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Evidence of a robust universality class in the critical behavior of self-propelled agents:
Metric versus topological interactions
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The nature of the interactions among self-propelled agents (SPA), i.e., topological versus metric or a
combination of both types, is a relevant open question in the field of self-organization phenomena. We studied
the critical behavior of a Vicsek-like system of SPA given by a group of agents moving at constant speed and
interacting among themselves under the action of a topological rule: each agent aligns itself with the average
direction of its seven nearest neighbors, independent of the distance, under the influence of some noise. Based
on both stationary and dynamic measurements, we provide strong evidence that both types of interactions
are manifestations of the same phenomenon, which defines a robust universality class. Also, the cluster size
distribution evaluated at the critical point shows a power-law behavior, and the exponent corresponding to the
topological model is in excellent agreement with that of the metric one, further reinforcing our claim. Furthermore,
we found that with topological interactions the average distance of influence between agents undergoes large
fluctuations that diverge at the critical noise, thus providing clues about a mechanism that could be implemented
by the agents to change their moving strategy.
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I. INTRODUCTION

The study of self-propelled agent (SPA) systems has
attracted great interest from the physical community [1–3]
and has stimulated huge theoretical and experimental activity
(for recent reviews see, e.g., [4,5]). Also, modeling swarming
and flocking contributes to the understanding of natural
phenomena and becomes relevant for many practical and
technological applications, e.g., collective robotic motion,
design and control of artificial microswimmers, and many
other self-propelled particle systems.

The seminal model developed by Vicsek et al. in 1995
[1] has become a fruitful paradigm for studying self-
organization phenomena. It considers N agents moving in
a two-dimensional space at constant speed v0. These agents
choose their trajectories by trying to align their moving
direction with the average direction of all agents inside a circle
with a unitary radius with a perturbation due to a uniform noise.
Thus the system reaches an ordered sate for a low enough noise
below some critical value ηc and undergoes a phase transition
into a disordered state beyond ηc [1,3–6]. Mathematical and
statistical models of SPA attempt to describe a wide range of
complex phenomena in biological systems, from bacteria [7,8]
and cells [9] at the microscopic scale to swarms of insects [10]
and flocks of birds [11] at larger scales. Particularly, careful
measurements of huge flocks of starlings have given a new
clue to understanding how organisms can self-organize. In
fact, Cavagna et al. [12] have determined that each bird of the
flock follows a fixed number of individuals, seven in the case
of starlings [13]. So the way those birds choose their neighbors
to decide their direction of motion is of topological nature, in
contrast to the metric rule of the Vicsek model [1] used in most
simulations [2–6]. Since the discovery of that feature, several
studies [11,14–16] have been performed in order to understand
topological interactions. However, the influence of both types
of interactions acting at a local level at the onset of ordering at

macroscopic scales is still an open question that merits careful
study.

Within this wide context, the goal of this paper is to present
and discuss extensive simulation results aimed at understand-
ing both the dynamic and stationary critical behaviors of
a topological Vicsek-like system of SPA. For this purpose,
we organized the paper as follows: Section II provides the
definition of the model and details of the numerical method
used. Our results are presented and discussed in Sec. III, while
the conclusions are stated in Sec. IV.

II. TECHNICAL ASPECTS OF THE NUMERICAL
SIMULATIONS

The simulations are performed in such a way that the results
can be compared to those presented previously in [17] for the
metric model. Thus, the density is set at ρ = 0.1 for four
choices of the number of agents (4096 � N � 32 768), and
we also set v0 = 0.1, so that the system is in a low-density
and low-velocity regime. Measurements within the stationary
regime are performed after disregarding 105 time steps until the
system leaves the transient regime from a uniformly random
initial state. Also, two kinds of dynamic simulations are
performed at criticality: (a) relaxation dynamic measurements
such that the system is released from an ordered state and
(b) short-time dynamic measurements performed by releasing
the system from disordered states. All dynamic measurements
are averaged over 500 different realizations. We evaluate the
standard order parameter defined as φ ≡ 1

Nv0
|∑N

i=1�vi |, as well
as its high-order moments and the cumulant. The velocity
vectors �vi have constant speed v0, and their directions θi

fluctuate according to

θ t+1
i = 〈θ t 〉knn

+ ηπξ + α. (1)

Then, each agent i takes a new direction θ t+1
i , given by the

average over the actual directions of its knn nearest neighbors,
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with the addition of a uniform noise in the range [−π,π ]
generated by a random variable ξ . The amplitude η regulates
the intensity of the perturbations and is the control parameter.
The last term (α) is an extra rotation of the same small random
angle imposed on all particles at each time step in order to avoid
the artifacts mentioned in [4–6,18,19]. Also, the kinematics of
the system is updated by

�r t+1
i = �r t

i + �v t
i 	t ; 	t = 1, (2)

where �ri are the positions of the agents.

III. RESULTS AND DISCUSSION

We found that the ability of the system to reach an ordered
state is more robust against noise when knn is increased. In fact,
the model adopts a mean-field behavior for knn > 18, while
ordered states are almost absent for knn � 2. So, arbitrarily,
we set knn = 7 in the following simulations, inspired by
experimental measurements on flocks of starlings [13], in spite
of the fact that our system is two-dimensional. So the value of
knn adopted in the present work follows from a compromise:
on the one hand, it is not so large as to avoid mean-field-like
behavior, and on the other hand, it is not so small as to allow
the occurrence of ordered states. Summing up, our choice falls

FIG. 1. (Color online) Stationary measurements of (a) the order
parameter and (b) susceptibility, corresponding to four system sizes.

in an interval such that the number of interacting neighbors is
irrelevant for the characterization of the critical behavior.

Let us first discuss stationary measurements. Figure 1(a)
shows plots of the order parameter φ versus the noise where
we can observe the order-disorder transition. The susceptibility
χ ≡ L2(〈φ2〉 − 〈φ〉2) versus the noise η, shown in Fig. 1(b),
gives evidence of the large fluctuations of the order parameter
that occur near the phase transition. To verify that the phase
transition is second order and to find the critical noise, we
compute the dependence on the noise of the fourth-order
Binder cumulant, U ≡ 1 − 〈φ4〉

3〈φ2〉2 . The curves corresponding
to different system sizes [Fig. 2(a)] cross each other at
the critical point, allowing us to identify the critical noise
ηc = 0.039 75 ± 0.000 25. Figure 2(b) shows the behavior of
U in a wider noise interval where no evidence of first-order-like
behavior (U < 0) is observed. It is worth mentioning that the
nature of the order-disorder transition in the metric Vicsek
model, i.e., first versus second order, has been treated by many
authors [3–6,14,17–19], and a detailed discussion is beyond
the scope of this article. Hence, in this paper we observed

FIG. 2. (Color online) Stationary measurements of the Binder
cumulant, corresponding to four system sizes. (a) At the critical noise
ηc = 0.039 75(25), the cumulant has the same value for all system
sizes. The variable ln(2/3 − U ) was chosen to depict smooth curves.
(b) Overview of the Binder cumulant for the whole range of the
order-disorder transition.
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FIG. 3. (Color online) (a) Scaling plot of the peak position of
the susceptibility vs system size, according to ηmax(L) = ηc +
constL−1/1.34. The extrapolation to L → ∞ gives ηc = 0.0397 ±
0.0001. (b) Log-log plot of the maximum value of the susceptibility
vs Lγ/ν , which allows us to determine γ /ν = 1.51(3) (solid line).
The dashed line corresponds to γ /ν = 1.45(3), which was already
reported for the metric model [6].

second-order behavior through Eq. (2) by using a backward
update, angular noise, and staying within the low-density and
low-velocity regime.

For second-order transitions, it is known that the maximum
fluctuation of the order parameter χmax, which corresponds to

the position of the peaks in Fig. 1(b), is located at L-dependent
pseudocritical noises ηmax(L). The maxima corresponding to
different sample sizes scale as χmax ∝ Lγ/ν [Fig. 3(b)], where
γ and ν are the susceptibility and correlation length exponents,
respectively. The best fit of the data yields γ /ν = 1.51 ± 0.03
(solid line), which is in agreement (within error bars) with
the value 1.45(3) (dashed line) already reported for the metric
model [6]. Furthermore, the location of those maxima scales as
ηmax(L) = ηc + constL−1/ν , as confirmed in Fig. 3(a). Here,
we assume ν = 1.34 ± 0.08, as determined by means of
dynamic measurements (see below), and the best fit of the
data allows us to recover ηc = 0.0397 ± 0.0001, in excellent
agreement with our previous determination employing the
cumulant.

On the other hand, dynamic measurements of the topo-
logical model are quite demanding and require the sim-
ulation of systems of 65 536 agents in order to obtain
reliable exponents. By starting the system from a randomly
disordered state, one expects that the fluctuations of the
order parameter at criticality, during the short-time regime,
will increase according to χ (t) ∝ t

γ

νz [20,21]. This result
is verified in Fig. 4(a). The best fit of the data yields
γ

νz
= 1.01(5).
Relaxation dynamic measurements are performed by

quenching the system at the critical point starting from
an ordered initial state. Such a state is obtained from the
natural time evolution of the system up to the stationary
regime at zero noise from a random initial state. Near the
critical point of second-order transitions, the time evolution of
relevant observables follows scaling laws [20,21]. In fact, the

FIG. 4. (Color online) Dynamic measurement for a system of 65 536 agents. (a) The rise in the order of the system from a randomly
disordered initial state gives γ /zν = 1.008(9). (b) The second-order Binder cumulant provides d/z = 1.55(3). (c) The logarithmic derivative
of φ gives 1/zν = 0.58(6). (d) The time evolution of the order parameter gives β/zν = 0.265(5).
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TABLE I. Relationships between the exponents measured in this
work for topological interactions and previous results corresponding
to metric interactions [6] and the critical exponents determined by
using those relationships.

γ /ν β/zν d/z 1/zν γ /zν

Topological 1.51(3) 0.26(1) 1.55(3) 0.58(6) 1.01(5)
Metric 1.45(3) 0.25(2) 1.57(2) 0.6(1) 1.12(3)

Critical exponents

γ ν z β

Topological 1.74(20) 1.34(8) 1.29(2) 0.59(7)
Metric 1.87(4) 1.3(3) 1.27(2) 0.42(4)

second-order Binder cumulant, U ∗(t) ≡ 〈φ2〉−〈φ〉2

〈φ〉2 , would be-

have as U ∗ ∝ td/z [Fig. 4(b)], the logarithmic derivative of the
order parameter evaluated at criticality would scale as ∂ ln φ

∂η̃
∝

t1/zν [Fig. 4(c)], and the order parameter follows φ(t) ∝ t−β/zν

[Fig. 4(d)]. The best fits of the data yield the following
relationships for the critical exponents: β/zν = 0.26 ± 0.01,
d/z = 1.55 ± 0.03, and 1/zν = 0.58 ± 0.06. Also, the hyper-
scaling relationship, dν − 2β − γ = 0, gives

d

z
− 2

β

zν
− γ

zν
= 0.012(49)

and becomes satisfied for dynamic measurements of the
topological model.

The complete set of relationships between critical expo-
nents measured in this work and their counterparts obtained
for the metric case [6] are summarized in Table I. Also, Table I
shows the values of the corresponding critical exponents for
both cases.

As an additional test of our results, we perform a finite-size
scaling analysis of the raw data corresponding to stationary
measurements of the order parameter, the susceptibility, and
the cumulant (cf. Fig. 5). In all cases we obtain excellent data
collapse, which confirms the validity of the theory and further
supports our numerical data.

A careful comparison of both the relationships between
exponents and the exponents themselves (see Table I) reveals
that most of the magnitudes are very close to each other (within
less than 10% of the error bars). Thus this result leads us to
conclude that the Vicsek model defines a robust universality
class that is independent of the type of interactions used, i.e.,
topological or metric.

In order to further compare the critical behavior of the
topological and metric models we analyzed many configu-
rations of the system close to the critical noise. Figure 6
shows a typical configuration obtained at the steady state of
the system with N = 32 000. Since the agents in the system
tend to aggregate in clusters of many sizes, we assume that
two agents placed at a distance less than an arbitrary cutoff
radius belong to the same cluster. Density fluctuations become
evident through the onset of an incipient traveling band (on the
right-hand side of the figure) due to cluster correlations. Given
the cluster size distribution p(m) = mnm/N , where nm is the
number of clusters having m agents, we compute it over 100
different configurations in order to characterize its behavior

FIG. 5. (Color online) Scaling plots corresponding to the sta-
tionary measurements already shown in Figs. 1 and 2. (a) Scaling
of the order parameter according to φLβ/ν vs (|η − ηc|L1/ν)/ρ1/2.
(b) Susceptibility, namely, log-log plots of χLγ/ν vs (|η −
ηc|L1/ν)/ρ1/2. (c) Binder cumulant versus (η − ηc)L1/ν .

at the critical point. The resulting distribution, and especially
its tail (Fig. 7), resembles the one recently reported for the
metric model [22]. The existence of a maximum near m = 25
is due to the metric nature of the definition adopted to compute
clusters. In this way, one leaves alone several agents that are
far away from any cluster, despite the fact that they interact
topologically with some agents. These agents represent less
than 0.5% of the whole system and become irrelevant over the
statistic weight of the distribution tail. In order to compare the
distribution obtained with results corresponding to the metric
model, we performed a power-law fitting of the form p(m) ∝
m−ζ along the tail of this distribution, and the exponent
obtained is ζ = 1.3 ± 0.1. This figure is indistinguishable
from equivalent exponents reported in simulations of the
metric model [23,24], experimental results [7,25], and kinetic
modeling [22].

It is worth mentioning that second-order behavior has also
been reported in another topological model [14]. However, that
model is basically different from the one proposed here since
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FIG. 6. (Color online) Snapshot of a typical configuration close
to the critical point for N = 32 000. An incipient traveling band
(right-hand side) is formed by correlated clusters. Agents belonging
to the same cluster are labeled with the same color.

vectorial noise is assumed and the neighbors are chosen by
means of Voronoi tessellation [14]. Therefore some reported
critical exponents are different from those presented here. One
reason for this discrepancy becomes evident from Fig. 6:
evaluation of Voronoi neighboring implies that all agents
must have neighborgs in all directions, hence, due to periodic
boundary conditions, percolation among the conected agents
can be present in all directions avoiding the cluster formation.
Such effect is not observed in the model proposed here. In
fact, in our model with fixed neighbors, an agent could have
all its knn neighbors along a given direction. At the critical
point, percolation clusters are those whose correlations allow
the formation of traveling waves across the space, such as the
one observed in Fig. 6, as was pointed out in [22]. Summing up,
it is not surprising that a model with Voronoi neighboring and
vectorial noise might belong to a different universality class
than that of both the standard Vicsek model and the topological
model proposed in this paper.

FIG. 7. (Color online) Cluster size distribution p(m) vs the clus-
ter size m. A power-law fitting (solid line) gives the exponent
ζ = 1.3(1).

FIG. 8. (Color online) (a) Mean radius 〈r〉 required by an agent
for a topological interaction with seven neighbors near the critical
point ηc = 0.039 75. Note that 〈r〉 has a maximum and a minimum
located on both sides of the critical noise (vertical dashed line),
which are more pronounced for larger system sizes, as indicated
by the arrow. The inset shows the dependence of 〈r〉 on the noise for
the whole domain explored. (b) Plots of the fluctuations of 〈r〉 vs the
noise. The top and bottom insets show the scaling behavior of the
maximum fluctuation and its position, respectively. Further details
are given in the text.

Very interesting features of the topological model arise
when assessing the average radius 〈r〉 that each agent needs
in order to just interact with seven neighbors. In fact, the inset
of Fig. 8(a) shows plots of 〈r〉 versus the noise obtained for
systems of different size. As is expected from a topological
model, far from criticality the averaged radius is independent
of the system size. However, close enough to the critical point,
it is found that the curves develop both a local maximum and
a local minimum, depending on the system size. Furthermore,
they exhibit the inflexion point very close to the critical noise.
At criticality, the agents require an average radius smaller than
unity, i.e., the radius used in the case of the metric Vicsek
model, in order to locate their seven partners. In fact, in the
density and velocity regimes studied, over 20 neighbors can
typically be found inside a unitary radius. On the other hand,
Fig. 8(b) shows the noise dependence of the fluctuations of
the average radius defined as χr = (〈r2〉 − 〈r〉2)L2. It follows
that χr exhibits a sharp peak at the critical noise. Indeed, the
location of the maximum scales as 	η = η − ηc ∝ L−4.3(4).
Furthermore, the peak height scales as χrmax ∝ L0.83(3). The
fittings performed in order to obtain the scaling relationships
are depicted in the corresponding insets of Fig. 8(b). Thus, at
the critical noise, the mean area that an agent has to scan in
order to find seven neighbors undergoes large fluctuations that
diverge with the system size.
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Cavagna et al. [26] have stated that a real flock remains
at the edge of criticality, i.e., in a state close enough to the
critical point to get the maximum adaptability without losing
its cohesion. Hence, let us consider any flock (natural, artificial,
or theoretical) whose agents attempt to stand at the highest
possible value of the noise but inside the ordered state in order
to get the maximum response without loss of cohesion. How
could they achieve such a state? The results summarized in
Fig. 8 allow us to conjecture a simple mechanism to answer
that question: as the noise rises, the average spatial range
required for each agent to establish interactions with a prefixed
number of partners starts to undergo large fluctuations, as
shown in Fig. 8(b). These fluctuations would perturb the
agents, e.g., by demanding a large effort in order to locate
their neighboring partners, so each agent should be able to
realize that it is time to change its moving strategy. Of course,
individuals in larger flocks have a better chance to note such
fluctuations. Furthermore, Fig. 8(a) could provide a clue about
a competing mechanism that would prevent the formation of
very large flocks: the occurrence of well-defined local maxima
and minima in the average radius of interaction close to
critically implies that the optimum radius of interaction of
each agent occurs at three different values of noise, and at
least one of them is always in the disordered phase. Hence,
an iterative process that discards agents that fail to detect
both situations is a suitable candidate for the development
of an optimization mechanism capable of describing how a
system of interacting self-propelled particles can evolve in
order to find their optimum size. If this mechanism were
natural selection, flocks would have to evolve into typical

sizes that place them in the best situation. Also, by adopting the
above-discussed mechanisms, artificial swarms of microrobots
can be designed to fit sizes that allow cohesion without the need
for external orders.

IV. CONCLUDING REMARKS

We have shown that both a topological model with a
fixed number of neighbors and the metric Vicsek model
belong to the same universality class, which in turn seems
to be quite robust. Furthermore, the cluster size distribution
evaluated at the critical point follows a power-law behavior
with the same exponent as in the metric case, which is
another feature shared by both systems. It is known that many
systems in nature exhibit critical behavior [27,28], and such a
state can be related to optimization, as we have conjectured.
The measurement of the mean radius of interaction and its
fluctuations, as discussed here, may provide an original way
to get insight into this challenging topic in both theoretical
and experimental biology. While the outlined arguments are
rather speculative and more biological evidence must be
gathered to support it, our results provide a mechanism to
design and control artificial swarms in both robotics and drug
delivery.
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[14] F. Ginelli and H. Chaté, Phys. Rev. Lett. 105, 168103 (2010).
[15] J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria, H. Chaté,
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