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SUMMARY

A finite element formulation for three dimensional (3D) contact mechanics using a mortar algorithm
combined with a mixed penalty—duality formulation from an augmented Lagrangian approach is presented.
In this method, no penalty parameter is introduced for the regularisation of the contact problem. The con-
tact approach, based on the mortar method, gives a smooth representation of the contact forces across the
bodies interface, and can be used in arbitrarily curved 3D configurations. The projection surface used for
integrating the equations is built using a local Cartesian basis defined in each contact element. A unit normal
to the contact surface is defined locally at each element, simplifying the implementation and linearisation of
the equations. The displayed examples show that the algorithm verifies the contact patch tests exactly, and
is applicable to large displacements problems with large sliding motions. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Contact mechanics is used in many mechanical engineering branches, and numerous works have
been dedicated to the numerical solution of contact problems applications: for instance, the design of
gears [ 1], metal forming processes [2], contact fatigue [3] and others. New advances and techniques,
including friction, large displacements, plasticity, and wear, are constantly being introduced.
However, there is not yet a completely robust contact algorithm suitable for a wide range of
applications in contact mechanics.

The relative displacement of two contacting bodies is currently described in the framework of the
FEM using the so-called node—segment and segment—segment approaches. State-of-the-art reviews
on computational contact mechanics can be found in [4, 5].

The classical node—segment technique is widely used in many commercial finite element codes.
In this case, a node of one body (the slave), is associated with a segment or a surface of another body
(the master) [6]. The main drawback of the node—segment approach is that it is not able to transmit
a constant stress field from one body to the other when the meshes are nonconforming, that is, it
does not pass the contact patch tests, and therefore introduces errors in the solutions independently
of the mesh discretisation of the contacting bodies [7]. Furthermore, when the slave nodes slide
from one to another master segment, the solution shows jumps in the contact stress field due to the
enforcement of the discrete contact constraints.
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AN AUGMENTED LAGRANGIAN TECHNIQUE COMBINED WITH A MORTAR ALGORITHM 421

The two-pass node—segment method [8] satisfies the contact patch tests, but it can ‘lock’
due to the over constraints introduced in the formulation. Furthermore, it does not fulfil the
Babuska—Brezzi conditions, and therefore produces ill-conditioned matrices and poor convergence
rate, as shown by Puso and Laursen [9]. This approach is often selected for solving two-dimensional
(2D) problems and certain three-dimensional (3D) mesh configurations, but it is not able to satisfy
the contact patch test with quadratic or higher order elements [10, 11].

The difficulties associated with the node—segment approaches are overcome by using the
segment—segment approaches and their variants. The first publication showing this technique was
applied to 2D examples, and was then extended to 3D cases [12—14]. The mortar algorithm was
initially proposed as a domain decomposition method, and was used to solve finite element problems
with nonconforming discretisations [12, 15]. Bernardi et al. [16] published one of the first works
using the mortar method and proved the satisfaction of the Babuska—Brezzi condition. Puso and
Laursen proposed a contact algorithm based on the mortar method for 3D and large displacements
problems [9, 17, 18]. In another work, Puso presented a mortar version with C! continuity of the
contact interface, which was applicable to regular meshes only [19]. In most cases, the segment—
segment algorithms use a projection surface for 3D problems, or a projection segment for 2D, in
which all computations are performed.

One of the first techniques applied for regularising the contact problem was the penalty method
[4], in which the displacement is the only primary variable in the formulation, leading to relatively
easy numerical implementation. However, the exact solution is obtained only for an infinite value of
the penalty constant. In a computational frame, high penalty values lead to ill-conditioned matrices
and severe precision losses in the computations. In practice, several tests have to be carried out to
find an appropriate value of the penalty for each problem.

Nonlinear contact mechanics can be related to nonlinear optimisation problems using inequality
constraints, which allow the use of formulations with a more solid mathematical basis than the
penalty method. The regularisation can be formulated using the method of Lagrange multipliers,
which results in a saddle point system to be solved at each iteration. The Lagrange multipliers are
used to enforce constraints, overcoming the ill-conditioning inconvenience of penalty methods at the
expense of an increase in the size of the system of equations to solve. A combination of the penalty
and the Lagrange multipliers techniques leads to the so-called augmented Lagrangian methods [20].
The augmented Lagrangian method was proposed first by Hestenes and Powell [21,22] to solve opti-
misation problems with equality constraints, and then extended to inequality constraints, such as the
contact problem by Rockafellar [23]. The addition of the penalty term to the Lagrangian constraints
allows to obtain a convex objective function, which improves convergence far from the solution.
Although both the augmented Lagrangian and the penalty methods require a penalty parameter,
the role of a penalty in the augmented Lagrangian method is only to improve the convergence rate
without influencing the accuracy of the computed solution.

The penalty technique combined with mortar-based formulations has been proposed in the works
of Puso and Laursen [9], Puso ef al. [17] and Yang et al. [24]. In all of these formulations, the exact
solution is obtained only for an infinite value of penalty, which leads to ill-conditioned matrices.
To overcome this problem, Puso e al. [18] proposed a mortar algorithm within an augmented
Lagrangian scheme based on the double loop Uzawa type algorithm.

Usually, contact is modelled with the Lagrangian method in combination with an Uzawa type
algorithm [20]. In this double loop algorithm, the Lagrange multipliers are held constant during
an inner iteration loop for solving the displacements. Then, within an outer loop, the Lagrange
multipliers are updated to a new value and the inner iteration is started again until convergence of
the full process. This strategy, combined with a mortar method, was employed by Puso and Laursen
[18] using standard shape functions for interpolating the Lagrange multipliers field.

Wohlmuth et al. [25] and Popp et al. [26] proposed to use the so-called dual shape functions for the
interpolation of the Lagrange multipliers. In this case, the nodal values of the Lagrange multipliers
are eliminated from the system of equations because of the special orthogonality properties of the
interpolation shape functions involved. One advantage of this method is that the resulting system
of equations remains constant. The proper subset of active and inactive nodes has to be found via a
special active set strategy [25].
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422 F.J. CAVALIERI AND A. CARDONA

An augmented Lagrangian method to solve contact problems with friction was proposed by
Alart and Curnier [27] based on a reformulation of the contact and friction laws into a system
of equations without inequalities. Christensen et al. [28] presented a modified version to solve the
contact problem in the frame of small deformations. An improved version to solve elasto-plastic
frictional contact problem using the so-called semi-smooth Newton was presented by Christensen
[29]. Friction and frictionless contact problems using dual Lagrange multipliers and active set
strategies are used in references [30-32]. In the work of Hager and Wohlmuth [33], they presented
a formulation for the numerical treatment of frictional contact in combination with elasto-plasticity
using a semi-smooth Newton method. For linear hardening laws, this method is a generalisation of
the well-known radial return mapping.

In this work, the augmented Lagrangian approach proposed by Alart and Curnier [27] is used to
formulate the frictionless contact problem in combination with the mortar method, which is used
to define contact kinematics. The adopted form of the augmented Lagrangian approach allows the
regularisation of non-differentiable contact terms, giving a C! differentiable saddle-point functional.
The resulting equations involving the Lagrange multipliers are linearised and solved using a standard
Newton—Raphson-like method. Contact kinematics are defined by using the mortar method, allowing
the compatibility condition to be enforced along the contact interface and to verify the contact patch
test, leading to a correct representation of the stress fields across the contact interface [34]. A similar
approach has been followed in a recent paper by De Lorenzis et al. [35], but using a non-uniform
rational B-spline (NURBS)-based isogeometric analysis.

Numerical examples that show that the algorithm satisfies the contact patch tests and exactly
fulfils the contact constraints are presented. Two contact problems in the regime of large
displacements demonstrate the applicability and robustness of the proposed algorithm. Finally, the
algorithm is used in an industrial application, the contact of an internal combustion engine valve
with its seat, showing smoothness in the computed contact stress field.

2. PROBLEM DESCRIPTION

The motion of the two bodies in contact 5%, o = 1,2, with domains §2¢%, is represented by the
mappings x® : 2%x[0, T] —> R3, where current particle positions are identified by x* = y%(X*, ).
The contact interface between bodies, I, is given by the intersection of the two portions Fcl and
I 62 of the external boundaries of B! and B2, respectively, that can possibly enter into contact:
I, = Fcl N Fcz. The potential energy of the contact constraint for the two deformable bodies is

given by

2
17"=Z/Fat“-x“dr, (1)
a=1 ¢

where ¢ is the Cauchy traction vector of the body 5%. Assuming linear momentum balance across
the contact interface 1%, that is ! dI" = —t? dI', the contact potential energy is expressed
as follows:

nC=/ th(x!—x?)dr. )
r}

The FEM is used for discretising the domains of the bodies. The contact surfaces at each body
and the traction vector can be parameterised as follows [9]:

n% 1

n
x= Y N§GEDxY oa=12 t'=>Y" NiEHY, 3)
A=1 A=1

where x‘jf1 e Iy — R3 are the nodal coordinates, n? is the number of nodes in r’, and

N§ : I'? — R are the classical finite element shape functions. The Cauchy traction vector th
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Equation (3),, is discretised with the same standard shape functions used to approximate the
geometry and the displacements on the surface I'.!.

As they are customarily called in the literature, I} and I'? are the non-mortar and mortar
surfaces, respectively. Assuming frictionless contact, and using Equations (2) and (3), the contact

potential energy can be approximated as

M= Y tabagva [ X [ NiEWIEHarxh -3 [ NiENEEHar sz ).
A=1 B=1"1c c= /71

“)

with v 4 being the inward normal vector to the non-mortar contact interface I'.' at node A.

The mortar interpenetration g 4 is defined by
nl n2
g4= D Map¥p— ) Mic Xes 5)
B=1 c=1
where

vy = [ NIEWREH A, e = [ NighweEar. ©

are the weight factors of either side. Vector g 4 can be interpreted as an integrated interpenetration
measure, which corresponds to the zone linked to the non-mortar node A. The contribution to the
normal interpenetration at node A is obtained by projection on the normal direction at the same
node:

ENA=VA L4, @)

whereas projection on the Cauchy traction vector on the normal direction gives the normal
component of the Cauchy traction

INA=Vy-Ty. (8)

The contact potential energy, Equation (4), is then written in the following form:

nl
° =" tnagna. ©)
A=1

The solution to the general frictionless unilateral contact problem, obtained by a mortar FEM
formulation is finally given by

U = arginf (IT™"(U) + 1™ (U) + I1°(V)),
. (10)

st. gnva=0, iya=20, Inagna=0 A=1,...n".

where IT™(U) are the potential energy terms due to internal and external forces, and U is the
global displacements vector. The second line in Equation (10) states the Karush—Kuhn-Tucker
(KKT) conditions for unilateral contact, which are expressed in discrete form at the non-mortar
nodes A. The first condition is the geometric impenetrability constraint, the second inequality
represents the non-traction condition at the contact interface (i.e. only the compression interaction
is allowed), and the third one is the complementarity equation.

Instead of working with the normal component of traction, it is often preferred to work with the

contact pressure field p = —#x. In this case, the KKT conditions read as follows:
1
gna =0, pa <0, pAgNaA =0 A=1,...n". (11)
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:420-442
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424 F.J. CAVALIERI AND A. CARDONA

The nodal pressures play the role of the Lagrange multipliers that enforce the impenetrability
constraint. The contact problem (10), with either form of the KKT conditions, can be solved using
a double loop Uzawa algorithm. Alternatively, a penalty method can be formulated by assuming
the nodal pressures are linearly related to the normal penetration by a penalty constant. In the next
section, an alternative solution scheme, which leads to a simple monolithic algorithm is proposed.

3. AUGMENTED LAGRANGIAN METHOD

The inequality constraints in Equations (11) can be equivalently written as the sub-differential
inclusion

pa € 0WR, (gNA), (12)

where Wg is the indicator function of the real positive half line R4 and 0VR 4 is the sub-
differential of Wg_ . Equation (12) expresses the unilateral contact conditions, with a contact
pressure field derived from a non-smooth potential Yg_ (gn4) [27,36].

Equation (10) can be regularised and solved by using a mixed dual penalty approach based on
an augmented Lagrangian method, as proposed by Alart and Curnier [27]. The potential energy of
contact is replaced by an augmented Lagrangian function, which is defined by

nl

£ = £@) = Y (kpagwa +
A=1

r

1
2g12VA —— <kpa+rgna >2) . (13)

2r

where r is a positive penalty parameter, k is a positive scale factor, and < - > is the Macauley
bracket operator, that is,

x x=0

<x>:{ 0 x<0

This functional is C! differentiable saddle-point, as shown in Figure 1. The solution is obtained as
the set of values that render this functional stationary. The solution does not depend on the value
of parameters r, k. Nevertheless, the convergence rate does depend on their value. In numerical
computations, default values of r and k are selected in terms of a mean value of the Young modulus
of the bodies in contact and of a mean value of mesh size, as follows:

E
r=k~ 1022 (14)
mean
Numerical examples show that this choice gives a better condition number of the iteration matrix
than other choices. A numerical experiment is provided in the examples section, to illustrate on the
influence of these parameters on the convergence properties.

Locus of contact solutions (g=0, p<0)

o
Locus of no contact
solutions (p=0, g=0)

Trace of p+rg=0 P

Figure 1. Augmented Lagrangian function for the contact problem. The locus of solutions is displayed.
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After splitting the Macauley term according to the contact status of each zone, the Lagrangian
can be written as follows

LD =) 8 o, (15)

"k pagna+ied,  ifkpa+rgna<0 (Contactzone)
A=1\ T 27 P4 ifkpga +rgna >0 (Gap zone)

where p 4 is the nodal value of the contact pressure, and plays the role of the Lagrange multiplier that
enforces the contact condition. By differentiation of Equation (15), a nonlinear system of equations
is obtained.

4. WEIGHT FACTORS COMPUTATION: DEFINITION OF THE CONTACT ELEMENT

The non-mortar surface I} and the mortar surface I'? are parameterised in terms of the finite
element shape functions of the solid elements of each body, which are next to the contact boundaries.
The integrals necessary to calculate the weight factors n%, are computed by assembling the
contributions of all pairs of facet elements on either side.

In order to compute the weight factors, a local plane p is defined where the integrals on I'!
appearing in Equation (6) are performed. The numerical integration algorithm used is analogous to
the one proposed by Puso and Laursen [9]. The non-mortar facet k and the mortar facet /, with nodal
coordinates x%, a = 1,2, respectively, are projected on the local plane p, giving polygons k and /
with coordinates y% € R?, o = 1,2.

The nodal coordinates of the non-mortar facet k are used to calculate the normal vector e 3 that
defines the plane p (see Figure 2(a)) and the Appendix for details). The unit vectors e, e, lying
on the plane p are built by forming an orthonormal local basis {e1, €2, e3}. The nodal coordinates

Y4 € R? of the projected facets are given by

er-(xf—x1)
y’f‘q=[ e | (16)
A 1

(c)

Figure 2. (a)Non-mortar facet k, mortar facet /, projection plane p with unit normal e3 and local basis
YV ={e1,e2,e3}. (b) Facets k and / projected on the plane p. (c) Intersection polygon P. (d) Subdivision
of polygon P into triangles.
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where x{ is the coordinates vector of the first node of the non-mortar facet k (Figure 2(b)). When
the facets k and / are in contact, the coordinates y% define an intersection polygon P whose shape
depends on the way the facets are intersected (Figure 2(c)). The polygon P is calculated using an
algorithm for the intersection of planar polygons based on advance rules with a parametric definition
of segments [37]. The integrals in Equation (6) are then computed by subdividing the polygon P
into triangles (Figure 2(d)). A Gauss integration rule is defined over each triangle, and the mortar
and non-mortar shape functions are evaluated at the coordinates of the Gauss points of each triangle
by projecting back the coordinates in the plane p of the evaluation point to each facet. Finally, the
sum of the integrals on each triangle gives the weight factors n% 5.

In this work, the expression of nodal coordinates is defined in R? by Equation (16). Linear
momentum is conserved exactly as in Puso and Laursen [9].

A contact element is defined for each pair of facets, one on the non-mortar and the other on the
mortar surface. If N1 is the number of facets on the surface Fcl, and N2 is the number of facets
on the surface I'?, a total of N1 x N2 contact elements are built. Note however, that only a few
of them are active at a given time (i.e. only those elements whose facets are seeing each other). At
each contact element, the restrictions to the element facets of the integrals needed for the computa-
tion of the weight factors n}4 B> ni p are evaluated. The problem weight factors are then obtained by
assembling the contributions of all elements, as usual.

The generalised coordinates of the contact element are

T
e 17 1T 1 T 2T of 2 T
P =[x1 X, ... X, X{ X3 ... X,o DP1P2... Dm| (17)

where m! and m? are the number of nodes of the non-mortar facet and the mortar facet, respectively,
x} are the nodal coordinates of the non-mortar facet; x% are the nodal coordinates of the mortar
facet, and p; are the contact nodal pressures. The number of DOFs of the contact element is
4m! + 3m?.

5. CONTACT ELEMENT INTERNAL FORCES VECTOR

The internal forces vector of the contact element is obtained taking variations of £¢ with respect to
the generalised coordinates §@¢ as follows:

SLP) = (18)

m! { Nadgna +kgnadpa, ifng <0
A=1

2 .
—kTpASpA ifng >0,

where n4 = kp4 + rgna is the augmented Lagrange multiplier or augmented pressure, which fixes
the state of contact or gap. The Equations (18) have both displacement and pressure (Lagrange
multipliers) terms as unknowns. For this reason, the method is called a mixed or dual penalty
method.

The variation of the normal gap is given by

0gNaA=06(84-va)=6va-84+va-8gy (19)

Equation (19) is simplified due to the fact that at equilibrium g 4 is parallel to v 4, and therefore
8v 4 - g 4 = 0; for details, see for example, [4,35]. Hence, the variation of the Lagrangian is written
as follows:

ml .
Nava-8g 4 +kgnadpa, ifna<0

SL(P) =) 2 , (20)
o1 | = padpa if ng > 0.
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The internal forces vector of the contact element F ¢

cont an then be readily identified as conjugated
to the variation of generalised coordinates:

nAava HLB
—navanic |, ifna <0,
mt [ dxk kgnadas
SLO(PC) = 58¢ - FC (@)= | 6x2 |-1 @1
A=1] épp i 0
0 ., ifna >0,
L —kr—2PA5AB

where § 4 p is the Kronecker delta. The contact status at the zone related to node A is established in
terms of the sign of n4 = kp4 + rgna. This expression is a linear combination of the primal and
dual variables.

Equilibrium is obtained by solving the following nonlinear system of equations

G(U) + Fcont(¢) =0 (22)

where G (U) is the nonlinear vector of internal and external structural forces and where F o (®)
is the set of contact forces at the interface I, which is obtained by assembling all contact element
contributions F¢_ .

The system of equations (22) does not change during the iterations. In primal-dual active set
strategies, the set of DOFs for which n4 < 0 is called active set, whereas those for which ny4 > 0
form the inactive set. These strategies are equivalent to semi-smooth Newton methods [38]. The
method of solution we implement is a semi-smooth Newton method with an augmented Lagrangian
[27] combined with a mortar method for accurate representation of contact. Thanks to the C'!
continuity of £, this system can be solved simultaneously for the displacements and for the Lagrange
multipliers using a standard Newton—Raphson iterative monolithic scheme [35, 38,39].

5.1. Evaluation of the normal vector v 4

The normal vector at the vertex A is computed in terms of the cross product of edge vectors of the
non-mortar facet. The edge vectors v 4, w 4 are defined, at any vertex A of the considered non-mortar
facet, in the following form:

(23)

where
J =mod(4,m") +1, K =mod(4 + 1,m") + 1, A=1,...m"

and where mod() is the modulo or remainder operation. Thus, the normal vector is calculated using

Vg Xw
vy= A (24)
lva x wql

Note that two facets that share a common vertex A do not have the same definition for the normal
vector at the vertex. In fact, the element internal force at node A can be seen as a contribution
coming from a zone inside the element and close to the considered node. The total contribution to
the node A is obtained by adding up all contributions from the neighbour elements, each one having
its own direction. Some authors define a unique normal vector at the node, common to all elements
that share the node. This increases severely the complexity of the computations, because neighbour
elements become coupled.
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6. LINEARISATION OF INTERNAL FORCES OF CONTACT

The linearisation of Equation (21) leads to the tangent Hessian matrix of the contact element, which
depends on the contact status:

(kApa +rAgna)vanky
+na(a Ankip +nl g Avy)

Axl —(kApa +rAgna)vanic s 1N4<0
. . m! sz —na(vy A”ic +n124CAVA)
§@¢-AFS, =Y | AxZ |- (25)
A=1| App L kAgnaSaB

0

0
2 s TIA>O

——Apadap
;

The explicit expression of the Hessian matrix is obtained by evaluating the first derivatives of the
weight factors n% g, the normal interpenetration gx4, and the normal vector v 4. These derivatives
are presented in the following subsections.

6.1. Weight factors linearisation

The weight factors n% 5 are computed by adding up the contributions n‘j’g from each triangle P of

the polygon P. Using Equation (6), the linearisation of the weight factors ni’g can be written as
follows:

an%h = A / NAEHNGE) ar

P P AAP (26)
1 1 o,

_Z ) Ng (83) + Ni(§;) AN (£5) ] weA” +np — 5 1P

where ng is the number of Gauss points, E‘;, a = 1,2, are the projection of the Gauss point

coordinates on the non-mortar and mortar facet elements, respectively, and w, are the integration
weight factors. To compute Equation (26), the variations of the shape functions N§ and of the area
AP of each triangle P are calculated next.

6.1.1. Linearisation of the shape functions. The projection of the local coordinates § , of a Gauss
point in triangle P over the facet elements is established by the following equation:

3 m%
D NFED ¥ =) Ni(E3) ¥4 27)
I=1 A=1
The subscript I = 1...3 spans the three vertices of triangle P, whereas the subscript A =1...m“
spans the vertices of the contact facets, which are m* = 3 for triangular facets and m* = 4 for
quadrangular facets. When the facet elements are quadrangular, the unknowns, that is, the Gauss
point coordinates &%, are obtained by solving Equation (27) with a Newton—Raphson algorithm.
Instead, when the facet elements are triangles, the coordinates Eg are computed explicitly.
The increment of the shape function N§ at node A is obtained by taking partial derivatives of the
shape functions in the direction ég:

ON§

g 85/5

“) AES. (28)
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From Equation (27), the increment of the coordinate £ in the direction f is given by

Afg =7j (ZNI (E)AYT — ZNZ(Eg)Ay‘i), p=12 (29)
A=1

where

-1

N
=| > A (&) 4| - 30)
05¢

In Equation (30), the coefficients 7% are obtained by inverting a 2 x 2 matrix. By replacing
Equation (29) into Equation (28), the variation of the shape function evaluated at the Gauss points
&% can be written as follows:

2
ANY (& Z

O[

3
£%) T‘ET(ZNIP(gg)AyI ZNA AyA) (31)
I=1

Equation (31) gives the variation of the shape function AN ¢ (E ‘;) in terms of the variation of the
nodal coordinates of triangle P, which is part of polygon P. These coordinates are computed from
the nodal coordinates of the projected non-mortar and mortar elements on the plane p, by the
polygons intersection algorithm. The nodal coordinates vectors y% € R? of the projected elements

k and [ are put together forming vector Y in the form
T
T T T T T T
YZ[yi 2 AR ' S Z RO et ] . (32)

Then, the relationship between the increment of nodal coordinates of triangle P and the increment
of nodal coordinates of the projected facet elements is given by

m2

Ay PAY = ZD AyK—i-ZD Ay?. (33)
L=1

Details about the matrix D ¥ 7 are outlined in the Appendix. In Equation (33), the contributions to the
nodal coordinates increment are separated in contrlbutlons D KA yl x coming from the non-mortar

projected facet and contributions to increment D A y? 7 coming from the mortar projected facet.
Finally, by using Equations (33), (29) and (30) the increment of the shape functions,
Equation (31), is written as follows:

ANg (%) = P4" (£9) AY, (34)

where

2
PLY = Z(NM ")[NFDI =N NPDT - N

Py 1 P P2 P P2 Py
NfD' =N I  N{Dj Ny Dy ... DlmZ]
> T
2,P 2 2 P n Py P n P
Py = Z (NA,ﬁ T )[NI Dy Ni Dy,
B=1
P nP1 P P2 2 P P> 2 P P2 2

N; DIml Ny D;7 —NiI Ny D;5—N;I ... N; DlmZ_NmZI]‘

(35
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6.1.2. Triangle area linearisation. The triangle area variation, AA is also required to complete
the linearisation process of the Equation (26). The area of a triangle P € P is determined using the
cross product of two vectors defined from the nodal coordinates yf eR2,

1 1
P PP PP P _P\(.P P
A 25()’2 _y1)x()’3_Y1)=§(J’2_J’1)(J’3_J’1)- (36)
wherew = —uz uy | |uxv="uv=—vxu, ¥ u,vecR2 The linearisation of AP results in
the equation
AP
I B e S Sl A | I S I
AP T AP L Y3 T Y2 Vi —Y3 Y2 Yo | =
L 475 (37)
- P
| D; 3
_ P _ PP
=7 | sT 9k yT—yf yE—yP || pf |av=)(sfDf)ay
D?I: I=1

where Jf =€1JK (yl;(—yf) J/(4AP), T=1,...3.

6.1.3. Transformation from projected positions to global coordinates. The linearisations developed
in the previous sections, were defined in terms of coordinates of the elements projected over the
local plane p. The nodal vector of increments in projected coordinates AY is locally defined in the
plane, and consequently, must be computed in terms of AU, the vector global nodal coordinates
of the contact elements defined in R3, Equation (17). To carry out this process, starting from
Equation (16), the linearisation results in the following equation

Ao |:Ael-(x‘jl—xi)+e1-Ax‘j‘4—e1-Axi
y = o

“ — } = HYAU, (38)

Aey- (x% —x])+er-Ax% —es- Ax]

where H9 is a matrix which transforms the increments of local nodal coordinates into the global
coordinates in R3. The full expression of matrix H¢ is outlined in the Appendix. Grouping the
expressions for all nodes, we get

AY = H*AU (39)

where H? is the matrix formed by joining together matrices H.

6.1.4. Final expression of weight factors linearisation. The linearisation of the weight factors is
computed with Equations (26), (35) and (37), and given by

An%E = Q%L AY = Q% H*AU,  a=1,2; A=1n'; B=1,m" (40)
where
ng
W=D [ VB (62) P (6) + NA(61) PST (62 |wea” +n%p Y UFDE @)
g=1 I=1

is a row vector of 2m! + 2m? components. The final expression of the linearisation of the weight
factors is computed by adding up all contributions from the triangles in which the intersection area
is subdivided:

An%p =Y An%p = Q% H*AU (42)
P
with:

P
%= Z Q(jw
P
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6.2. Normal interpenetration linearisation

The linearisation of the interpenetration g 4, Equation (5), is given by

ml m2
Agy= Z (nypAxp+ Anypxp)— Z (n%cAxE + AnficxE). (43)
B=1 Cc=1
Using Equation (43) and Equations (40 and 41) we get
Ag 4= N4sAU, (44)
where
Na=[NI NI ... N I —N{I —NjI ... —NZ2,I]
ml m2 (45)
+ Z (xpQup)H' - Z (x&Q%¢c) H.
B=1 Cc=1

The linearisation of the normal interpenetration is then given by

AgNA = vz;NAAU (46)

6.3. Linearisation of the normal vector

To assure a quadratic convergence of the residual, the linearisation of the normal vector in the
tangent stiffness matrix is required. The linearisation of Equation (24) yields

, o Ax}
avg=L=va®valr g 5w | x| 47)

[va xwal 1

Ax g

where
J =mod(4,m") + 1, K =mod(A + 1,m") + 1, A=1,...m'.
After some algebra, Equation (47) can be written in the form
Avy =W 4AU (48)

where matrix W 4 is built taking into account the permutations described above.

6.4. Tangent stiffness of the contact element

After replacing Equations (42), (46) and (48) into Equation (25), the expression of the tangent
stiffness of the contact element is obtained :

m! é’x}g
50 K AP =" | bxZ.
A=1| Opp
[ 4 (va QupH' +njpWa) |
+rn}43[vA®vA]NA knll‘leA
AU
—na(va QacH? +n)ycW4) [A } N4 <0
2 2 PA
—rnycva ®valN 4 kn%cva
X
B SABkvgNA 0 i
0 0
AU
0 20 A s n4a > 0.
| 0 845 h
(49)
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Figure 3. Contact patch test. (a) Boundary conditions and mechanical properties. (b) Stress solution of the
node-segment and mortar algorithms in the contact interface.

7. NUMERICAL EXAMPLES

Five numerical examples are presented to evaluate the robustness and accuracy of the proposed
contact algorithm. The examples involve quasi-static simulations and were carried-out in the
research finite element code Oofelie [40] where the contact algorithm is integrated. All pre-
processing and post-processing tasks were performed using the software SAMCEF-Field [41].

7.1. Validation example I. The contact patch test

The first example is a contact patch test proposed by Chen and Hisada [42]. The 3D solutions
obtained in this work are compared with the 2D solutions of Chen and Hisada, introducing a
plane strain state, which reproduces the same boundary conditions. The material behaviour used
in this example is linear elastic. The mesh topology, boundary conditions, dimensions and material
properties are shown in Figure 3(a).

Figure 3(b) shows that the stress field is transmitted exactly from one body to the other with
nonconforming meshes, concluding that the formulation verifies the contact patch test to machine
accuracy. When using a node—segment approach, the stress field is not uniform, and thus, does not
pass the contact patch test (Figure 3(b)).

In order to study the influence of the parameters r and k on the convergence properties, solutions
for different values of r and k were computed. From the geometry and material properties depicted
in Figure 3, and by using the Equation (14), their recommended value results as follows:

9
r=k =105 = 102210 _ g5 1010 (50)
h 2

Table I gives the residual norm per iteration for the different values of r and k. Quadratic
convergence behaviour is displayed in almost all cases. The optimal behaviour is achieved when
they are calculated by using Equation (14). The condition number of the global tangent matrix is
shown in Table II. We see that the minimum condition number is obtained for values of r and k
close to values suggested by Equation (14). In the examples that follow, coefficients r and k are

selected according to Equation (14).

7.2. Validation example Il. Hertzian contact

The second example, the Hertz contact problem between two parallel cylinders [9,43], was selected
to validate the algorithm with an analytic solution. The radius of both cylinders is 8. The mesh
topology, boundary conditions and mechanical properties are shown in Figure 4. A nonconforming
mesh in the contact interface of the cylinders is proposed. Symmetry conditions with respect to
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Table I. Residual norm evolution in the contact patch test problem for different values of k and r (r = k).

Tteration 106 108 1010 1012 1014

1 1.42x 1072 3.35%x 107! 10.2751 84.1781 5.43x 103
2 3.07 x 1071 4.84 %1072 7.80 x 1072 6.99 x 107! 9.14 x 10!
3 1.75x 1073 7.39x 1073 3.89x 10~° 1.07x 1073 3.37x 103
4 1.24 x 1074 7.78 x 1072 1.39x 1079 2.77 x 101
5 3.77 x 10711 2.18 x 10711 1.93 x 103
6 1.24 x 102
7 8.32 x 102
8 3.84 x 10°
9 Fail

Table II. Condition of the tangent matrix for the contact patch test problem for different values of k and r.

r\k 106 108 1010 1012 1014
106 1.22x 108 1.22 x 104 1.16 x 102 1.12 x 104 1.12 x 108
108 1.27 x 108 1.27 x 104 1.17 x 10? 1.12x 104 1.12 x 10°
1010 221 x 102 221 % 10° 2.38 x 102 1.12 x 104 1.11 x 106
1012 8.27 x 1012 8.27 x 108 8.28 x 104 2.40 x 104 1.09 x 106
1014 fe’e) fe’e) 00 e’} 0
P=1.875
o
18 -
7 —Analytic Solution
Symmetry -"";’".5"3 ey E = 200 1 W [lortar, Present work
conditions "’9;1;:, v=023 o
gz
E = 200 £
v=0.3 ‘? 8
g 5
g
2
-
%% 0z b4 o6 08 1 (F] 14
Clamp X-Coardinats [m]
(a) (b)

Figure 4. Hertz contact of two parallel cylinders. (a) Boundary conditions and mechanical properties.
(b) Hertz contact stress solution using nonconforming mesh.

a middle plane are selected to reduce the computational cost, allowing the mesh to be refined at
the contact surface. The upper cylinder is uniformly pressed with a small pressure value, leading
to small strains. Figure 4(b) shows the variation of contact pressure at the contact zone, showing
agreement between the analytical solution from Hertz theory and the proposed numerical solution
using the mortar method.

7.3. Ironing problem

The third example, depicted in Figure 5, corresponds to the so-called ironing problem. It was
presented in the work of Puso et al. [9] and solved by a mortar based contact formulation with
a penalty regularisation scheme. In the work of Popp et al. [26], this example is solved by a dual
mortar approach with Lagrange multipliers.
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Figure 5. Ironing example. (a) Geometry, mesh discretisation and boundary conditions. (b) Time evolution
of imposed displacements of die.
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(c) Time: 1.39 s. (d) Time: 2's.

Figure 6. Ironing example. Plot of displacements computed at four different time instants.

A cylindrical die with £ = 1000 and v = 0.3, is pressed into an elastic block with £ = 1000
and v = 0.499. For simplicity, a linear elastic material is assumed. The discretisation is performed
using eight-nodes hexahedral finite elements.

The displacement of the top surface of the cylindrical die is imposed, as shown in Figure 5(b).
First, the die is moved vertically downwards from time O to time 0.5 s, and then it is displaced
horizontally from time 0.5 s up to time 2 s.

Computations are performed with a constant time-step of 0.01 s. Figure 6 shows the deformation
at four time instants, illustrating the large displacements involved in the example. Figure 7(a) shows
the vertical stress o, at the outer surface of the slab. The computed stresses are smooth, without
jumps or oscillations between elements. Figure 7(b) shows the evolution in time of the vertical com-
ponent of stress o, on the slab surface, evaluated at a point located immediately below the centre of
the die. Only a very slight oscillation of stress is evident, when the die slides along the slab, and is
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Figure 7. Ironing example. Computed stress solutions. (a) Stress o, computed at the external surface of the
slab. (b) Stress 0, computed on the slab surface at a point below the center of the die.

Table III. Residual norm evolution for the ironing example for different times.

Iteration Time 0.5 (s) Time 0.98 (s) Time 1.94 (s)
1 6.09 x 1072 9.73x 1072 1.37

2 734 % 1074 9.55%x 1074 1.11x 1073
3 2.65x 1074 3.80 x 107* 3.39%x 1074
4 6.35%x 107> 1.00 x 1074 9.01 x 107>
5 6.57x 1078 3.50 x 1073 6.24 x 1072
6 4.87 x 1072

+
[y
3.8 Vel Deplscernen u,

% @i ez @83 o4 o5 o8 af o8 08 1
Tirme

(b)

Figure 8. Indenter example. (a) Geometry, mesh discretisation and boundary conditions. (b) Time evolution
of exposed displacements of die.

produced by the finite element discretisation. A quadratic converge was obtained with six iterations
per step.

Table III presents the convergence rate for three representative time steps (Figure 5)(b)). By using
an appropriate value of coefficients r and k, selected according to Equation (14), which gives in this
case r = k = 11, the convergence rate is quadratic with a mean value of six iterations per step,
see Table III.

7.4. Indenter problem
A fourth example, the so-called indenter, depicted in Figure 8, is analysed in this section [9, 26].
A cubic upper block (£ = 1000 and v = 0.3) is pressed into a slab (£ = 1 and v = 0.3),
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(C) Time: 0.66 s. (d) Time: 1s.

Figure 9. Indenter example. True deformation solutions for different time instants.

and then made to slide over the slab surface. A linear elastic constitutive law is again assumed. This
example is more challenging than the previous one because of the sharp corners of the upper block,
which produce very large contact pressures. Dimensions, mesh topology and boundary conditions
are shown in Figure 8. The displacement of the top surface of the upper block is imposed, as shown
in Figure 8(b). First, the block is moved downwards vertically from time O to 0.2 s, and then it is
displaced horizontally from time 0.2 s up to time 1 s. A classical node-to-segment approach and a
smooth node—segment contact approach have failed to obtain a solution in this example [9].

Figure 9 shows the computed solutions in four time instants.

Figure 10(a) shows the computed vertical stress o, at the outer surface of the slab for time 0.83 s.
The computed stresses are smooth, without jumps or oscillations between elements. Figure 10(b)
shows the evolution in time of the vertical component of stress o, on the slab surface, evaluated at
a point located immediately below the centre of the upper block. An almost constant stress value is
observed, with smooth oscillations because of the discretisation.

Table IV presents the convergence rate for three representative time steps, see Figure (10)(b). By
using an appropriate value of coefficients r and k, selected according to Equation (14), which gives
in this case r = k = 100, the convergence rate is quadratic with a mean value of four iterations per
step, see Table IV. Computations are performed with a constant time-step of 0.01 s.

7.5. Application example: internal combustion engine valve

The fifth example corresponds to the case of an industrial application, the contact between an
internal combustion engine valve with its seat (Figure 11(a)). A more detailed explanation of the
characteristics of this mechanical component can be found in [44]. This problem is challenging
because of the small contact surfaces with double curvature.
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Figure 10. Indenter example. Plots of computed stress. (a) Stress o, computed at the external surface of the
slab. (b) Stress o, computed on the slab surface at a point below the center of the upper block.

Table IV. Residual norm evolution for the indenter example for different times.

Iteration Time 0.2 (s) Time 0.5 (s) Time 2 (s)
1 1.90 1.90 1.90

2 1.32x 1072 1.22x 1072 1.45x 1072
3 3.76 x 1074 459 % 107> 6.15x 1074
4 1.61 x 1077 8.75%x 1078 2.53x 1077

Symmetry , Symmetry axis
conditions

E = 2.1E11 Pa Seat
Valve

Clamp

f Contact Interfaces

(b)

Figure 11. Application example. (a) Contact between a combustion engine valve and its seat; (b) boundary
conditions, mechanical properties and mesh topology for a combustion engine valve.

A constant pressure value of 7 MPa is applied at the head of the valve. This represents the
internal pressure produced by the combustion in the cylinder. Linear elastic behaviour of the
materials and small deformations are assumed. Figure 11(b) details the geometry, boundary con-
ditions and mechanical properties used for the model proposed. The mesh topology consists of
hexahedral elements.

Figure 12(a) shows the distribution of contact pressure obtained with the node-to-segment
approach, whereas Figure 12(b) displays the solution computed with the mortar scheme. A large
pressure oscillation is observed in the contact area when using a node-to-segment approach, whereas
with the mortar method, the pressure distribution is much more uniform (Figure 12(b)). The cyclical
behaviour in the computation of pressures with the node-to-segment scheme is caused by small
perturbations in the mesh geometry. The mortar method is less sensitive to these errors because
of the mixed approach in which efforts are translated between bodies by means of the contact
pressure approximation.
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Figure 12. Application example. Comparison of contact pressures computed with both approaches.
(a) Node-to-segment approach and (b) mortar approach.

8. CONCLUSIONS

A new mortar finite element formulation combined with an augmented Lagrangian technique has
been proposed for the solution of 3D frictionless contact problems. The algorithm has three main
features: the nonlinear equations can be solved by means of a monolithic Newton scheme of simple
implementation, problems with nonconforming meshes can be accurately solved, and the results do
not depend on the definition of any penalty parameter by the users.

The equations for the computation of the residual forces and tangent matrices were presented.
The strategy can be implemented very easily in a finite elements programme for nonlinear analysis
without any change to the main structure of the code.

The numerical examples showed that the proposed strategy successfully passes the contact patch
test. The technique was validated by comparison with a classic analytical solution. Two examples
were presented to demonstrate the capabilities of our proposal to represent large displacements
contact problems. Finally, an industrial application has been solved.

We emphasise the accurate pressure prediction at the contact surface obtained in all examples
presented in this work. This feature is imperative to obtain reliable solutions in related computa-
tions, that is, when analysing wear between mechanical components. An extension of the method to
cases with friction and wear is currently under development and will be reported in future work.

APPENDIX A: VARIATION OF THE NORMAL TO THE NON-MORTAR FACET

An orthonormal local basis {e, e, e3} is defined for each non-mortar facet, in terms of the nodal
coordinates x}4. Vector e 3 is normal to the facet in the case of a triangular facet (m' = 3), or normal
to the plane defined by the two diagonals in the case of a quadrangular facet (m! = 4):

e3 = (A.1)
I (3= xd)x (b —xd)

Vector e is aligned with the line joining nodes 1 and 3:

e = % (A2)
3 — x4

Finally, vector e, is computed so as to get a right frame:

ey =e3xe;q. (A.3)
The linearisation of vector e is obtained from Equation (A.2) as follows,

Ae; =F (Ax} — Axy), (A4)
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being
_U-e1®en) (A5)
I3 —x1ll
The linearisation of Equation (A.1) is computed from
Aes= > A'Axj, (A.6)
I=1m
wherethema‘trixAz[A1 A% ..oA™M ]isgivenby
(I—e3®es) T30 3D Glah
— — - =3;
D) x (el — 2] [(*“3 x3) (xp—x3) (a3 xl)]’ =2
4= TS0
x| @) (=) =) i) o om=4
(A7)

The operator 7 : R?® — R3 ® R3 returns a 3 x 3 skew-symmetric matrix such that # x v = uv =
—v xu, Y u,veR3. The linearisation of the vector e, is obtained from Equation (A.3)

Aez 2?3A81 —?1A€3, (A8)

where ‘¢3 and e are the skew matrices associated to the vectors e3 and e 1, respectively.
The linearisation of the projected positions of the two facets on the computation plane was given
in Equation (38). After replacing Equations (A.4) and (A.8) in the latter, we get the following:

Ay% = H4AU. (A.9)

Matrix H¢ is a 2 x 3(my + m») matrix given by

[ ~F 0 F 0 00 ..
ATTAl _FIAY 16 F 6,42 AP+ F —614% 0 0
eT 07 .. —eT 0 ...
+ ; . ; (A.10)
e; 00 ... —e; 0 ...
T
A,

T
. . . . —e . .
where in the last matrix of the right-hand-side, entry |: ; :| is added at the column corresponding
—e!
to node A, o, and where

o nT T
‘;‘,:[ (x5 —x1) 0 )T} (A11)

0" (x% —x]
APPENDIX B: SEGMENT INTERSECTION

The segment intersections used to generate the intersection polygon in R? were made using an
algorithm based on rules of advancing, as proposed by O’Rourke [37]. The segments ab and cd
are defined by ab = a — b and cd = ¢ — d (Figure B.1). The position Pi,() = Q;,(s) of the
intersection point between ab and cd is calculated using the parametric representation of a segment,

Oin(s) =a+sb—a), (B.1)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 93:420-442
DOI: 10.1002/nme



440 F.J. CAVALIERI AND A. CARDONA

a

Figure B.1. Segment intersection.

or
Pint(t)=c+t(d_c)v (BZ)

where the scalar variables s and ¢ are the parameters along each segment. Parameter values s and
t are computed by making P, (¢) equal to Q;,(s), giving a system of two equations with two
unknowns with the following solution:

s = [ax(dy —cy) + cx(ay —dy) +dx(cy —ay)]/D,

t =lax(cy —by) + bx(ay —cy) +cx(by —ay)]/ D, (B.3)
with D =ax(d, —cy) +bx(cy —dy) +dx(by —a,) +cx(a, —by).

The linearisation of Equation (A.11) is straightforward resulting in the following generic equation:

Aa

AQ=0- ilc’, , (B.4)

Ad
where the matrix Q is a function of the segment points @, b, ¢ and d.

The matrix D¥

The matrix D¥ relates the nodal coordinate variation of a non-mortar or a mortar element of each
triangle P with the nodal coordinate variation,

AyP =DPAdk;. (B.5)

The geometric centre variation of the polygon P can be written with the average of the vertex of P

P
1 n
Ayf:n—PZAyf,’ I=1...3. (B.6)
P=1

where Ay f is the variation of a vertex [ for each triangle P (Figure B.2).

The matrix Df depends directly on the intersection of the non-mortar k and mortar [ elements.
The simplest situation occurs when a vertex of a triangle P is coincident with a node of a non-mortar
k or mortar [ element. In this case, D¥ will be formed by ones and zeros in the rows and columns
corresponding to the DOFs of the vertex y¥. This case is presented in Figure B.2, where the node
of the triangle P is coincident with the mortar node y%. A more complex situation arises when the

intersection between k and / defines a vertex of the triangle P, itis yf;t. This situation, for example,

is given by the segments intersection y3 — y2 and y} — y} (Figure B.2). In this case, D ¥ will be

formed with the values coming from the matrix @, Equation (B.4).
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Figure B.2. Mortar and non-mortar element projected in the plane p.
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