F) Same as in B but considering n = 800, ne = 450, ni = 350. The gray triangles correspond to the different interconnectivities m = 2, 4, 6, 8, 10, 20, 30,
40, 60, 80, 100 and 120.

[66–70]. Moreover it can be of help to examine neuronal avalanches as the balance between excitation and inhibition
controls its temporal dynamics [71].

Shannon developed the Information Theory, as a measure of the uncertainty in a message while essentially inventing
what became known as the dominant form of ‘‘information theory’’ [72]. As we consider a time series X(t) ≡ {xt; t =
1, . . . ,D}, if xt attain a finite number D of values, the classical Shannon entropy measures the mean conditional uncertainty
of the future xt+1 given the whole past xt−D, . . . , xt . Thus, we have 0 ≤ S ≤ ln(D), with S = 0 if the series is perfectly
predictable from the past and S = ln(D) if and only if all values are independent and uniformly distributed. Fisher
information, F [P], constitutes a very useful local measure to detect changes in the dynamic behavior. By applying causal
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Fig. 3. (A) Causal Fisher information versus MPR complexity (F × C plane), embedded dimensionality D = 6, n = 1000, ne = 550, ni = 450. The
maximum value occurs at m = 40. (B) Causal Fisher information versus normalized Shannon permutation entropy (F × H plane), embedded dimension
D = 6, n = 1000, ne = 550, ni = 450. Themaximum value occurs atm = 40. (C) Same as in A but considering n = 900, ne = 500, ni = 400. Themaximum
value occurs at m = 30. (D) Same as in B but considering n = 900, ne = 500, ni = 400. The maximum value occurs at m = 30. (E) Same as in A but
considering n = 800, ne = 450, ni = 350. The maximum values occur at m = 20 and 30. (F) Same as in B but considering n = 800, ne = 450, ni = 350.
The maximum values occur at m = 20 and 30. The gray triangles correspond to the different interconnectivities m = 2, 4, 6, 8, 10, 20, 30, 40, 60, 80, 100
and 120. Whenm is raised, MPR complexity and entropy increase.

Fisher information it is possible to quantify changes in the dynamics of a system, thanks to the sensitivity of this measure
to alterations in the associated probability distribution.

The informational causal plane of Fisher information versus MPR statistical complexity, C × F (or Fisher versus Shannon
entropy H × F ), quantifies the local versus global features of the dynamics in the system under study. Consequently, when
considering a row signal of spontaneous ISI activity, building the causal plane C× F (or causal plane H× F ) provides us with
a useful tool to detect and quantify the optimal biophysical values that allow the neural network to transmit information
more efficiently. On the other hand, the causal informational plane complexity versus entropy, H × C , quantifies global
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versus global characteristics of the distribution failing to prove, therefore, information of the local features of the causal
information.

Regarding the potential limitations of themethodology, note that in order to avoid the bias deviation problem and to have
reliable statistic it has been established that the conditionM ≫ D!must be satisfied [5,50]. We have chosen an embedding
delay τ = 1, but other values of τ might also provide further information [54–56]. The Bandt and Pompe procedure does
not specify which order for generating ordinal patterns should be privileged. That is, how to specify the ordering of index
series i and, consequently, for a pattern length D, we have D!! possible i-sequences. We face therefore an ambiguity when
local information measures are evaluated. The issue does not affect at all the evaluation of global entropic quantifiers (like
Shannon entropy). Different orders would lead, though, to different ‘‘local’’ information contents. As in the case of the PDF-
histogram, we can reduce drastically the number of available D!! possibilities if we proceed to form patterns of length D
starting from those of lengthD−1. However, some lack of precise definition remains in the assignation of the pattern indices
i. In our current paper,we used the lexicographic ordering given by the algorithmof Lehmer [73], amongst other possibilities,
as it provides the better distinction of different dynamics within the causality Shannon–Fisher plane (see Refs. [33,34]).

5. Conclusions and perspectives

Recording the spiking activity of a very large number of neurons is extremely difficult, and no one has recorded yet
the activity of 1000 (even less, 500) neurons simultaneously. Consequently, when considering a large number of neurons
the computational models developed by Izhikevich are the relevant ones [20–22,27]. Our paper presents a methodology to
characterize the efficiency of large ensembles of neurons. It is important to point out that the interplay between conduction
delays and STDP helps the spiking neurons to produce stable firing patterns that would not be possible without these
assumptions. Each neuron in the network is described by the simple model of spiking neurons of Ref. [20] which has been
described above in Eqs. (1)–(3). In this simplemodel we choose to account for the STDP, with a large proportion of inhibitory
neurons, as its interplay with conduction delays helps the spiking neurons to spontaneously self-organize into groups with
patterns of time-locked activity. Thus, it produces stable firing patterns emulating spontaneous brain activity that would
not be possible without this assumption. We have shown that an increasing degree of interconnectivity m implies greater
data dispersion. In Section 3.1 we have explicitly shown that the variance does not reach a maximum for some given value
ofm as the interconnectivity becomes higher. Thus, this kind of classical analysis would suggests that information does not
saturate as the degree of interconnectivity becomes higher. Eq. (7) implies that Fisher information increases as the network
connectivity becomes higher when considering a large population of neurons. As the estimations through the variance are
not accounting for the ordinal ‘‘structures’’ present in ISIs, they are far from the expected neurophysiological behavior. In
other words, noise correlation causes the amount of information in a population of neurons to saturate as the number of
interconnected neurons grows [61,26]. Our approach allows us to capture such behavior by introducing a simple and robust
method that takes into account the time causality of the ISIs.

In this paper,we showan application of complexitymeasures based on order statistics to simulation results that resemble
neuronal activity when considering a very large number of neurons. This approach provides us detailed insights into the
dynamics of the neuronal networks. The choices of the different lattice sizes of N = 800, N = 900 and N = 1000 are made
to resemble cortical hypercolumns having a percentage of about 40% of inhibitory neurons. The dynamic of the network is
then investigated choosing different degrees of network interconnectivity.

Summing up, the current approach provides us a novel methodology to investigate the causal information structure
of the ISIs when considering a row signal of spontaneous activity of a very simple neuronal network. We are currently
working to include different network structures in the inputs to account for external stimuli within the simulated data, and
to investigate the finite size effects considering different grid sizes. We also plan to extend the current approach to cases
in which external stimuli such as different discrete conductivity values are considered. This would require extending the
current approach currently designed for entropy like quantities to entropy transfer quantities [74]. As non-causal mutual
information fails to distinguish information that is actually exchanged from shared information due to common history and
input signals, the current approach could be very useful when extended to transfer entropy-like quantities. This is not only
important from a theoretical point of view, it might help to determine which areas of the cortex could have a higher level of
information, and to evaluate how causal interactions in neural dynamics would be modulated by behavior. We believe that
this will become an important tool for future research on the encoding capacity of biologically realistic neural networks.
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