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Abstract

Pituitary tumors occur sporadically (95%) or as hereditary
tumors, either associated with endocrine syndromes (2.5%) or
as familial isolated variants (FIPA, 2.5%). In sporadic pituitary
tumors, in addition to the known somatotropic GNAS mutation,
a recurrent mutation of the USP8 gene was recently detected
in corticotropinomas. Thus variable genetic and epigenetic
modifications may mostly be responsible for pituitary tumori-
genesis. However, these different changes seem to modify
common intracellular targets such as distinct tumor suppres-
sors, cell cycle checkpoints or signaling pathways. Thus,
recurrently impaired functions in concert with/or recurrently
impaired genes may trigger pituitary tumorigenesis. This may
also be of relevance for the different steps involved in pituitary
tumor progression such as angiogenesis, invasiveness, pitui-
tary tumor senescence and pituitary carcinoma formation.
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Abbreviations
AIP, aryl hydrocarbon-interacting protein; BC, bromocriptine; bFGF,
basic fibroblast growth factor; cAMP, cyclic adenosine monophosphate;
CABLES1, Cdk5 and ABL enzyme substrate 1; CCND2, cyclin D2;
CDK8, cyclin dependent kinase 8; DAPK1, death associated protein
kinase 1; DPCR1, diffuse panbronchiolitis critical region 1; EGFL7,
EGF-like domain multiple 7; EGFR, epidermal growth factor receptor;
EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit;
EZR, ezrin; FIPA, familial isolated pituitary adenomas; GH, growth
hormone; GHRH, growth hormone releasing hormone; GNAS, gene
encoding the alpha-subunit of stimulatory G Protein; GPR, G-protein
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coupled receptor; HIF-1, hypoxia-inducible factor 1;
LRRC50 = DNAAF1, dynein axonemal assembly factor 1; MEN, multi-
ple endocrine neoplasia; MGMT, O-6-methylguanine-DNA methyl-
transferase; MMP, matrix metalloproteinase; NEBL, nebulette; NDRG4,
N-myc down-regulated gene family member 4; NFPA, nonfunctioning
pituitary adenoma; NR3C1, nuclear receptor subfamily 3 group C
member 1; OIS, oncogene-induced senescence; PCDH15, proto-
cadherin related 15; PDGFD, platelet-derived growth factor D; PKA,
protein kinase A; PKC, protein kinase C; PI3K, phosphatidylinositol 3-
kinase; PRDM2, PR domain zinc finger protein 2; PRL, prolactin; PTTG,
pituitary tumor transforming gene; PTEN, phosphatase and tensin ho-
molog; RB, retinoblastoma; RSUME, RWD-domain-containing sumoy-
lation enhancer; SA-b-gal, senescence-associated b-galactosidase;
SMOX, spermidine oxidase; SSTR5, somatostatin receptor 5; SYTL3,
synaptotagmin-like protein 3; TGF-a, -b, transforming growth factor-a,
-b; TIMP2, tissue inhibitor of metalloproteinase 2; USP8, ubiquitin-
specific protease 8; VEGF-A, vascular endothelial growth factor-A; X-
LAG, X-chromosome-linked acrogigantism; ZAK, Zipper sterile-a-motif
kinase; ZNF676, zink finger protein 676.
Introduction
The pathogenesis of pituitary tumors, the most common
intracranial neoplasia, is still only partly understood.
The recent application of techniques like whole
genome/exome sequencing has led to a considerable
progress in understanding the genetic background of
pituitary tumors but still many questions remain open.
The present review gives a brief overview about the
important current findings in molecular and cellular
pathogenesis of pituitary adenomas and carcinomas.
Pituitary tumors
In general, pituitary tumors can be divided into two
groups, sporadic tumors (>95%) and hereditary ones
(<5%), which develop within distinct complex neuro-
endocrine syndromes [1] or as isolated familiar forms
(Familiar Isolated Pituitary Adenoma, FIPA) [2]
affecting only the pituitary.

Hereditary pituitary tumors
An overview about hereditary pituitary tumors (Table 1)
shows that different underlying mutations lead to the
formation of distinct pituitary tumor subtypes suggest-
ing that the affected proteins preferentially impair
specific endocrine cell types of the anterior pituitary
[1]. In most cases it is unclear through which mecha-
nism the impaired proteins induce the formation of the
tumors. For instance in case of MEN1, in which menin, a
multifunctional protein with multiple interactions with
transcription factors, cell signaling components etc. is
impaired, it is not clear why preferentially prolactinomas

are induced [3]. In case of Carney Complex, it is
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Table 1

Overview about hereditary pituitary tumors (germline mutations).

Syndrome Affected Gene/Protein Impaired functions Penetrancea/Pituitary adenoma
types

MEN1 MEN1 (AD), menin Loss of tumor suppressor function 30–40%; mostly prolactinomas
MEN4 CDKN1B (AD), cyclin-dependent

kinase inhibitor p27Kip1
Impaired cell cycle control,
impaired MAPK/PI3K interaction

High for pituitary tumors; mostly
somatotropinomas

Carney Complex PRKAR1A (AD), regulatory R1a
subunit of PKA

Increased PKA activity 80%; somatotroph hyperplasia and
somatotropinomas

DICER1 DICER1 (AD), endoribonuclease Impaired miRNA processing <2%; corticotroph pituitary
blastoma

Pheochromo-Cytoma
Paraganglioma Syndrome

SDHX (AD), subunits A, B, C or D
of SDH

Impaired respiration, enhanced
metabolic rates

very low; mostly prolactinomas

FIPA/AIPb AIP (AD), aryl hydrocarbon-
interacting protein

Over-activation of the cAMP
pathway

30%; somatotroph adenomas
(55%), prolactinomas (25%), others
(20%)

FIPA/X-LAGc GPR101 duplication, orphan G
protein- coupled receptor GPR101

Over-stimulation of cAMP pathway;
elevated GHRH

100%; somatotroph hyperplasia
and somatotropinomas

Abbreviations: AD, autosomal dominant; AIP, aryl hydrocarbon-interacting protein; FIPA, familial isolated pituitary adenomas; MAPK, mitogen-activated
protein kinase; MEN, multiple endocrine neoplasia; PI3K, phosphoinositide 3-kinase; SDH, succinate dehydrogenase; X-LAG, X-chromosome-linked
acrogigantism.
a Only for pituitary tumors; not for other syndrome associated tumor types.
b The AIP gene is mutated in 25% of FIPAs; the underlying mutations in the vast majority of FIPAs are still unknown.
c Microduplication of Xq26.3 is a rare entity (<1%) in FIPAs but due to early childhood onset of somatotroph hyperplasia/somatotropinomas, X-LAG
is responsible for 10% of all cases of gigantism.
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thought, that the impairment of the R1a subunit and
the thus over-activated cAMP/PKA signaling pathway is
responsible for the predominant development of soma-
totropinomas. An impairment of the cAMP/PKA
pathway may also play a role in the predominant
development of somatotropinomas in AIP mutation
associated FIPAs [2]. It is speculated that impaired in-
teractions of mutated AIP with phosphodiesterases or
with the somatostatin action mediating inhibitory G-
protein leads to an over-activation of the cAMP-PKA

signal pathway [4,5]. The over-stimulation of this
pathway is also supposed to be responsible for elevated
GH production in gigantism causing X-LAG, in which
the orphan G-protein coupled receptor GPR101 spe-
cifically induces childhood-onset somatotropinomas [6].
However, as recently an expression of GPR101 in
GHRH producing hypothalamic neurons has been re-
ported, it has been speculated that over-expression of
hypothalamic GPR101 may be responsible for the
enhanced GHRH levels seen in patients with X-LAG
[7]. This suggests that increased circulating GHRH

contributes to somatotroph hyperplasia and somato-
tropinoma formation in X-LAG.

Sporadic pituitary tumors
Sporadic pituitary tumors arise from the different
endocrine anterior pituitary cell types after neoplastic
transformation by monoclonal expansion. Different
chromosomal loci have been identified that seem to be
altered and associated with pituitary tumor formation
Current Opinion in Endocrine and Metabolic Research 2018, 1:1–8
[8]. In a genome-wide association study in a large cohort
of pituitary adenoma patients (n in total = 3313 pa-
tients) 3 common susceptibility loci (10p12.31, 10q21.1,
13q12.13) have been identified [9]. Putative tumori-
genic genes located in these loci are NEBL, PCDH15
and CDK8. The latter encodes the cyclin-dependent
kinase 8, which is part of the Wnt/b-catenin pathway
that is often impaired in pituitary tumors [9]. To further
identify the genetic background of the tumors, whole
genome or exome sequencing studies have recently

been performed for all major types of pituitary tumors.

In this context, an important progress has been made
with the recent detection of recurrent gain-of-function
mutations in the USP8 gene encoding ubiquitin-
specific protease 8 (USP8) in patients with Cushing’s
disease [10]. About 30e40% (up to more than 60% in
one study) of corticotropinomas in adolescent [10e13]
or pediatric patients [14] and patients with Nelson
tumors [15] have mutated USP8, whereas in silent
corticotropinomas USP8 mutations are lacking [13].

Other types of pituitary tumors have no mutated USP8
suggesting that the mutations are specific for cortico-
tropinomas. Interestingly the mutations seem to be
primate-specific, as in a big cohort of dogs with Cush-
ing’s disease no USP8 mutations were found [16].

USP8 is involved in the ubiquitination/deubiquitination
process which is a mode of post-translational protein
modification to regulate the cellular expression and thus
www.sciencedirect.com
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the function of the target proteins [10]. In a complex
process specific proteins (receptors, signaling proteins,
transcription factors etc.) are ubiquitinated and then
lysosomaly degraded or they are rescued from degrada-
tion by deubiquitination. In the latter process, USP8 is
crucially involved and as the mutation leads to an
increased activity of USP8, corticotropinomas with
mutated USP8 exhibit more stable or higher levels of

proteins regulated by ubiquitination/deubiquitination.
Figure 1 shows the functional consequences of USP8
mutations for two putative targets of USP8, namely
EGFR [10] and SSTR5 [12], and their role in cortico-
tropinoma pathophysiology and pharmacology.

As only USP8 was recurrently mutated in cortico-
tropinomas, the majority of these tumors may have a
variable genetic background. Very recently, loss of
function mutations of the CABLES1 gene have been
found in 4 corticotropinomas from a cohort of 146
Figure 1
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pediatric and 35 adult patients, two in children and two
in young adults [17]. CABLES1 protein is a
glucocorticoid-induced negative regulator of cell
growth. The mutated CABLES1 protein has lost its
inhibitory action on corticotropinoma cell growth, which
may explain that all affected patient developed corti-
cotroph macroadenomas [17].

Recent whole genome and exome studies in somato-
tropinomas have identified more than 120 somatically
mutated genes in these tumors but only the GNAS gene
was recurrently mutated [18,19]. Activating GNAS
mutations had already been detected in 1987 and the
recent studies confirmed that approximately 30% of the
somatotropinomas are affected [18,19]. The GNAS gene
encodes the regulatory a-subunit of a stimulating G-
protein and the mutation changes the a-subunit into a
constitutive active form inducing an over-activation of
the adenyl cyclase and thus the cAMP/PKA signaling
tumor cell
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f tyrosine kinase receptor EGFR and the somatostatin receptor 5 (SSTR5)
itination (receptor rescue) processes. The mutation of USP8 leads to
xpression of EGFR and SSTR5 in USP8 mutated corticotropinoma cells,
the ACTH-stimulating effects of the epidermal growth factor (EGF) and of
h the EGFR, are enhanced and may contribute to the excessive ACTH
corticotropinomas are mostly smaller than those without mutation, as the
lls. Moreover, the elevated SSTR5 levels may also explain why cortico-
atostatin analog pasireotide, which exerts its growth and ACTH inhibitory

Current Opinion in Endocrine and Metabolic Research 2018, 1:1–8

www.sciencedirect.com/science/journal/24519650


4 Pituitary Tumors (2018)
pathway [18,19]. Interestingly, in a cohort of 36 soma-
totropinomas, 7 different mutated genes were identified
whose gene products are associated with the cAMP
pathway suggesting that this signaling cascade is a sus-
ceptibility hotspot for the genesis of somatotropinomas
[18]. In the same study, 11 mutated genes were iden-
tified whose products are involved in calcium signaling
indicating that disturbances of this pathway might also

play a role in somatotropinoma tumorigenesis [18].

In other types of pituitary tumors, no recurrent muta-
tions could be found in whole genome/exome studies. In
thyrotropinomas, only single somatic mutations in in-
dividual tumors were found [20]. Two of the mutated
genes, SMOX and SYTL3 are linked to other types of
cancer such as gastric and prostate cancer (SMOX) or
gall bladder cancer (SYTL3) whereas the other mutated
4 genes (CWH43, FSCAN23, ASTN2, R3DHM2) have
unknown roles [20].

A whole exome sequencing study performed in bromo-
criptine (BC) responsive and non-responsive prolacti-
nomas identified 10 different mutated genes in single
tumors [21]. An inactivating mutation of the PRDM2
gene leading to the down-regulation of the tumor sup-
pressor RIZ was found in a BC-resistant prolactinoma.
RIZ mRNA and protein down-regulation was also found
in BC-resistant lactotroph adenomas without PRDM2
mutations suggesting that this factor could play a general
role in determining BC-resistance in prolactinomas [21].

In a series of 7 nonfunctioning pituitary adenomas
(NFPAs), whole exome sequencing identified no
recurrent gene mutations but 24 different genes with
somatic mutations (1e7 mutations per tumor) [22].
Candidate genes associated with cancer were PDGFD,
NDRG4 and ZAK encoding proteins that act as angio-
genic or growth factors, as cell cycle regulators or as
tumor suppressors in different types of cancer. However,
when trying to validate the mutations of the above
mentioned genes in a larger set of NFPAs, no mutations
of these genes were found in any of the tumors [22].

A genome-wide study in unselected pituitary adenomas
(n = 125) confirmed the recurrent mutations ofUSP8 in
corticotropinomas and of GNAS in GH-producing ade-
nomas. Moreover, mutated MEN1 was found in 2 out of
15 GH/PRL producing adenomas and mutated NR3C1
(encodes the glucocorticoid receptor) was found in 2 out
of 20 corticotroph adenomas [23].
Epigenetic modifications
In contrast to other solid tumors only very few genetic
alterations were found by whole exome/genome
sequencing in pituitary adenomas. Therefore it is
speculated that epigenetic changes may play an impor-
tant role in pituitary tumorigenesis [24]. Epigenetic
Current Opinion in Endocrine and Metabolic Research 2018, 1:1–8
alterations affect the transcription of genes by promoter
methylation/de-methylation or histone methylation/de-
metylation and histone acetylation/de-acetylation or
impair the translation of mRNA through interference
with microRNA (miRNA) [24]. During the past decade
many factors have been identified in pituitary adenomas
which over-expressed or down-regulated due to epige-
netic modifications of DNA or histones. More detailed

analyses of the epigenetically altered factors have shown
that many of them are involved in cell cycle regulation
[25] and that finally the different epigenetically modi-
fied factors have a common target, namely the tumor
suppressors RB or p53, whose downregulation is thought
to play an important in pituitary tumorigenesis [25].
Also in case of aberrantly expressed miRNAs, many of
them target components regulating the cell cycle in
pituitary tumor cells indicating this kind of epigenetic
modification will also influence and stimulate the pro-
liferation of the adenoma cells [26,27]. This suggests

that instead of looking for individual epigenetic alter-
ations and their consequences efforts should be made to
bring the different epigenetic modifications into a
context and to identify - by creating landscapes of
epigenetically modified proteins - the main targets of
the individual epigenetic alterations such as oncogenes,
tumor suppressors or other tumorigenic key factors.
Pituitary tumor progression
After neoplastic transformation, the further monoclonal
expansion of pituitary adenomas occurs very slowly
(proliferation index <1%) and is dependent on
neovascularization through angiogenesis if the ade-
nomas have reached a critical size (approx. 2 mm).
Angiognesis is induced by hypoxia and coordinated by
HIF-1, the master trigger of the production of multiple
factors that are involved in sprouting of vessels into the

expanding tumor, a process that involves also intercel-
lular matrix degradation. Factors related to the latter
process such as cell matrix degrading enzymes and their
regulators, may link neovascularization with pituitary
tumor invasiveness a process describing the penetration
of structures surrounding the pituitary by the tumor
cells. Many factors that are related to pituitary angio-
genesis are also aberrantly expressed in invasive vs. non-
invasive adenomas [28], which has recently been
confirmed for known factors such as bFGF and MMP14
[29,30]. Moreover, EZH2, which epigenetically re-

presses genes involved in tumorigenesis, was identified
as new stimulator of angiogenesis and invasiveness [31].
The product of the RWWD3 gene, RSUME, was shown
to be increased by hypoxia and to stabilize HIF-1a,
inducing the expression of angiogenic factors like VEGF-
A [32]. RSUME is up-regulated in pituitary adenomas
[33], significantly correlated with HIF-1a mRNA levels
and its down-regulation strongly reduced VEGF-A
expression [33] and the invasion of pituitary tumor
www.sciencedirect.com
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cells [34]. Further new invasiveness-specific factors in
pituitary tumors are different miRNAs [35,36] among
them miR-200b (targeting PKCa) [37], miR-106b
(targeting PTEN-PI3K/AKT) [38], the miR106be25
cluster (in invasive corticotropinomas/Crooke’s cells)
[39], long non-coding RNA C5orf66-AS1 [40] and cyclin
B1 [41]. Recent gene expression analysis and whole
exome sequencing in invasive vs. non-invasive pituitary

adenomas identified differently expressed or mutated
genes such as EZR, DPCR1, EGFL7, LRRC50 and
members of the PRDM family [42,43]. A transcriptome
study specifically in invasive vs. non-invasive cortico-
tropinomas showed that CCND2, ZNF676, DAPK1 and
TIMP2 genes are differentially expressed as well as
genes associated with TGF-b and G protein signaling
pathways, DNA damage response pathways and focal
adhesion associated pathways [44]. Altogether these
Figure 2
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findings show the complexity of processes triggering
pituitary tumor invasiveness and much work is needed
to identify the underlying mechanisms.
Pituitary carcinomas
In contrast to other solid tumor types pituitary ade-
nomas change very slowly to a more aggressive pheno-
type and the development of finally lethal pituitary
carcinomas which has not only been observed in sporadic
[45] but also in hereditary pituitary tumors [46], is
extremely rare (<0.1%) [45]. Studies trying to identify
pituitary carcinoma-specific factors often fail as these
factors are also differently expressed in aggressive pi-

tuitary macroadenomas [47]. This was confirmed in a
recent meta-analysis of genes being up- or down-
regulated in pituitary carcinomas in which only factors
ll
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nd invasively growing aggressive pituitary adenomas. This suggests, that
le for pituitary carcinoma development. The mostly late onset of pituitary
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g lifetime. At microadenoma or early macroadenoma state, pituitary tumor
could explain, that in autopsy studies up to 20% of the pituitaries contain
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were identified (Figure 2), which were also differently
expressed in invasive vs. non-invasive adenomas, in
micro-vs. macroadenomas or in poorly vs. densely
vascularised pituitary tumors [45]. So far no pituitary
carcinoma-specific mutation or epigenetic modification
could be identified suggesting that the accumulation of
genetic and epigenetic changes associated with
increased pituitary tumor aggressiveness will finally lead

to development of metastasizing pituitary carcinomas.
Pituitary tumor senescence
Autopsy studies have shown that up to 20% of the elder

population is bearing small, clinical inactive pituitary
tumors, so called incidentalomas, which has led to spec-
ulations about the role of tumor senescence in pituitary
adenoma development. Tumor senescence, which occurs
mainly in benign tumor types, can be induced by specific
cellular stress or by oncogenes (oncogene-induced
senescence, OIS) and leads to an irreversible growth
arrest of the tumor cells without affecting their functions
[48]. Whether pituitary adenomas in autopsy material
have undergone tumor senescence or represent ade-
nomas that developed late in life of affected persons is

not yet clear and needs to be studied by looking for the
expression of tumor senescence-specific markers such as
SA-b-gal. In OIS of pituitary adenomas the PTTG
oncogene seems to play a crucial role [48,49] and pitui-
tary tumor cell-derived, autocrine acting interleukin-6, as
recently experimentally shown in vitro and in vivo, acts as a
crucial trigger of pituitary tumor senescence [50].
Further investigations to elucidate the mechanisms of
pituitary adenoma senescence are needed and will
probably lead to innovative pharmacological concepts in
the treatment of pituitary tumors.

Conclusion
In sporadic adenomas, recurrent mutation are present in
about 30% of somatotropinomas (GNAS gene) and
corticotropinomas (USP8) whereas the genetic or
epigenetic background of the majority of pituitary
tumors is heterogeneous or unknown, which is also the
case in hereditary FIPAs, in which AIP mutations ac-
count for less than a quarter of all cases. There is evi-
dence, that despite of the heterogeneity of the genetic
or epigenetic changes there are common targets of the
different mutated or epigenetically modified factors

such as distinct tumor suppressors (e.g. RB, p53), cell
cycle regulating components or signaling pathways
(cAMP-PKA cascade) suggesting that in the different
pituitary adenomas types recurrently impaired functions
in concert with/or recurrently impaired genes play an
important role in pituitary tumorigenesis. This concept
may also play a role in the determination of the different
steps involved in pituitary tumor progression such as
angiogenesis, invasiveness, pituitary tumor senescence
and pituitary carcinoma formation.
Current Opinion in Endocrine and Metabolic Research 2018, 1:1–8
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