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Abstract

In natural environments, odors are typically mixtures of several different chemical com-

pounds. However, the implications of mixtures for odor processing have not been fully inves-

tigated. We have extended a standard olfactory receptor model to mixtures and found

through its mathematical analysis that odorant-evoked activity patterns are more stable

across concentrations and first-spike latencies of receptor neurons are shorter for mixtures

than for pure odorants. Shorter first-spike latencies arise from the nonlinear dependence of

binding rate on odorant concentration, commonly described by the Hill coefficient, while the

more stable activity patterns result from the competition between different ligands for recep-

tor sites. These results are consistent with observations from numerical simulations and

physiological recordings in the olfactory system of insects. Our results suggest that mixtures

allow faster and more reliable olfactory coding, which could be one of the reasons why ani-

mals often use mixtures in chemical signaling.

Author summary

Odorants are chemicals that bind to olfactory receptors, where they are transduced into

electric signals. Although most natural olfactory stimuli are mixtures of several odorants,

odor transduction has mainly been studied for pure odorants, and current models of odor

transduction are inconsistent for mixtures. Here, we built a mathematical model of odor

transduction that works consistently for both pure odorants and mixtures. Our analysis of

the model revealed that for mixtures, responses are more stable across concentrations and

are faster. Our findings suggest that due to the nature of odor transduction, mixtures are

more effective stimuli than single odorants.
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Introduction

Most studies on olfactory processing have been performed with pure odorants [1–6] or with

mixtures of few odorant components [7–12]. However, in natural environments, animals are

typically confronted with odor cues that are mixtures containing numerous different odorants

[13–16], and the signals used in chemical communication between animals are also predomi-

nantly mixtures [17,18]. While experiments with single odorants have provided valuable

insights into the response profiles of receptors and olfactory processing in the brain, relying on

single odorants alone to understand olfactory processing and coding may be problematic. For

instance, it has frequently been advocated that odor identity is encoded combinatorially by the

distributed response pattern across olfactory receptor types [1,19–22]. However, for single

odorants, response patterns often change significantly when the concentration varies [2,23]

which poses a challenge to concentration-invariant recognition of odor identity. Could the

lack of concentration invariance for single odorants be ameliorated by more complex natural

odors that are mixtures of many odorants?

In this work, we investigated whether and how responses to mixtures of multiple odorants

may differ from responses to single odorants. We first extended a kinetic model of receptor

binding and activation [7,24] to also consider mixture stimuli, resolving the known inconsis-

tencies [9,25] in previous models that attempted a similar extension [7,26]. The simplicity

and generality of our extended model allowed us to analyze the receptor dynamics for mix-

tures and single odorants in a broad, biologically realistic regime not limited to any particu-

lar animal species. We found that the steady state receptor activation patterns at low and

high concentrations are more correlated for mixtures than for single odorants, which makes

mixture responses more stable across concentrations in olfactory receptor neurons (ORNs)

and AL output neurons (projection neurons, PNs). Furthermore, when the stimulus concen-

tration is small, the fraction of activated olfactory receptors immediately after stimulus onset

are higher for mixtures than for single odorants. These results hold both when the mixtures

contain the same number of molecules as the single odorant, i.e. a mixture of A and B con-

tains 50% A and 50% B and is compared against 100% A and 100% B, and when the compo-

nents of the mixture have the same concentration as the single odorant, i.e. a mixture of A

and B contains 100% A and 100% B. This larger receptor activation for mixtures leads to a

shorter first-spike latency of ORNs in the low concentration regime. The reduced first-spike

latency for mixtures is caused by the non-linear dependence of odor-receptor binding on

odorant concentration described by the Hill coefficient, while the more stable response pat-

terns across concentrations arise from the competition of the different odorants in a mixture

for free receptor sites.

We next tested these results by numerical simulations of a simple computational model

of the first stage of olfactory processing in insect brains, the antennal lobe (AL). The parame-

ters in the model were tuned to match the statistics of olfactory responses in ORNs and PNs of

honey bees to single odorants based on experimental data sets [1,27–29]. We verified that our

analytical results for ORNs can also be observed in numerical simulations of the AL model.

We then performed two pilot physiological experiments in Drosophila and honey bees and

observed that the collected data are consistent with our models’ predictions. Finally, we

observed that these novel insights also hold in the original model of Rospars et al [7] and

hence are general consequences of two-stage receptor models and not specific to our proposed

more consistent model. Overall, our results suggest that olfactory encoding for mixtures can

be more rapid and more concentration invariant than for single odorants. Thus, the challenges

of strong concentration fluctuations in natural odor plumes may be alleviated by the preva-

lence of mixtures and the nature of receptor dynamics.

Odorant mixtures elicit less variable and faster responses than pure odorants
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Results

Receptor model for single-components and mixture stimuli

We first formulated a model for odor transduction by olfactory receptors that works consis-

tently for both single odorants and their mixtures. The initial step of odor transduction

involves the binding of odorants to receptors and the subsequent opening of ion channels in

ORN dendrites. Accordingly, receptor dynamics has often been modelled by a 2-step binding

and activation process [7,26], as shown in Eq 1.

_r0 ¼ k� 1r � ðk1cÞ
nr0

_r ¼ ðk1cÞ
nr0 � k� 1r þ k� 2r� � k2r

_r� ¼ k2r � k� 2r�
;

8
<

:
ð1Þ

where k1 (k−1) and k2 (k−2) are the (un)binding constants and (de)activation constants respec-

tively; c is the concentration of the odor; and n is commonly known as the Hill coefficient (See

below for more discussion). r0 and r refer to the fraction of unbound and bound (but not acti-

vated) receptors. The fraction of activated receptors, r�, “receptor activation” for brevity, deter-

mines the strength of excitatory input to ORNs. Before the onset of odorants, all receptors are

in the unbound state (see ref [7]), i.e. we do not include spontaneous receptor activation [30].

This is illustrated in Fig 1a.

The rate of binding (k1c)n is not linear with respect to the stimulus concentration if the Hill

coefficient n is unequal to one, reflecting the experimentally observed non-linearity of the

odor transduction process [7,28]. To consider receptor activation for mixtures, this model

needed to be extended to multiple components. A simple implementation proposed by previ-

ous work [7,26] is to consider competition between odor molecules for receptor sites, and

apply the transduction cascade to each of the components. This approach has two potential

problems. First, the model predictions for receptor activation are inconsistent when we inter-

pret a pure odor as a ‘mixture’ of identical components with arbitrarily partitioned concentra-

tions and compare the results to the single component model in Eq 1 [9]. Second, the model

cannot reproduce the different types of mixture responses observed experimentally [7,31]

(This will be further discussed in the next sections). To deal with these issues, we propose that

the overall binding rate depends on the linear sum of the components while the ratio of the

binding rates of individual components remains the same as in the original model, as shown

in Eq 2.

_r0 ¼
P

j k
j
� 1rj � ð

P
j k

j
1cjÞ

nr0
_ri ¼ wðnÞðki1ciÞ

n r0 � ki� 1
ri þ ki� 2

r�i � k
i
2
ri

_r�i ¼ k
i
2
ri � ki� 2

r�i

;

8
><

>:
ð2Þ

where wðnÞ ¼ ð
P

j k
j
1cjÞ

n
=
P

j ðk
j
1cjÞ

n
and the subscript i indicates that the corresponding

quantities describe the ith component in the mixture. An illustrative description is shown in

Fig 1b.

Computational model of the honey bee antennal lobe

To assess the processing of olfactory stimuli beyond the receptor level we next built a model

for the first olfactory area in the insect brain, the AL. Our model consists of 160 glomeruli,

roughly equivalent to the experimentally observed number [32,33]. ORNs of the same type

express only a single receptor type and respond with the same response profile. They project to

the same glomerulus in the AL, where they synapse onto LNs and PNs. The response of an
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ORN depends on the receptor activation r� of the receptor type expressed by the ORN. LNs

are local to the antennal lobe and modify the PN response pattern through lateral inhibition

(Fig 2a). PNs project to higher brain centers such as the mushroom bodies and the lateral pro-

tocerebrum. In the model, responses from the same type of ORNs, LNs or PNs are approxi-

mated by their ensemble average, and are represented by a single unit. The firing rate of all

units are approximated from a conductance-based leaky integrate-and-fire model with spike-

rate adaptation [34].

The model reproduces key features of ORN and PN responses observed in separate experi-

mental work that was not considered when building the model. It replicates the pulse tracking

ability of ORNs [29] and the wide range of dose-response relationships in PNs [27]. Further-

more, this model supports the hypothesis that the observed decorrelation of glomeruluar PN

response patterns to different odorants [27] and the statistical differences between ORN and

PN responses [8] are predominantly caused by LN inhibition. Please refer to the S1 Appendix

for details.

Using the receptor and AL models we described, we then analyzed whether and how the

responses to single odorants and mixtures differ, as described in the next sections.

Fig 1. Analysis of the steady state receptor activation in our model for single odorants and mixtures at different

concentrations. (a-b) Illustration for our model of binding of odor molecules to olfactory receptors and the activation process of the

receptors for (a) single odorants (b) binary mixtures. (c) The receptor activation, r�, as described by Eq 3. In the limit of small ceff,

receptors with the same Keff are activated to the same degree, regardless of the value of K 0
2
. In the limit of large ceff, receptor activation

always approaches an asymptotic value depending on K 0
2
, regardless of the value of Keff. Legend format: 1st number: Keff, 2nd number:

K 0
2
. (d-e) Examples of the response to binary mixtures as n varies. The activation in response to their constituent components are

shown in black lines. In the limit of small ceff, receptor activation for mixtures can be synergistic, hypoadditive or suppressive

depending on the values of n. In the other limit, the fraction of activated receptors for mixtures is independent of the value of n and

always in between the fraction of activated receptors in response to the constituent components. In (d), component 1: K 0
2
¼ 0:29,

Keff = 8.33; component 2: K 0
2
¼ 0:5, Keff = 20. In (e), component 1: K 0

2
¼ 0:5, Keff = 8.33; component 2: K 0

2
¼ 0:29, Keff = 20.

https://doi.org/10.1371/journal.pcbi.1006536.g001
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Steady state receptor activation for mixtures and the role of the

non-linear transduction process

In order to understand whether and how the receptor dynamics described by Eqs 1 and 2 may

lead to qualitative differences between ORN responses to single odorants and mixtures, we

first compared the model predictions for single odorants and mixtures at the receptor level.

Unless otherwise mentioned, we are considering mixtures with equal absolute concentration c
for all components. The steady state solution for receptor activation, r� and r�mix, in Eqs 1 and 2

can be expressed as

r� ¼
1

1

K0
2

þ 1

Keff
1

ceff

ð3aÞ

r�mix ¼
1

1

Kmix0
2

þ 1

Kmix
eff

1

ceff

; ð3bÞ

Fig 2. Average firing rate responses of ORNs and PNs to single odorants and mixtures. (a) Illustration of the model AL network.

ORNs excite LNs and PNs of ‘their’ glomerulus, and LNs then project with inhibitory synapses to the PNs and LNs of other

glomeruli. There are 160 ORN types and corresponding postsynaptic PNs and LNs in the full model, of which three are illustrated

here. (b-c) The relationships between the stimulus concentration and the average firing rate response for (b) ORN and (c) PN, across

all different odor-receptor combinations. The average responses for binary and ternary mixtures are larger than those for the

components but smaller than twice and triple those of single odorants at low stimulus concentrations. They, however, become

almost identical at high stimulus concentrations.

https://doi.org/10.1371/journal.pcbi.1006536.g002
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where K1 ¼
kn

1

k� 1
, K2 ¼

k2

k� 2
, K 0

2
¼ 1

1þ 1
K2

� �, Keff = K1K2, Kmix
eff ¼

P
j
kj

1

� �n

P
j
ðkj

1
Þn

P
i K

i
eff , K

mix0
2
¼ 1P

i
pi
Ki
0

2

,

pi ¼
kieffP
j
kjeff

, r�mix ¼
X

i
r�i , ceff = cn, and Ki0

2
and Ki

eff refer to the value of K 0
2

and Keff for the ith

odor component in the mixture stimulus. Please refer to S2 Appendix for the derivation of Eq 3.

We have studied receptor activation in response to odorants in the limit of low and high

concentrations. When c is large, 1

K0
2

and 1

Kmix0
2

dominate the denominator of Eqs 3a and 3b.

When c is small, the terms containing 1

Keff
and 1

Kmix
eff

dominate. The fraction of activated receptors

is, therefore, determined by Keff (or Kmix
eff for mixtures) for low concentrations and K 0

2
(or Kmix0

2
)

for high concentrations. This is illustrated in Fig 1c.

It has been observed previously that ORN responses to mixtures can be superlinear to the

sum of their components’ responses (synergetic), sub-linear to the sum but stronger than their

weakest component’s responses (hypoadditive/suppressive) and weaker than their weakest

component’s responses (inhibitory). This grouping and naming of mixture response types is

slightly different from that used in [7,31,35] but it greatly simplifies our subsequent discussion

below. Our model can produce synergetic and hypoadditive/suppressive receptor activation

for mixtures. In the regime of small c, the interaction between odorant molecules is dominated

by cooperative and suppressive transduction mechanics. In our receptor model, this is

reflected by the additional factor w(n). By considering Eq 3 and taking the limit of c! 0, we

found that these transduction mechanics are responsible for both hypoadditive/suppressive

and synergistic mixture interactions in receptors: synergy can be achieved when n> 1,

hypoadditivity/suppression when 0< n< 1. When n = 1, the responses are strictly additive

(Please refer to S3 Appendix for the derivation). To illustrate the role of n, we show a compari-

son of receptor activation in response to mixtures and to their components for two different

combinations of K 0
2

and Keff, and different values of n, in Fig 1d and 1e. Note that even though

it is possible to obtain inhibitory mixture interaction when n� −1 (See S3 Appendix), we do

not consider cases of non-positive n, as in such cases, the activation remains finite (when

n = 0) or blows up (when n< 0) as c! 0, which is highly unrealistic. As such, our receptor

model cannot reproduce inhibitory mixture interactions but, in fact, inhibitory responses are

actually also very rare in insects (See Discussion).

Analysis of experimental data [28] shows that for most receptor types the Hill coefficient

takes values between 0 and 1. This resonates well with the observation that responses to mixtures

are predominantly hypoadditive/suppressive in data from previous experimental works [7,9,31].

In the limit of large c, receptor activation for a mixture is the weighted harmonic mean of

the maximum of the receptor activation for its constituent components when they are present

alone, and the weight pi ¼
kieffP
j
kjeff

of component i is proportional to its activation gain at low

concentrations. This implies that in this limit, mixture interactions must be hypoadditive/sup-

pressive regardless of the value of n, as illustrated in Fig 1d and 1e. This result is supported by

previous work [31], which showed that at high stimulus concentration, ORN responses were

hypoadditive/suppressive in more than 97% of observed cases. This suggests that, at high con-

centration, the interaction between odor molecules of different types is dominated by their

competition for free receptor sites, which gives rise to the suppression of mixture responses [7].

Steady state receptor activation at the population level

Having established the different types of interactions for mixtures on the level of individual

receptors, we next analysed the steady state receptor activation across the population of all

Odorant mixtures elicit less variable and faster responses than pure odorants
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receptor types. In Eq 3, the reaction rate parameters correspond to specific odor-receptor

combinations. If we considered the entire space of possible odorant inputs and the space of all

possible olfactory receptors, we would have a large number of possible odor-receptor combi-

nations. Each combination i is characterized by parameters, xi
1
; . . . ; xin, which are sampled

from parameter sets X1, . . ., Xn, each having the same number of elements as the number of

possible odorant-receptor combinations. If we consider a sufficiently large number of such

combinations, we may approximate xi
1
; . . . ; xin, as random variables with some appropriate

probability distribution each. We will take this view for all parameters in Eq 3 in this and the

following section, which allows us to study the statistical properties of the activation of recep-

tors across the population analytically. Note that we are not applying the above treatments to

the Hill coefficient n, which reflects mainly properties of receptors and is assumed to be odor-

ant-independent as supported by experimental observations [7,9].

Using this formalism, we found that at low concentration, the average receptor activation,

across all glomeruli and all considered odorants, to binary (and ternary) mixtures is larger

than to the single odorants but less than twice (and three times) those of single odorants. As

shown in S3 Appendix, this derives from n being smaller than 1 for most receptors (see above).

We used our antennal lobe model to study the average ORN and PN firing rates for single

odorants, binary mixtures and ternary mixtures, using parameter distributions constrained by

experimental observations (see Materials and methods), as shown in Fig 2b and 2c. We found

that the above results regarding hypoadditivity/suppression of receptor activation for mixtures

can readily be extended to ORN and PN firing rates.

While our antennal lobe model predicts roughly equivalent average firing rates in response

to single odorants and mixtures at high concentrations, we cannot conclude that it is a general

property of the structure of the receptor model (Eq 2). Rather, it could be a consequence of the

parameter choices that were directly guided by experimental data from the honey bees’ olfac-

tory system.

The correlation between response patterns at high and low

concentration is larger for mixtures

Based on our model, the fraction of activated receptors at the limit of low and high concentra-

tion is determined by Keffceff and K 0
2

(Kmix
eff ceff and Kmix0

2
) for odors of a single (multiple) compo-

nent(s), respectively, i.e. at low concentration, activation patterns essentially look like the

pattern of Keff values and at high concentration like the pattern of K 0
2

values. Accordingly, the

correlation of the pattern of activation across receptor types at low and high concentration is

essentially determined by the correlation of Keff with K 0
2
. If Keff and K 0

2
are strongly positively

correlated, weak activation for a given odor-receptor combination at low concentration is

more likely accompanied by weak activation at high concentration, and vice versa (please refer

to Fig 3 for an illustration).

At low stimulus concentration, the fraction of activated receptors for both single odorants

and mixtures depends on the binding and activation rates of their components. At high con-

centration, however, it no longer depends on the binding rate in the case of single odorants,

since essentially all available receptors are bound. Nevertheless, this is not the case for mix-

tures. As a result of odor molecules competing for receptor sites, the proportion of receptors

bound to each component in a mixture depends on the competing ligands’ comparative bind-

ing affinities to the receptors. As the activation rate is not homogeneous for receptors bound

to different ligands, the fraction of activated receptors hence depends indirectly on the binding

rate of the components in mixtures, as in any two-stage competitive binding model. Here, this

effect becomes evident by comparing the expression for Kmix0
2

and K 0
2

in Eq 3, where Kmix0
2

Odorant mixtures elicit less variable and faster responses than pure odorants
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depends on the ‘effective binding rates’ of its components Ki
eff while there is no dependence of

K 0
2

on Keff.

We hypothesize that because of this indirect dependence of the fraction of activated recep-

tors on binding rates for mixtures at high concentration, Kmix
eff and Kmix0

2
would typically be

more strongly positively correlated than Keff and K 0
2
. To test this hypothesis, we computed the

correlations between Kmix
eff and Kmix0

2
, and Keff and K 0

2
using a number of parameter sets with dif-

ferent ranges and statistical distributions, including biologically plausible ones, over many tri-

als (Table 1). We were able to verify that our hypothesis holds true for all trials even if the

distribution of K1 and K2 are skewed (Table 1). For constant Hill coefficient n, the correlation

of Kmix
eff and Kmix0

2
is always higher and there are only rare exceptions to this rule when n varies

for different receptor types. (Table 1, rightmost column). Using Eq 3 and the conductance-

based leaky integrate-and-fire model (see Materials and methods), we further showed in

Table 1 that this higher correlation for Kmix
eff and Kmix0

2
directly translates to higher correlations

between ORN firing rate patterns for mixtures at low and high concentrations.

To determine whether this higher cross-concentration correlation between ORN response

patterns for mixtures holds in more biological settings, we next studied the ORN firing rate

response patterns predicted by our antennal lobe model, which uses statistically constrained

parameter sets for the binding and activation constants, and Hill coefficients as observed

experimentally in honey bees. We calculated the correlations between the steady state ORN

response patterns across various concentrations of the same odorant, averaged over all odor-

ants in our model and over 1000 trials. Fig 4a compares this correlation between single odor-

ants and binary mixtures, and shows that the correlation for mixtures is higher, in particular

when the difference in stimulus concentrations at which we compute the correlations is large.

Note that this effect is not due to the higher number of molecules in mixtures than single odor-

ants at the same concentration, as there are no notable changes to the above results even when

we compensate this discrepancy in the number of molecules by doubling the concentration for

single odorants. The cross-concentration correlation of PNs is also higher for mixtures than

for single odorants, despite the presence of LN-mediated inhibition in the antennal lobe

(Fig 4b). Finally, this correlation grows monotonically with the number of components in the

Fig 3. Receptor activation r� for receptors with different Keff and K 0
2
, where the correlation between the parameters are (a)

strongly positive and (b) non-positive. When Keff is strongly positively correlated with K 0
2
, the fraction of activated receptors for

different receptor types is roughly constant over a large range of effective concentrations, which indicates a high linear correlation

between the activation patterns at different ceff. The opposite is observed if they are not positively correlated. Legend format: first

number 1

K0
2

, second number 1

Kef f
.

https://doi.org/10.1371/journal.pcbi.1006536.g003
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mixture for both ORNs and PNs (For ORNs, we have also verified that the observed mono-

tonic relationship between the cross-concentration correlation and the number of components

holds for every trial).

To experimentally test the model prediction of higher cross-correlation for mixtures, we

performed a pilot physiological experiment. We measured the PN response patterns to aceto-

phenone and hexanol, and their mixture at high and low concentration in the honey bee

antennal lobe, using calcium imaging (Fig 4c–4e). Calcium imaging was used because it allows

simultaneous measurements of responses in several identifiable glomeruli. We observed that

the cross-concentration correlation of responses to the mixture was indeed higher than for

either of the mixture components for 4 out of 5 animals and on average the cross-concentra-

tion correlation of responses to the mixture was also higher (Wilcoxon one-sided signed-rank

test, W = 3, p = 0.16 for acetophenone-mixture; W = 0, p = 0.03 for hexanol-mixture).

The first-spike latency of ORNs is shorter for mixtures

Besides the overall firing rate pattern of glomeruli, the first spike latency of ORNs is of particu-

lar interest for fast odor detection (See eg [36]). The first-spike latency, defined as the time

Table 1.

Probability distribution (min,max)/μ, σ for kn
1

(min,max)/ μ, σ for k−1 (min,max)/ μ, σ for K2 Mean corr difference % of discordant trials

Kmix
eff and Kmix0

2 , and Keff and K 02 (n = 0.65)

Uniform (0.5,5) (0.005,0.05) (0.01,1) 0.061 0

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.095 0

Normal � 4,1.5 0.03,0.01 0.3,0.15 0.038 0

Uniform�� (0.5,5) (0.005,0.05) (1,10) 0.06 0

Uniform�� (0.01,0.1) (0.1,1) (0.01,1) 0.061 0

Exp(uniform)�� (0.01,1) (0.01,1) (0.01,10) 0.063 0

Log(uniform)�� (0.095,4.61) (0.001,0.095) (0.01,1.1) 0.042 0

Average ORN firing rate for mixture and single odorant (n = 0.65)

Uniform (0.5,5) (0.005,0.05) (0.01,1) 0.239 0

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.379 0

Normal � 4,1.5 0.03,0.01 0.3,0.15 0.312 0

Kmix
eff and Kmix0

2 , and Keff and K 02 (variable n)

Uniform (0.5,5) (0.005,0.05) (0.01,1) 0.056 0

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.096 0

Normal � 4,1.5 0.03,0.01 0.3,0.15 0.029 0

Average ORN firing rate for mixture and single odorant (variable n)

Uniform (0.5,5) (0.005,0.05) (0.01,1) 0.083 0.9

Exp(uniform) (0.63,31.6) (0.006,0.1) (0.01,1) 0.308 0

Normal � 4,1.5 0.03,0.01 0.3,0.15 0.101 0.7

Numerical study of the difference in the mean correlation between Keff and K 0
2

and that of Kmix
eff and Kmix0

2
, and the cross-concentration (c = 10−4 and c = 10−1) correlation

between the response patterns, in terms of firing rate, to binary mixtures and single odorants over 1000 trials. The correlation of Kmix
eff and Kmix0

2
is higher for all trials and

for all choices of parameter sets. The variability of the “transduction constant” n (n0: log-normal distribution, μlogn0 = 0.44, σlogn0 = 0.22, n0 = nlog10, chosen based on

experimental measurements by Gremiaux et al (2012)), weakens the effects and introduces discordance in some of the trials. However, the cross-concentration

correlation of the response patterns for mixtures is still significantly higher than that of single odorants and instances of discordance are rare. The consideration of

independent distributions for kn
1

and k−1 but not similarly for k2 and k−2 here is meant to introduce heterogenity to ‘stress-test’ our hypothesis. We have tried scenarios

where we consider distribution of K1 as a whole, and also independent distribution for k2 and k−2. The results are qualitatively the same.

�A hard lower bound of 0 is imposed for unbounded distributions.

�� Non-biologically plausible parameter sets

https://doi.org/10.1371/journal.pcbi.1006536.t001
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Fig 4. Pattern stability across concentrations for single odorants and mixtures. (a) Pearson’s correlation coefficients for ORN

response patterns across various concentrations for single odorants and binary mixtures predicted by our AL model using

constrained parameters as described in the Methods. They are calculated by averaging over all odorants in our model and over 1000

trials. Top panels from left to right: Correlation of a single odorant with itself, correlation of a single odorant with itself at twice the

concentration, correlation of the mixture with itself; bottom row: differences in the corralations in the top row, between single

odorant and mixture, between single odorants at twice the concentration and mixture, and between single odorant and single

odorant at twice the concentration. The cross-concentration correlations for binary mixtures are higher. (b) Pearson’s correlation

coefficients for ORN and PN response patterns at a low concentration (c = 3�10−N for single odorants; 1.5�10−N for binary

mixtures;10−N for ternary mixtures. Top: N = -2; Bottom: N = -4) and a high concentration (c = 3�10−1 for single odorants; 1.5�10−1

for binary mixtures; 10−1 for ternary mixtures) as predicted by our AL model. Concentrations were chosen so that the stimuli

contained the same number of molecules each. Correlations were calculated as in a except that the results for PNs are from a single

trial. The error bars for ORNs are the standard deviation across different trials. The correlation increases with the number of

components in the stimuli for both ORN and PN. (c) Average AL response over 1.5s after odor onset of a representative animal as

measured by calcium imaging. Left and right panels correspond to high and low concentrations respectively (one order difference).

ACE: acetophenone; HEX: hexanol and MIX: mixture of ACE and HEX at 1:1 ratio. White squares mark the identified glomeruli

used for the analysis. (d) Normalized activity elicited by odors at low and high concentrations (left and right columns in each pair).

The gray scale used for the columns indicates the order of the glomeruli ranked according to the magnitude of their responses

(lowest responding glomerulus: white; highest: black). The response pattern for mixtures is more stable than for both of its

components, as illustrated by, in general, the higher similarity in height and color tone within each pair of bars (e) Pearson’s

correlation coefficients between response patterns elicited by low and high odor concentrations. The correlation coefficients were

calculated among patterns obtained by averaging three replicate measurements. Colored lines correspond to data of 5 bees. Black

circles and error bars correspond to mean and SEM of the 5 bees. Statistical analysis (Wilcoxon one-sided signed rank test) was

based on Fisher transformed correlation values (Nbee = 5; acetophenone-mixture, p = 0.16; 1-hexanol-mixture p = 0.03).

https://doi.org/10.1371/journal.pcbi.1006536.g004
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required for an ORN to fire the first spike after stimulus onset, is primarily determined by the

initial receptor activation, r�(t) for small t, before the neuron fires the first spike. We consider

the full sets of equations for single odorants and mixtures and find an approximation for r� and

r�mix at the limit of small c and t. In the approximation, we assume that kn
1
� k� 1 and kn

1
� k2.

This is realistic, because without these assumptions, the established high temporal resolution of

ORN responses to repetitive odorant stimuli [29] (see also S1 Appendix) cannot be reproduced

and the magnitude of ORN responses at different concentrations would be unrealistic. In the

limit of short time after stimulus onset, we find (see S4 Appendix for the derivation)

r� tð Þ ’ keffceff
t2

2
ð4aÞ

r�mix tð Þ ’ k
mix
eff ceff

t2

2
; ð4bÞ

where keff ¼ kn1k2 and kmix
eff ¼ wðnÞ

P
i k

i
eff . To ensure that any differences in receptor activation

are not caused by the disparity in the number of molecules present in the single odorants and in

the mixture, we consider mixtures where each component has concentration c0, and single

odorants at concentration Nc0, where N denotes the number of components. If the Hill coeffi-

cient n is smaller than 1, which holds for most receptors, we find that in the initial response (i.e.

when t is small), the fraction of activated receptors for a mixture (Eq 4b) is larger than the aver-

age fraction of activated receptors for its constituent components with the same number of

molecules (Eq 4a). This is a consequence of competing effects of non-linearity in mixture inter-

action, represented by the factor w(n), and odor transduction, represented by the non-linear

scaling of receptor binding with stimulus concentration, cn. Under very general assumptions

how latency depends on the fraction of activated receptors, this implies that the first-spike

latency is shorter for the mixture (see S4 Appendix for the derivation).

Fig 5a shows the average first-spike latency for all odorant-ORN combinations for single odor-

ants, binary mixtures and ternary mixtures in our antennal lobe model. The average first-spike

latency decreases with the number of components in the stimuli even after taking into account

the discrepancy of the number of molecules as described in the previous paragraph.

To experimentally test the model prediction of shorter first-spike latencies for mixtures, we

recorded spike responses of 2 different types of DrosophilaORNs to four binary mixtures and

their constituent components using single sensillum recordings (Fig 5b) (We used Drosophila
because recordings from identified ORNs are not currently possible in honey bees). In line

with the results of our analysis in the previous paragraph and S4 Appendix, the first-spike

latency to the mixture was shorter than the average of the first-spike latencies of their compo-

nents at twice the concentration for most trials (70 out of 73, Fig 5c), which correspond to vari-

ous animal-odor-receptor combinations. Fig 5d shows that for many of these combinations

(57 out of 73), the first-spike latency for a mixture was even shorter than the latency for the

constituent component which evoked the shorter latency.

The enhanced robustness remains for mixtures with more components

and also mixtures with components having unequal concentrations

Even though we have limited our analysis of cross-concentration correlations and responses

latencies in this work to 2 and 3-component mixtures, one can easily verify, by repeating the

analysis and simulation for other numbers of components, that cross-concentration correla-

tions increase and response latencies decrease as the the number of components in a mixture

increases. However, the results for more complex mixtures can already be predicted by
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considering the following argument: We can interpret a ternary mixture as a binary mixture of

a binary mixture of two components with the third component. We can then consider the

binary mixture as a single odorant by transforming Kmix0
2

and Kmix
eff in Eq 3b into Ki0

20
and K 0eff ,

and apply the analyses in the previous sections with the third component being the second

odor in the mixture (taking the value of K20

2
and K2

eff). This procedure can be repeated to obtain

results for mixtures having an arbitrary number of components. The mathematical proof for

the validity of this approach is shown in the S2 Appendix (Eq. 29). Following this idea, one can

clearly see that any of the considered changes in response properties with respect to the single

odorant case must be monotonic as the number of components in the mixtures increases.

In the analysis of our model we only considered cases where the concentration of each com-

ponent in the mixture is identical. If the concentrations of the components in a mixture are

not identical, we can add weighting terms to the terms in the summation in Kmix
eff and Kmix0

2
, so

that Kmix
eff becomes a weighted sum of K i

eff while the weight pi in Kmix0
2

is further weighted by the

effective concentration for different components (S2 Appendix, Eq. 26). Thinking heuristi-

cally, the pure odorants and their mixtures form a continuum from having a single odorant

Fig 5. ORN first-spike latency for single odorants and mixtures. (a) The average first-spike latency predicted by our model ORNs

decreases with the number of components in the odor stimulus. This effect is most pronounced when the stimulus concentration is

low. The shorter first-spike latency for mixtures cannot be fully explained by the higher number of odor molecules in stimuli with

more components compared to their counterparts with less components at the same concentration, since the latency for binary

mixtures (dark cyan) is lower than that for a single odorant with doubled concentration (dashed line). Please note that all odor-

receptor combinations with latency greater 100ms were taken to be 100ms when we calculate the average latency. (b) Example

voltage traces obtained from recordings from an ab2 sensillum stimulated bymethyl butyrate, ethyl acetate and their mixture. The

traces are filtered by a 100 to 3000 Hz bandpass. Large spikes belong to the OR59b-expressing ORN. (c) Recorded first spike latencies

fromDrosophilaORNs for binary mixtures and average latencies of their constituent components at doubled concentration, for 73

different animal-odor-receptor combinations. For the majority combinations (70 out of 73), the latency for mixtures is smaller than

the average latency for the two components on their own. (d) Same as (c) but the comparison is made between mixtures and their

constituent components with shorter latency at doubled concentration. The latency for mixtures is still smaller for most

combinations (57 out of 73). The total number of measuremens for black/gray/red/blue is 17/20/21/15.

https://doi.org/10.1371/journal.pcbi.1006536.g005
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through unbalanced mixtures with just a very small proportion of a second odorant to a mix-

ture of equal proportions. Receptor activation as calculated from Eq 2 will reflect this contin-

uum and so will our results: As the solution for Eq 2 has no singularities as ci varies, they will

not be affected abruptly, but the size of the mixture effects will decrease smoothly as the ratio

of components becomes more unbalanced. Numerical simulations confirm this as illustrated

in Fig 6, which also shows that mixture effects can still be observed when the components in

the mixture differ significantly in concentration.

Our findings are qualitatively unchanged when using the previous,

inconsistent model

The shorter response latency and the more stable response patterns across concentrations

were deduced from a modified version of a standard receptor model [7,24,26] that was made

Fig 6. (a) Comparison between cross-concentration correlations of ORN response patterns for mixtures with their components

under various ratios, computed using our receptor model. The size of the mixture effects will decrease smoothly as the ratio of

components becomes more unbalanced, but the mixture effects can still be observed when the composition of the mixture is highly

unbalanced (dark green). In addition, the mixture effects can still be observed even when considering previous models [7]. (b) Cross-

concentration correlations of ORN response patterns and (c) first-spike latency for mixtures and single odorants when considering a

previous model [7]. The mixture effects described in the main text can still be observed: Latency is shorter and cross-concentration

correlations is higher as the no of components in the mixtures increase. Please refer to Fig 3b (bottom panel) and Fig 4a for a direct

comparison with the results of our receptor models.

https://doi.org/10.1371/journal.pcbi.1006536.g006
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consistent for self-mixtures by adding the non-linear term w(n). However, it is important to

note that the results are not caused by the addition of this term, as explained below. The more

stable response patterns across concentrations for mixtures hinges on competition between

different ligands for receptor sites at high stimulus concentrations. Thus, it would be observed

in any 2-step binding and activation model. For first-spike latency, it is clear from the deriva-

tion of Eq. 35 and 45 in S3 and S4 Appendices that the non-linear term w(n) actually leads to

less activated receptors during the initial response to mixtures, which is, however, offset by the

non-linear scaling of receptor binding and hence eventual fraction of activated receptors with

stimulus concentration. Without the term w(n), the first-spike latency for mixtures would be

even shorter. In essence, both more stable response patterns and shorter first-spike latencies

hold for general two-stage receptor models and therefore can also be observed in previous

models [7,26]. These deductions are verified by Fig 6, which show the results obtained using

the models in ref [7].

Discussion

We have extended a model of receptor binding and activation to mixtures, which can generate

a large range of experimentally observed mixture interaction types [7,31] and addresses a

known inconsistency of previous models [7] (see next section). The mathematical analysis of

our model predicts qualitative differences between receptor activation for single odorants and

for odorant mixtures, which leads to the ORN response patterns being more stable across con-

centrations and ORN response latencies being shorter for mixtures than for single odorants.

These observations were confirmed in subsequent numerical simulations of a model of the

honey bee AL and are consistent with our pilot physiological experiments in honey bees and

Drosophila. A stronger verification of our predictions in physiological experiments will require

testing many more different odorant combinations and is beyond the scope of this work.

Comparison of our receptor model for mixtures with previous models

Previous work on extending the receptor model [7] led to conceptual inconsistencies, where

the receptor activation for a single odorant, when interpreted as a mixture with itself, was

unequal to the receptor activation for the same concentration of that odorant, when inter-

preted as a single odorant. In addition, the experimentally observed hypoadditive/supressive,

synergistic and inhibitory mixture interactions [7,31] cannot be reproduced with the previous

models [7]. By adding the non-linear term w(n), we now can reproduce hypoadditive/suppres-

sive and synergistic receptor activation with our receptor model, but not inhibitory ones (see

Discussion below). The factor w(n) relates to how odorants interact with receptors during the

binding process when other odorants are present. As the nature of the chemical reactions

involved in odorant receptors remains largely unknown for insects, we refrained from specu-

lating on the biophysical mechanism corresponding to w(n).

Alternative solutions to the inconsistency problem have been proposed in previous works

[9,25]. In [9], the receptor equations are linear throughout (which would correspond to w(n) =

1 in our model), and a non-linearity, described by a Hill coefficient and other parameters, is

added to the steady state solution of these equations afterwards. [25] only considers steady

state solutions, using different Hill coefficients for the same receptor type when it is stimulated

by different odorants and their mixtures. It is non-trivial to ascertain whether and how the

expressions for the steady state in [9,25] can be related to the steady state solutions of a consis-

tent system of dynamical equations. Therefore, the methodology described in refs [9,25] does

not allow us to study receptor activation outside the steady state regime. The analysis of initial

receptor activation presented here, for example, would be impossible with this approach. A
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more recent study [35] presented a model of the olfactory transduction cascade in mammalian

olfactory receptor neurons and considered the effect of masking, leading to weaker ORN

responses for mixtures than for their weakest component. However, in insects, this kind of

inhibitory mixture interaction is extremely rare [37–41]. For example, in the Colorado potatoe

beetle, inhibitory mixture interactions were observed in only 1 out of 117 odorant-receptor

combinations [41]. The mechanism of masking in the model in [35] is based on alterations of

cAMP binding affinity. However, in contrast to mammalian receptors, which are metabotro-

pic, insect olfactory receptors act as ligand gated channels [42,43], with delayed, metabotropic

auto-regulation [44] and the masking mechanism described in [35] does not apply. This differ-

ence might explain the lack of observations of masking and inhibitory mixture effects in

insects.

Strengths and limitations of our AL model

Our antennal lobe model is not built by directly fitting individual ORN responses to honey bee

data, but by matching the statistics of responses (such as mean, standard deviation, and corre-

lations of responses) across different receptor types and a wide range of odorants, between the

model and experiments. This allows us to model the full receptor repertoire of honeybees in

spite of limited data and study the statistical properties of their responses to different types of

stimuli, with the trade-off that a generated model glomerulus may not correspond to any par-

ticular glomerulus in a honey bee. Generally speaking, experimental data of brain activity is

often variable due to many factors, e.g. noise, experience-dependent plasticity and possible

genetic diversity within a species, and such data is seldom complete. It may, therefore, often be

more productive to reproduce the statistics of the observed responses, rather than detailed

measurements of individual cells, especially if coding strategies are based on the overall activity

pattern across many different types of sensory cells [2,8,20].

We used the responses of 28 glomeruli to 16 odors [1] to estimate the statistics of the fraction

of activated receptors of honey bee receptors. Honey bees have 160 glomeruli, and correspond-

ing receptor and ORN types. There are three studies, which measured responses to a similar or

the same set of odorants as in [1] in additional 35 to 43 honey bee glomeruli [5,45]. These stud-

ies reported similar response properties in the other glomeruli as in the 28 glomeruli selected

for this study. We, therefore, are confident that the wide range of response statistics observed in

the 28 glomeruli of [1] is sufficiently large and typical to generalize to other glomeruli.

When generating the ORN responses, we assumed that all the interactions take place at the

receptor level, i.e. an ORN would integrate input from receptors expressed on its dendrites,

but ORNs do not interact with each other. Experimental measurements have shown that for a

minority of odorant-receptor combinations, ORN responses can decrease with concentration

[6,46]. A plausible explanation for this observation are non-synaptic interactions between

ORNs. It has been reported in Drosophila that excitation of an ORN can inhibit its neighbor(s)

in the sensillum, typically of other types, via ephaptic interactions [47,48]. This may cause the

response of an ORN type to weaken as odorant concentration increases if its neighbors’

responses strongly increase with concentration. However, it is unclear whether the same effects

would exist in other animals, which have different sensilla structure. Tailoring the model to a

specific animal to include, e.g. ephaptic interactions, would require more detailed consider-

ation of the sensilla structure of the said animal and is beyond the scope of this work.

The role of the 2-step binding and activation process in olfactory receptors

There are two distinct chemical processes taking place in olfactory receptors: binding of odor-

ant molecules to receptors and activation of bound receptors [7]. Our model results (Eq 3)
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elucidate how the olfactory response depends on each process. In the limit of low stimulus con-

centration, we may consider the combination of the binding and activation process to be a sin-

gle effective binding process, with an ‘effective binding rate constant’ Keff (or Kmix
eff for mixtures).

However, in the limit of high stimulus concentration substantial differences become apparent

as essentially all receptors are bound. For single odorants, receptor responses depend mainly on

the activation process, mathematically evident from K 0
2

being independent of the rate constant

K1. For mixtures, however, Kmix0
2

does depend on the values of K1 of the mixture components.

This implies, as we have shown, that the two-stage process reduces the correlation between the

response patterns induced by a single odorant at different concentrations but preserves more of

this correlation for mixtures. Having a two-stage process, hence, appears adaptive for recogniz-

ing mixture stimuli in the face of strong variations in overall concentration as observed in natu-

ral odor plumes. As shown and discussed in the section ‘Our findings are qualitatively

unchanged when using the previous, inconsistent model’, these results are not a consequence of

our modified mixture model but apply more generally to two-stage receptor binding models.

Implications of our results for olfactory coding

An important question is how the lower average first-spike latency and higher correlation

between responses across concentrations for mixtures affect coding of olfactory information,

e.g. odor identity. Behavioral experiments [49,50] suggest that odor identification can be

achieved on the time scale of a few 10s to 100 milliseconds. What coding schemes are possible

under such temporal constraints? One possibility would be to sample response patterns for a

fixed amount of time, after which a decision about odor identity is made [51–53]. With lower

latency, more ORNs could be recruited for the identification of a particular odor. This implies

larger information capacity of the system for mixture stimuli. Another possibility would be to

determine the odor identity by the responses of a fixed number of ORNs [53,54]. In this case,

the lower average latency for mixtures allows them to be identified by the system more quickly.

In natural environments, odorant molecules move through turbulent fluids (air or water)

in filaments, forming complex odorant plumes, which results in rapid and unpredictable fluc-

tuations in the concentration of odors encountered by animals [55,56]. Therefore, to identify

an odor, the response of the olfactory system needs to be robust against changes in odor con-

centration. The higher correlation between response patterns across concentrations for mix-

tures than for single odorants is therefore conducive to odor identification.

One may argue that such correlations hinder the coding of odor concentration. There are

several alternatives of how concentration information can be coded, as discussed in previous

work. For instance, information for concentration may be coded by other features of the

response, like the proportion of activated glomeruli [3,57], or by utilizing special connectivity

patterns between different sensory units acquired through learning [58]. It is also possible that

concentration information is encoded by the temporal patterns of input, for instance the first-

spike latency of all or a subset of units [59] or the degree of synchrony between the firing of dif-

ferent units [60]. Therefore, the improved identity coding due to more invariant response pat-

terns at steady state does not necessarily compromise concentration coding, but it remains an

open question how exactly identity and concentration coding may be simultaneously achieved

[3,59,61].

Materials and methods

Antennal lobe model of honey bees

Our model consists of 160 receptor types, roughly corresponding to the number observed in

honey bees [32,33]. The receptor activation patterns in the model in response to odor stimuli
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were generated in a multi-stage process. The steady state activation of 28 olfactory receptor

types for time-invariant odor inputs at saturating concentration to 16 different odors was

directly adopted from corresponding experimental measurements of glomerular responses

with bath-applied Ca2+ dyes at high odor concentrations [1]. We then generated the activation

of the remaining 132 receptor types to the same 16 odors using a method inspired by previous

work [62]. The activation patterns are generated from a combination of previously generated

activation patterns, including the data in ref [1], and noise. The ratio of the combination is

determined by a target similarity matrix of odor activation patterns and a global variable

which determines the overall amount of correlations across the activation patterns. The

parameters are chosen such that the statistical distribution of the pairwise correlations of

receptors across odors in the generated activation patterns matches that of the 28 receptors

adopted from data. The generated activation patterns are then rescaled such that the mean and

the variance of the activation patterns for all receptor-odor combinations of the activation pat-

terns across odors for each receptor match the experimentally observed values in [1].

Receptor responses to chemically similar odors are correlated [5]. In our model, such corre-

lations are quantified using the normalized Euclidean distance dij between the response vectors

of two different odors i and j, denoted by xi and xj.

dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

kðxik � xjkÞ
2

N

s

; ð5Þ

where N is the total number of receptor types and the subscript k labels the different receptor

types. The steady state activation of all previously generated receptor types are then iteratively

tuned so that the Euclidean distance matrix d for the generated activation patterns matches the

distance matrix observed in the experimental data. The tuning processes are designed to limit

changes to the statistical quantities calibrated previously.

Upon completion of this process, we have determined the steady state activation of receptor

types in response to stimuli at high, time-invariant concentration. The dynamical receptor

activation for each odor-receptor combination to stimuli at arbitrary concentration are then

generated by Eqs 1 and 2. To obtain the values of the parameters in these equations, we note

that the steady state activation in response to a time-invariant stimulus with respect to stimulus

concentration can be described by Hill curves [7] (see also S2 Appendix).

g Cð Þ ¼
gmax

1 þ exp n log
10
C � C1

2

� �h i ; ð6Þ

where g is the ORN response, and C = log10c is the logarithm (to base 10) of the concentration

c. gmax, the Hill coefficient n and the inflection point C1
2

provide partial constraints on parame-

ters in Eqs 1 and 2. n and C1
2

are sampled from log-normal and normal distributions as experi-

mentally observed [28], while gmax corresponds to the amplitude of the steady state activation

generated previously. In dealing with the remaining degrees of freedom, we take into account

the typical timescale of dynamics in the antennal responses measured experimentally [29].

AL network

In our model, ORNs provide excitatory input to PNs and GABAergic local interneurons

(LNs), and all ORNs of a given type project to the same glomerulus. PNs also receive inhibitory

input from LNs of all other glomeruli (Fig 2a). To be consistent with previous findings [63],

the connections from the LN in glomerulus j to the PN and LN in glomerulus i have a weight

wij, which is a function of the correlations ρij between the corresponding ORN response

Odorant mixtures elicit less variable and faster responses than pure odorants
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patterns,

wij ¼ ð1 � dijÞ½w0 þHðrijÞ � rijwcorr�; ð7Þ

where δij is the Kronecker delta,H is the Heaviside step function, w0 and wcorr are normal dis-

tributed random variables, and ρij is the Pearson correlation between the response of ORN i
and j when stimulated by odors at high concentration, as obtained in the previous section:

rij ¼
CovðxTi; xTjÞ
sðxTiÞsðxTjÞ

: ð8Þ

The strengths of ORN-LN and ORN-PN connections are uniform. The strengths of all con-

nections are then jittered by a small amount of noise. Please refer to Table 1 for the details of

the parameters.

Conductance-based leaky integrate-and-fire model

To obtain the firing rate response of ORNs, LNs and PNs, we approximated the dynamics of a

neuron by a conductance-based leaky integrate-and-fire model with adaptation [34,64].

teff tð Þ
dV
dt
¼ � V þ RIeff tð Þ � RIadapt tð Þ

tadapt
dIadaptðtÞ
dt

¼ � Iadapt tð Þ

Iadapt ¼ I
max
adapt at t ¼ tf ; ð9Þ

where V is the membrane potential, R is the membrane resistance, and Iadapt is the adaptation

current, which is set to Imax
adapt just after firing events at tf and decays exponentially with decay

time constant τadapt. Ieff and τeff are the effective input current and effective membrane time

constant having taken into account the conductance effects [64]. They are described by

RIeff tð Þ ¼
VeðgeðtÞ þ VigiðtÞ þ Vrgl

gtotalðtÞ
;

teffðtÞ ¼ tm=gtotalðtÞ;

gtotalðtÞ ¼ 1þ geðtÞ þ giðtÞ; ð10Þ

where Vr is the membrane rest potential, Ve and Vi are the reversal potentials of excitatory

and inhibitory synapses, gl is the membrane leak conductance, gtotal(t) is the total conductance

of the neuron, and ge and gi are the excitatory and inhibtory conductances. For ORNs,

ge ¼ gORN
X

i
r�i , where gORN is a constant, and gi = 0. For PNs and LNs, ge and gi, as a first

order approximation, are proportional to the firing rate of ORNs and LNs [65]. For PNs, we

also add constant background input into ge(t) and gi(t) for both ORNs and PNs so that they

fire spontaneously at 5–20Hz. We then set R = 1 by absorbing it into other variables. When V
reaches the threshold Vth, the neuron fires a spike and V is immediately reset to Vreset.

We then adopted the adiabatic approximation by considering the input to be quasi-

stationary on the time scale of neuronal firing, such that τeff(t) and Ieff(t) are taken to be con-

stants. With the additional assumption of noise-free input and setting tf = 0, the membrane
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potential before the next firing event can be obtained analytically as follows:

V ¼ Vresete
� t
teff þ Ieff 1 � e

� t
teff

� �
�
tadaptImax

adapt

tadapt � teff
e
� t

tadapt � e
� t
teff

� �
; ð11Þ

The instantaneous firing rate of the neuron can then be obtained using:

n ¼
1

tthres þ trefract
; ð12Þ

where tthres is the time when V = Vth, which is to be obtained numerically, and trefract is the

absolute refractory period. We then used Eqs 11 and 12 to calculate v at different time points

for fluctuating input. Please note that v, by our definition, does not directly relate to temporal

information of spike patterns, e.g. the inter-spike interval between any given pair of spikes.

In this work, we take Imax
adapt ¼ I

base
adapt

ffiffiffiffiffiffiffiffiffiffiffiffiX

i
r�i

q

for ORNs, and Imax
adapt ¼ I

base
adapt

ffiffiffiffiffiffiffi
npre
p

for PNs and

LNs, where Ibaseadapt is a constant and vpre is the firing rate of the corresponding units in the previ-

ous iteration. However, qualitatively similar results can be obtained by assuming Imax
adapt to be

constant.

All parameter values for the model can be found in Table 2.

First-spike latency of ORNs

The first-spike latency of neurons, defined by the time taken for the neuron to fire the first

spike after stimulus onset, cannot be obtained from the instantaneous firing rate. Instead, we

directly integrate Eq 9 numerically, assuming that V takes a mean value Vmean, which is based

on background inputs, at t = 0 and obtain the first-spike latency by finding the time t at which

V = Vth. For the purpose of this calculation we were still assuming noise-free input. We also

assumed that the neurons have not been stimulated before, and since we are only considering

the period until the first spike occurs, we used Iadapt = 0. An absolute latency of 1ms is added to

the latency generated by our simulation to mimic the time required for the diffusion of odor

molecules in the sensilla.

Single sensillum recordings in Drosophila
Experiments were performed on female 1–9 days old Drosophila melanogaster wild type Can-

ton S flies. The flies were raised at 25 ˚C on a standard Drosophilamedium, with a 12/12 h

day/night cycle. Single sensillum recordings were performed on large basiconic ab2 and ab3

sensilla of the left antenna. The flies were fixed in plastic pipette tips, and the left antenna was

glued with low melting wax (1:1:1 mixture of n-Eicosan, myristic acid and dental wax) to get

access to the medial side. The recording and reference electrodes were tungsten wires

(diameter = 0.1mm), which were electrolytically sharpened with AC-current in a 0.5 M KOH

solution. The recording electrode was inserted into the sensillum with a micromanipulator

(Kleindieck). The reference electrode was inserted into the complex eye. Signals of the record-

ing electrodes were differentially amplified against the reference electrode using 1000x gain

and bandpass-filtered between 1 and 8,000 Hz (MA 103 and MA 102, Universität zu Köln).

Noise from the powerline was reduced by a Hum Bug (Quest Scientific), and signals were

digitized by a Micro 3 1401 (CED) A/D converter. Odorant stimuli were controlled using

the Spike2 software (version 7.03; CED). The identity of sensilla was determined by their

morphology, and also by comparing their responses to diagnostic odorants (methyl acetate,

2-butanone, isobutyl acetate and ethyl butyrate; all diluted 1:1000 in mineral oil) with previ-

ously reported responses [66].
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Odorant stimuli were generated by opening the valves of a custom made olfactory stimula-

tor [67] for 20 ms. The interstimulus interval was 60-70s. Pure odorants were stored in glass

vials and the headspace was drawn into an air dilution system in which a defined amount of

odorized air could be removed and replaced by clean air via flowmeters (042-15-GL for the

first dilution step, 112-02GL for the 10x dilutions, Analyt-MTC). The rate of air flow per odor-

ant channel was 300 ml/min and the total rate of air flow at the outlet of the stimulator was

2.1L/min resulting in an airspeed of 1.2 m/s. We used methyl butyrate, ethyl acetate, 2-buta-

none, E2-hexenyl acetate, Ethyl 2-methylbutanoate (all Sigma-Aldrich) as odorants at concen-

trations X and 2�X, with X being the minimum concentration at which spike rate responses

Table 2. Parameters used in the AL model.

Random variables p.d.f.� value/μ, σ units remarks

Parameters for the Hill curves in (2) and receptor dynamics

C1
2

normal -3, 1 hard boundary: � 4:4 < C1
2
< � 0:4

n0 log-normal 0.45, 0.3 hard boundary: 0.7 < n0 < 3.5

k1 normal and then scaled 1.2, 0.15 ms-1

scaling factor: 1ffiffiffiffiffiffi
10x
p ; x ¼

C1
2

n
0

log10

hard boundary: 0.1 < k1 < 5000

k2 normal 0.1, 0.01 ms-1 hard boundary: k2 > 0

Note: k−1 and k−2 are constrained by the above. Hard boundary: k−1 > 0.01, 0 < k−2 < 50

AL network connectivity between units

(Note in all cases hard boundaries of mean ± 2 standard deviations are applied)

w0 normal 0.006, 0.002

wcorr normal 0.01, 0.001

gORN constant 2 nS

ORN-PN normal 0.045, 0.01

ORN-LN normal 0.013, 0.003

LN-PN normal 0.04, 0.01

LN-LN normal 0.004, 0.001

Spiking model

τm constant 20 ms

Ve constant 50 mV

Vi constant -75 mV

Vr constant -70 mV

gl constant 1 nS

Vth constant -50 mV

Vreset constant -70 mV

trefract constant 2 ms

background excitation ORN constant 0.28 nS

PN normal 0.24, 0.02 nS hard boundary: mean ± 2 sd

background inhibition ORN constant 0.5 nS

PN normal 0.15, 0.01 nS hard boundary: mean ± 2 sd

Ibaseadapt ORN constant 40 mA

PN normal 4.5, 0.4 mA hard boundary: mean ± 2 sd

LN normal 1.8, 0.2 mA hard boundary: mean ± 2 sd

τadapt ORN constant 60 ms

PN/LN constant 25 ms

�probability density function

https://doi.org/10.1371/journal.pcbi.1006536.t002
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could be measured reliably. The minimum concentration was adjusted for each odorant-

receptor combination by drawing air from the headspace of pure odorants in vials with differ-

ent cross-sectional areas (the larger the cross-sectional area, the more odorant molecules can

evaporate into the headspace) and by diluting the odorant headspace in clean air (See Table 3).

Throughout the experiment the odorant vial was constantly flushed with air so that the head-

space concentration reached steady state.

Binary mixtures were generated by opening the two odorant channels simultaneously, such

that the concentration of a given odorant was the same when it is the sole stimulus and when it

is a part of a mixture stimulus. For each sensillum, we measured its responses to all three types

of stimuli (mixture and both of its constituent components) at both concentrations once in a

single recording session. A total of 73 different animal-odor-receptor combinations were

recorded.

Calcium imaging in honey bees

Honey bee, Apis mellifera, pollen foragers were obtained from regular hives located at the cam-

pus of the University of Buenos Aires, Argentina. The bees were briefly cooled on ice and

restrained in individual holders. After recovery from cooling, the bees were fed with 1.0 M

sucrose solution and left undisturbed until staining at the evening of the same day. A window

was cut into the head capsule posteriorly to the joints of the antennae and anteriorly to the

medial ocellus. PNs were stained by backfilling their axons with the calcium sensor dye Fura-

dextran (potassium salt, 10,000 MW; Invitrogen, Eugene, USA). The tip of a glass microelec-

trode coated with dye was inserted into both sides of the protocerebrum, dorsolateral of the α-

lobes where the lateral antenno-protocerebral tract enters the lateral calyces of the mushroom

bodies [68,69]. The dye dissolved into the tissue in 3 to 5 seconds. The window was closed

immediately using a piece of formerly removed cuticle and sealed with Eicosane (Sigma-

Aldrich). After staining, the bees were fed and left undisturbed for 10 to 16 hours. After that,

both antennae were fixed pointing towards the front using Eicosane. The head capsule was

opened again and the brain was rinsed with saline solution to remove all extracellular dye (in

mM: NaCl, 130; KCl, 6; MgCl2, 4; CaCl2, 5; sucrose, 160; glucose, 25; and HEPES, 10; pH6.7,

500 mOsmol; all chemicals from Sigma-Aldrich). Glands and trachea covering the ALs were

removed. Only ALs that were stained homogeneously across all visually accessible glomeruli

were used for imaging. Only one AL per bee was measured. Body movements that could affect

imaging recordings were suppressed by gently compressing the abdomen and thorax with

foam. In addition, a second hole in the head capsule was cut between the antennae and the

Table 3.

ORN Odorant Dilution

(×10−3)

Cross-section area of vial

(cm2)

Air flow through vial

(ml/min)

OR59b Methyl butyrate 4.17 3.1 250

2-Butanone 3.67 3.1 220

OR59b Methyl butyrate 2.50 3.1 150

Ethyl acetate 0.15 0.8 9

OR22a E2-hexenyl acetate 4.17 3.1 250

Ethyl-2-methylbutanoate 3.67 3.1 220

OR22a Methyl butyrate 2.07 3.1 124

Ethyl acetate 2.00 15.9 120

Settings for creating minimum odorant concentrations X for the single sensillum recordings in Drosophila in Fig 4c.

https://doi.org/10.1371/journal.pcbi.1006536.t003
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mandibles, and the compact structure of muscles, esophagus and supporting chitin was lifted

and put under slight tension. After preparation, the bees were mounted on the microscope

and were allowed to recover for 20 minutes before imaging. Imaging experiments for all ani-

mals consisted of 12 odor stimulations separated by 1 minute each. Two measurements were

made for each of the three types of stimuli (1-hexanol, acetophenone (both from TCI America,

Portland OR) and their binary mixture) at two different concentrations in random order.

Odors were delivered using a custom designed odor delivery device, which provided single

odorants or mixtures at defined concentrations. The device had five independent odor chan-

nels that were activated briefly in pairs to create a stimulus. Each channel was connected to the

headspace of a different bottle. The bottles contained 1-hexanol diluted 1:10(a) or 1:100(b) in

mineral oil, acetophenone diluted 1:10(c) or 1:100(d) in mineral oil, and mineral oil only(e).

Each bottle was connected to the respective odor channel by a solenoid valve which could be

opened and closed synchronously with others using the imaging acquisition software TillVi-

sion (Till Photonics). In this work, the odors used were the combination of: a/e (for high con-

centration of 1-hexanol); b/e (low concentration 1-hexanol); c/e (high concentration

acetophenone); d/e (low concentration acetophenone); a/c (high concentration mixture) and

b/d (low concentration mixture). All odor channels converged into a mixing chamber, where

the odors from the two opened channels were mixed. The mixed odors were then further

diluted in a main air-stream, which also delivered them to the bee antennae. The main air-

stream had a flow rate of 500 ml/min, while that of an odor channel is 50ml/min. Thus, the

real concentration of an odor reaching the bees was actually 1

10
of the concentration measured

in the odor channel. An exhaust located 10 cm behind the bee removed the odors

continuously.

Calcium imaging was performed using an EMCCD iXon camera (ANDOR, Belfast, UK)

mounted on an upright fluorescence microscope (Olympus BX-50WI, Japan) equipped with a

20× dip objective, NA 0.95 (Olympus). Filter- and mirror-set: 505 DRLPXR dichroic mirror

and 515 nm LP filter (Till-Photonics, Gräfelfing, Germany). Excitation light with alternating

wavelength of 340 and 380 nm was generated by a Polychrome V (Till-Photonics). Acquisition

protocols were made using the software TillVision (Till-Photonics). The sampling rate was 8

Hz. The spatial resolution was 125×125 pixels binned on a chip of 1000×1000 pixels. The

intensity of the fluorescence lamp was controlled by the imaging acquisition software such that

the exposure times to 340 and 380nm excitation light were 20 ms and 5 ms respectively. Images

were analyzed using software written in IDL (Research Systems, CO, USA) by Giovanni Gali-

zia (University Konstanz, Germany) and in R by Emiliano Marachlian [69]. Each measure-

ment produced two sequences of 96 fluorescence images; one obtained for 340 nm excitation

and another one for 380 nm excitation light (Fi
340

and Fi
380

, where i is the image index,

ranging from 1 to 96). For each of the 96 pairs of images, we calculated pixel-wise the ratio:

Ri = Fi340/Fi380. Afterwards, we subtracted from all Ri the background ratio Rb, defined by the

average ratio Ri from 1s before odor onset to odor onset.

Ri ¼
Fi

340

Fi
380

� Rb for i � 24 ð13Þ

Rb ¼

P23

i¼16

Fi
340

Fi
380

8
ð14Þ

Ri represents the difference of fluorescence in window i to the fluorescence in the reference

window and is proportional to a change in the intracellular calcium concentration. The analy-

sis of odor induced activation patterns in the present study was based on signals from 8
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glomeruli that were identified across all bees on the basis of their morphology and positions

using the published atlas of the honey bee AL [32,33]. Glomeruli are visible in the raw fluores-

cence images at 380 nm excitation light after backfilling the PNs with FURA (Fig 4c). The level

of glomerular activation was calculated by averaging the activity Ri in a square area of 7×7 pix-

els that correspond to 23×23 μm and fits within the limits of each of the glomeruli. In this

work, we did not consider the temporal structure of the response. Hence, the response is

defined as the level of glomerular activation from 0 to 1.5 s after odor onset. Thus, odor-elic-

ited activation patterns used for the analysis are 8-tuple vectors representing the average glo-

merular activity during the first 1500 ms after odor onset.

Responses from 5 different animals were recorded. Statistical analysis was performed using

Wilcoxon one-sided signed-rank test.
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