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large elastic deformations under known service loads. This specific task is typical of a variety of
mechanisms where the deformed shape and the responsible loads are known, while the problem
is to determine the unloaded shape, i.e., the manufacturing shape of the mechanism.

The potentialities and the limitations of the IFEM are shown with three applications in the
Keywords: ) medical field: 1) a microgripper whose deformed shape is dictated by the object to hold; 2) a
Inverse finite element method valve that must by-pass a prescribed flow rate when it is deformed under a prescribed pressure;
Compliant mechanisms and 3) a folder of an intra-ocular lens (IOL) whose deformed shape is determined by the optimal

Large elastic deformation
Me?:lical delvices l shape of the folded IOL.
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1. Introduction

A compliant mechanism is a device that uses the compliance of its structure to achieve mechanical tasks such as force and
motion transmission, and it relies on elastic strain in order to reach the desired degree of deformability [1].

Classically, the obtention of feasible configurations for flexible members that perform a mechanical task required the use of
optimization techniques. The design variables are positions, characteristic dimensions and density of the members, among others.
Common design objectives are the reduction of stress concentration, the reduction of volume or mass, the maximization of
mechanical and geometrical advantages, and the attainment of a desired deformed shape.

According to the classical literature, the design of compliant mechanisms has been undertaken using optimization-based
solvers aided by other methods such as the pseudo-rigid body model [1], the continuous material density parametrization [2,3],
the ground structure parametrization [4], the load-path methods [5,6], the graph theory [7,8] or the level-set methods [9,10].

The process of solving any optimization problem consists of a series of steps (tens, hundreds, and even more), and at each one
the governing equilibrium equations of the problem have to be solved.

In this work, we address the design of compliant mechanisms to accomplish a specific task: to attain an exact desired shape
under the effect of service loads after large elastic deformations. The inverse finite element method (IFEM), for which the desired
deformed shape is given, determines the undeformed shape of a mechanism by solving the equilibrium equations only once. The
IFEM for two- and three-dimensional isotropic elastic bodies with known deformed shape and loads was originally proposed by
Govindjee and Mihalic [11,12] and Yamada [ 13]. Recently, Fachinotti et al. [ 14] extended the IFEM for 3D orthotropic elastic material.

However, for a wide variety of compliant mechanisms that are properly modeled using beam elements [15,16], the use of 2D-
or 3D solid finite elements entails a huge waste of computational resources. This motivated the formulation of the IFEM for elastic
beams under large deformations, presented in Albanesi et al. [17].
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In this paper, we will illustrate the strengths and limitations of the beam-IFEM through applications to the design of biomedical
tools and minimally invasive surgery (MIS) instruments. These applications are promising uses of compliant mechanisms since they
eliminate wear debris, pinch points and lubrication, all of which are critical in the sensitive internal environment of the human body
[18]. Three examples will be widely discussed: 1) a compliant microgripper, taking as reference the one proposed by Kohl et al. [19],
2) a compliant passive valve, following Seidemann et al. [20]; and 3) a folder for an intra-ocular-lens (IOL), based on that proposed by
Erdman and Loftness [21].

2. Summary of the beam-IFEM

In this work, we aim to develop applications to compliant mechanisms of the inverse beam finite element introduced by
Albanesi et al. [17]. For the sake of clarity, a self-contained summary is intended here.

2.1. Kinematics

Let B, be the undeformed configuration of the beam with cross section Ay and length Ly, and S the coordinate along the neutral
axis of By, 0 < S < Ly, as shown at the bottom of Fig. 1.
The position of any point X € B, can be written as a function of S:

X(S) =Xo(S) +Y(S) (M

where X is the trace of the neutral axis of By on the cross section Ay that contains X, such that Y = X — X, lies in Ajy.
Similarly, let 8 be the deformed configuration of such beam, with cross section A and length L, and s the coordinate along the
neutral axis of 8, 0 < s < L, as shown at the top of Fig. 1. The position of any point X € 8 can be expressed as:

X(s) = Xo(5) +¥(5) 2)

where X is the trace of the neutral axis of 8 on the cross section A that contains X, and y = X — Xg lies in A.

Let us assume, as usual in the beam theory, that a cross-section does not deform and remains plane during deformation;
however, if it is normal to the neutral axis at a given configuration, in general, it is not normal to the neutral axis at any other
configuration due to shear effects. Then, the vectors Y and y in Eqs. (1) and (2) are related by the rotation law:

Y =Ry 3)

where R is a proper orthogonal matrix, i.e. R = R~ ! and det(R) = +1.
The matrix R is completely determined by its rotation vector ¢y by means of Rodrigues' formula:

sinlipll ~  1—cosliyll ~ ~
i g Y (4)

R@y) =1+

where I is the identity matrix and ¢ is the skew-symmetric matrix associated to vector i, such that a = s x a for any vector a.

Fig. 1. Undeformed (bottom) and deformed configuration of the beam.
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Using the IFEM, the vector fields X and y that determine the position of any point X € 8 are assumed to be known. The IFEM
problem consists of finding the vector field Xq and the tensor field R in order to completely define the position of any pointX € B,.
However, since the vector field ¢ suffices to completely describe the rotation R, the unknown fields for the IFEM are finally the
vector fields Xq and .

2.2. Equilibrium equations

Let t be the traction vector field per unit area of A. The resultant force n and the resultant moment m with respect to X, of the
traction vector t acting throughout A, the so-called internal efforts, are:

n=| tds (5)
m = [ (x—Xo) x t ds. (6)

Let b be the (given) vector of body loads per unit length of the beam. We call external efforts the resultant force ney and the
resultant moment m,, with respect to X, of the body loads b acting throughout A:

e[, b ds 7)
N, = [, (x—%p) x b ds. ®)

Now, the translation and rotation equilibrium equations at any point X8 can be expressed respectively as
n’ 4+ Ng, =0 9)
m’ +X’p X N+ Mg, =0 (10)
where ()’ = d(+)/ds and 0 denotes the null vector.

The unknown undeformed configuration B, is completely determined by the material position field X. In its turn, under the
assumptions of beam theory, X is completely determined by the neutral-axis material position field X, and the rotation vector
field ¢. Then, the weak form of equilibrium Egs. (9) and (10) takes the form: to find the vector fields X, and s such that

fB{n' [(6Xo)' + X}y x 8] + m (6’ }ds = fg(next'ﬁxo + Mgy, 6)ds (11)
for all admissible variations 6X, and 6.

2.3. Deformation

In beam theory, the deformation is measured by the vectors I' and K describing respectively the strain and the curvature of the
neutral axis, given as

g% _dX
F=R ds ds (12)
dy
K= TE (13)
where T is the tangent operator
cosliyll—1 ~ 1 sinlldzll) -
TY)=1+——— — (1= . 14
W) =T+ eV e ( T A (14)
Note that I and K are material measures of deformation. In the IFEM, we use their spatial counterparts:
1 /
v =Rl =< (x,—RXY}) (15)

S/

1
K =RK = RTy'. (16)
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2.4. Material behavior

Let us assume that the material obeys the following linear-elastic constitutive laws

n=Cly (17)

m=C"x (18)
with

C" = EAt; ®t; + GA, T, ®t, + GA;t;®t; 19

C" = @Jt; ®t; + ELt,®t; + ELt;8t; 20

where E and G are the material Young and shear moduli, respectively, t; =x{, is the unit vector along the axis of the deformed
beam B, t; and t3 are the unit vectors along the principal axis of the deformed section A (see Fig. 1), A is the area of A, A, and As
are the shear areas in the direction of t; and t3, respectively, I, and I5 are the rotational moment of inertia of A with respect to t3
and t3, respectively, and J is the torsional moment of inertia of A. For the IFEM, all these mechanical and geometrical properties
are assumed to be known.

Using beam theory, the Cauchy stress tensor o can be determined in terms of the internal efforts n and m and the geometric
characteristics of the cross section. This way of computing o gives rise to a huge number of formulas regarding the huge number
of commonly used cross section geometries, as shown in the classical book of Timoshenko and Goodier [22], which presents
formulas for elliptical solid and hollow sections, narrow and normal rectangular sections, rolled-profile sections, etc. For instance,
in a beam with rectangular cross section A = b, b, (b; stands for the dimension along the axis t;) deforming in the plane normal to
t5, the non-zero components of the Cauchy stress are

n, m

On :71'*'1—22}’3 (21)
n

013 =03 =2 (22)

3

where I, = b,b3/12 and A; = 5A/6.
2.5. Finite element formulation

A general beam structure is an assemblage of several beams with curved neutral axis and variable cross section. Let us
approximate each beam as one or more straight beams, each one having a constant cross section. Each straight beam constitutes a
beam finite element.

Let 8 be the known deformed configuration of the whole structure, which is divided into N beam finite elements $5°.

The current inverse beam element $° is a straight, mixed linear-linear finite element having two nodes located at its ends,
whose direct counterpart is the finite element proposed by Cardona and Géradin [23].

By mixed linear-linear, we mean that there are two unknown fields, X, and ¢, and they are both linearly interpolated inside the
element 8¢, i.e.:

Xo(s) = ©1(5)Xo, + ¢2(5)Xo, (23)
Yo (S) = @1 ()P + P2 () (24)

where (x); is the value of () at node i = 1, 2, and ¢;(s) is the linear shape function associated to node i. If node 1 is that located at
s = 0 and node 2 is that located at s = L°, with L¢ being the length of the neutral axis of element 8°, we have

@i5) = 1= 1; =1-&,(9) (25)

2.6. Equilibrium equations for IFEM

The equilibrium equations for the IFEM are obtained by using the standard Galerkin procedure [24]: the unknowns fields X,
and ¢ as well as their variations 6Xo and 6 are approximated as defined by Eqgs. (23) and (24). Doing this, the equilibrium
equations given in weak form by Eq. (11), restricted to the element 8°, take the form:

Foi—Fo =0 26
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where Ff,; and Fg,, are respectively the vectors of internal and external forces of the element 5¢, given by

Fo = BTL‘I‘st (27)
Fou = J, @ [:;:; } ds (28)
with
B— | il (Pl(;;(;) ol (Pz(;;(;) (29)
0 oI 0 ol
_|e,l 0 @l O
=8 o B el &

where O is the null matrix.
Once we have computed the vector of internal and external forces of all the elements 8%, e = 1, ..., N, they are assembled in
the global vectors

N
Fipe = Z Flent (31)
e=1
N e
Fexe = Z Fint (32)
e=1

For further details on the assemblage process, we refer to any classical book on FEM (e.g., [24]).
After assemblage of both terms in Eq. (26), we obtain the equilibrium equation for the whole structure B:

Fres = l:int_l:ext =0 33

This is a non-linear discrete system of equations, whose unknowns are the values of Xy and  at all the nodesi =1 ..., M of
the whole beam structure 8, which are grouped in the global unknown vector

Xo,
¥
Q= : (34)
Xo,,
Im
We remark that the equilibrium Eq. (33) governing the IFEM is identical to those that govern the direct FEM, except that the
unknowns and the given data are interchanged.
The non-linear Eq. (33) is solved iteratively using the Newton-Raphson method [25]. The process starts (i.e., atiteration k = 0) by

assuming an initial guess Q‘®). At a generic iteration k > 0, once Q* ~ " is known, we compute Q%) by solving the linear
system:

Fres (Q(kfl)) + S(Q(kfl)) (Q(k)_ Q(kfl)) -0 35

where S is the tangent stiffness matrix, defined as

dFl'eS
dQ - (36)

S—
The process finishes when ||F;es(Q(¥)|| is less than a small real positive value, the so-called tolerance e. Generally, the Newton—-
Raphson scheme guarantees the fastest convergence to the solution, i.e., makes |[F;es(Q®)|| < ¢ for a lower k than any other
method. For a detailed description of the computation of Fj(, Fexc and S, the interested reader is referred to the work of Albanesi et al.
[17], where the beam-IFEM was originally proposed.
Concerning the implementation, the beam-IFEM was coded in GNU Octave [26] under a Linux platform.
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3. IFEM for the design of compliant mechanisms

In this section, the use of the IFEM for the design of compliant mechanisms to exactly fit a desired shape after large elastic
deformations will be illustrated. The problem to be solved can be stated as follows: to determine the manufacturing shape of the
compliant mechanism assuming that we know:

1. the deformed configuration 8 of the mechanism;

2. the way the mechanism is supported;

3. the way the mechanism is actuated;

4. the properties of the material used to build the mechanism.

3.1. Feasibility of the IFEM solution

Given the above data, the IFEM gives us the undeformed configuration 8. But, in order to identify 8 with the manufacturing
shape, the following tests must be succeeded:

1. Mechanical tests:
(a) Validity of the hypothesis of elastic material behavior, as assessed using the yield criterion best-suited for the employed
material. For instance, according to the widely used von-Mises yield criterion, a beam remains elastic if the Cauchy stress
tensor throughout the volume of the beam satisfies

\ 0%, +3(0%, + 033)<0y

where the Lh.s. defines the von-Mises equivalent stress and Oy is the yield strength of the material.

(b) Uniqueness of the solution, which is lost when an unstable equilibrium state (or critical point) is met during deformation.
The expertise of the designer frequently suffices to detect the occurrence of critical points. In case of doubt, this can be
formally assessed by using the spectrum test [27].

2. Topological tests:

(a) Absence of interpenetrated beam elements: the IFEM solution may exhibit beam elements penetrating or crossing each
other.

(b) Sometimes, the mechanism is required to keep inside a design domain along the entire deformation.

A simple ocular inspection is enough to assess the fulfillment of topological tests.

In general, mechanical and topological tests also apply to the configurations corresponding to intermediate load steps.

Reference microgripper

(closed condition) New microgripper

| Piece to grab (deformed C(I)nﬁguration)
lr Jaws o
| Finite element mesh
/4 i \\_
/ Straight
) beam element
Actuation
force

D),
>> << ) Anchors

!‘(( |g|

1 mm
|

Fig. 2. Compliant microgripper proposed by Kohl et al. [19] in its closed condition (on the left) and deformed configuration of the new microgripper.



20 ALE. Albanesi et al. / Mechanism and Machine Theory 65 (2013) 14-28

Table 1
Properties of the proposed microgripper.
Section of flexible beams A = 2500 pum? (square, constant)
Actuation force P = 40 mN
Material Stainless spring steel
Young modulus E = 200 GPa
Shear modulus G = 76.9 GPa
Yield strength oy = 1 GPa

3.2. Design of a microgripper

Let us use the I[FEM to design a compliant microgripper to perform the same task as that of Kohl et al. [19], depicted on the left
of Fig. 2. This task is actually conditioning the deformed configuration of the microgripper, which represents the microgripper
grabbing a given object. Here is the major advantage of IFEM: the designer can define the exact deformed configuration of the
microgripper such that a geometrically-complex fragile piece can be carefully grabbed.

The undeformed shape of the new microgripper is determined assuming the following as given data:

1. The deformed configuration 8, composed of the jaws attached to two flexible circular beams, as shown on the right of Fig. 2.
The jaws as well as the neutral axis of the flexible beams coincide with those of Kohl et al.'s microgripper. However, unlike Kohl
et al,, the flexible beams are assumed to have constant 50 pm-side square cross section.

. The circular beams are assumed to be clamped at their ends, like those in Kohl et al.'s microgripper.

3. The new microgripper is assumed to be actuated by applying a force P = 40 mN at its midpoint, pointing downwards along
the symmetry axis, as shown on the right side of Fig. 2. The prescribed force can be produced by an electro-thermal actuator
(like in Kohl et al.'s microgripper), an electro-magnetic actuator [28], a piezo-electric actuator [29], etc.

4. Instead of the shape memory alloy used by Kohl et al., the new microgripper is assumed to be made of stainless spring steel.

N

Due to the symmetry of the deformed configuration and the supports with respect to the direction of the actuating force, only
one half of the mechanism is modeled. The whole finite element mesh consists of 42 straight beam elements, and is finer where
the neutral axis is more curved or when higher stress gradients along the neutral axis are expected.

Table 1 summarizes the data used for modeling the new microgripper.

Fig. 3 shows the IFEM solution of this problem, i.e., the undeformed configuration B, of a mechanism that should take the
desired shape 8 after actuation. However, as mentioned in Section 1, in order to assimilate B, to the manufacturing shape of the
microgripper, we must verify that:

1. The material remains elastic along the entire deformation, which is confirmed by Fig. 4: the maximal von-Mises stress —
occurring at the clamped section - attains 0.69 GPa, that is sufficiently lower than the yield strength of the spring steel used to
fabricate the mechanism (1 GPa).

2. The deformation path is free of critical points, as it is evident to the naked eye (and can be further formally confirmed by using
the spectrum test [27]).

3. Absence of interpenetrated beam elements, as easily confirmed by ocular inspection.

Undeformed
configuration
/‘ (solution)

Deformed

configuration Displacement (micron)
= = 200.94

(given) 200

Fig. 3. IFEM solution for the new microgripper. The color bar gives the magnitude of the displacement. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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von-Mises stress (Pa)
6.9e+8

6e+8

" 4e+8

i2e+8

2.2e-5

Fig. 4. Maximal value of the von-Mises stress within the cross section all along the new microgripper, to be compared with the yield strength of stainless spring
steel (1 GPa).

Having succeeded all these tests, the IFEM-computed undeformed configuration By actually constitutes the manufacturing
shape of the microgripper.

As mentioned above, the current IFEM has as its direct counterpart the FEM for beams proposed by Cardona and Géradin [23].
Then, let us solve the corresponding direct FEM problem to find the deformed configuration for the IFEM-computed undeformed
configuration of the microgripper for the same given supports and actuation. The difference between the nodal positions in the
deformed mesh given as data for IFEM and those in the deformed mesh recovered as solution of FEM, plotted in Fig. 5, gives us an
idea of the accuracy of the current [FEM compared to a widely used and validated FEM. Considering that it accounts for just 0.07%
of the maximal displacement shown in Fig. 3, this error is negligible.

3.3. Design of a passive microvalve

The second application of the IFEM concerns the design of a passive microvalve whose task is identical to that of the microvalve
proposed by Seidemann et al. [20], depicted in Fig. 6. Integrated to a microchannel with thickness 360 um and width 200 um, the
valve must close the channel when the pressure drop attains a prescribed value Ap, and bypass a specified flow when the pressure
drop vanishes.

Error (micron)
0.14197

40.12

0.08

io.oa

0

Fig. 5. Magnitude of the difference between the nodal positions in the deformed mesh given as data for IFEM and those in the deformed mesh recovered as
solution of FEM.
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Valve

Spring

Anchor

Flow

/ direction

Fig. 6. Compliant passive valve to seal a microchannel proposed by Seidemann et al. [20].

X

The first step in seeking the manufacturing shape of the current microvalve is to solve the IFEM problem of determining the
undeformed configuration By, assuming that:

1. The deformed configuration B of the valve, which corresponds to its closed position, is known. As a first approach, we take as
reference the configuration of Seidemann et al.'s mechanism (valve, spring, anchor) in closed condition, schematized in Fig. 7.
The valve itself is assumed to be rigid. The spring is assumed to have constant rectangular cross section with height (in-plane)
b, = 6 um and width (out-of-plane) b3 = 11 um. The finite element mesh of the whole mechanism consists of 88 straight
beam elements, and is finer where the neutral axis is more curved or where higher stress gradients along the neutral axis are
expected.

2. The current mechanism is clamped at the anchor, identical to that of Seidemann et al.

3. The valve must close under a given pressure drop Ap. This pressure drop was not specified by Seidemann et al. Let us assume
Ap = 1 kPa, which defines the current microvalve as a low-pressure one [30]. The resultant of Ap is a force actuating along the
axis of the channel (y-axis in Fig. 7).

4, Like that of Seidemann et al., the new valve is made of the monomer SUS.

Flow
direction

Valve

Spring

100 “m

Fig. 7. Closed (deformed, given) configuration of the microvalve under a prescribed pressure drop Ap, inspired in the design of Seidemann et al. [20].
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Table 2
Properties of the proposed microvalve.

Section of the spring Rectangular, constant
Height (in-plane) b, = 6 pm
Width (out-of-plane) b3 =11 um

Pressure drop for closing Ap = 1 kPa

Axial displacement of the valve u, =50 £ 2 um

Material Su8
Young modulus E=3.2GPa
Shear modulus G =13 GPa
Yield strength oy = 73 MPa

Table 2 summarizes the data used for modeling the new microvalve.

There is an additional design requirement that is not satisfied a priori by IFEM since it involves the valve in its open
(i.e., undeformed) condition: a certain sealing gap is needed, depending on the prescribed flow to by-pass. Since this was not specified
by Seidemann et al,, let us assume that the desired opening is attained when axial displacement of the valve isu, = 50 4 2 pm. In fact,
the cross section of the spring was chosen to satisfy this condition.

Fig. 8 shows the IFEM-computed undeformed configuration, which actually attains the desired opening. However, two topological
defects are observed:

1. The spring is penetrating the valve. Since the penetration depth is about one tenth of the height of the beam, this defect should
be easily overcome by slightly modifying the shape of the spring and/or its cross section.

2. The displacement of the valve is not centered with respect to the axis of the channel due to the lack of symmetry of the spring
with respect to the axis of the channel. The eccentric (undesired) displacement u, is about one-third of the axial (desired)
displacement u,.

Note that the valve designed by Seidemann et al. - although they claimed the contrary - cannot remain centered during
deformation because its flexible spring is non-symmetric with respect to the direction of the pressure resultant. Without
information about the pressure drop and the sealing gap, it is not possible to assess how critical this defect is for the design of
Seidemann et al.

To avoid eccentricity, we propose to replace the unique non-symmetric spring by two springs arranged symmetrically with
respect to the axis, as shown in Fig. 9. In order to achieve a similar opening as before, the cross section of each spring, still constant
and rectangular, has height (in-plane) b, = 3 um and width (out-of-plane) b; = 7 pm.

In this case, given the symmetry of the deformed configuration and the supports with respect to the actuating force, only one
half of the mechanism is modeled. The finite element mesh of this part of the mechanism consists of 84 straight beam elements,
and is finer where the neutral axis is more curved or higher stress gradients along the neutral axis are expected.

Fig. 10 shows the corresponding undeformed configuration computed by the IFEM, which is, now, free of topological defects.

u=15.7um
Ie

Penetration

—— Closed condition (given)

—— Open condition (IFEM solution)

Fig. 8. IFEM solution for the microvalve with non-symmetric spring.



24 A.E. Albanesi et al. / Mechanism and Machine Theory 65 (2013) 14-28

Flow
direction

Valve

Spring

Anchors

X

Channel
100 pm

Fig. 9. Microvalve with two springs arranged symmetrically with respect to the axis of the channel, shown in its closed (deformed, known) configuration under a
prescribed pressure drop Ap.

The feasibility of the solution regarding the mechanical tests of Section 3.1 remains to be checked:

1. The absence of critical points, evident for an experienced designer in this case, can be confirmed by using the spectrum test [27].
2. Assuming the von-Mises yield criterion to hold, the validity of the elastic hypothesis is confirmed after comparing the von-Mises
stress plotted in Fig. 11 with the yield strength of SU8 (73 MPa).

3.4. Design of an IOL folding device

An intraocular lens (IOL) is a replacement lens that is implanted into the eye after the removal of part of the natural lens in
cataract surgery. Fig. 12 shows the rigid four-bar mechanism to fold a soft IOL proposed by Erdman and Loftness [21]. When this
mechanism is actuated, the lens adopts a o-shape such that it can be delivered into the eye through a small incision.

As alternative to the Erdman and Loftness's rigid planar mechanism, we propose the compliant three-dimensional mechanism
depicted in Fig. 13. It is designed in order to closely match the desired (three-dimensional) o-shape of the folded IOL when
deformed. In its deformed configuration, the whole folder fits a box having 5 mm in the x-direction, 2.45 mm in the y-direction
and 4.25 mm in the z-direction, while the diameter of the unfolded IOL is 6 mm. The IFEM model is depicted in Fig. 14: all the
beams are assumed to have 0.1 mm-side square cross sections, the actuation consists of three forces of magnitude P = 8 mN
pointing in the — y-direction, and the mechanism is hinged to the ground at six points.

u,=51.3 um

Closed condition (given)

—— Open condition (IFEM solution)

Fig. 10. [FEM solution for the symmetric microvalve.
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von-Mises stress (MPa)
52.2994

Iao

Fig. 11. Von-Mises equivalent stress for the symmetric microvalve, to be compared with the yield strength of SU8 (73 MPa).

Folded IOL

1 mm
—

Fig. 12. Rigid four-bar linkage for folding an IOL into a o-shape, proposed by Erdman and Loftness [21].

Fig. 13. Proposed compliant three-dimensional device for folding an IOL into a desired shape.
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Fig. 14. Model of the compliant three-dimensional IOL folder in its deformed configuration.

The finite element mesh of the whole mechanism consists of 207 straight beam elements, and is denser where the neutral axis
is more curved or higher stress gradients along the neutral axis are expected.

Further, the proposed mechanism is assumed to be made of polypropylene.

Table 3 lists the data used for modeling this compliant IOL folder.

Given the deformed configuration, the supports and the actuation forces, we use IFEM to compute the undeformed configuration,
shown in Fig. 15.

Fig. 16 shows the maximal von-Mises stresses developed in the proposed mechanism, which are lower than the yield strength
of polypropylene (43 MPa) throughout the mechanism. Hence, according to the von-Mises yield criterion, the hypothesis of
elastic material behavior is verified.

Further, we do not find interpenetrated beams nor critical points along the deformation path of the proposed mechanisms.

Finally, it can be said that IFEM has given us the manufacturing shape of the new IOL folder, which is actually that of the
undeformed configuration shown in Fig. 15.

Table 3
Properties of the proposed IOL folder.
Section of the all the beams A = 0.01 mm? (square, constant)
Actuation force 3 x 8 mN
Material Polypropylene
Young modulus E=14GPa
Shear modulus G = 0.48 GPa
Yield strength oy = 43 MPa

Undeformed configuration (solution)

Displacement (m)
8.041e-004
8.000e-004

J6.000e-004
4,000e-004

I2AOUOe—ODfl

0.000e+000

Deformed configuration (given)

Fig. 15. IFEM solution for the compliant three-dimensional IOL folder. The color bar gives the magnitude of the displacement. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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von-Mises stress (Pa)
3.434e+007

3.000e+007

¥ 2.000e-+007

' 1,000e+007

1.000e-006

Fig. 16. Maximal von-Mises equivalent stresses throughout the compliant three-dimensional IOL folder, to be compared with the yield strength of polypropylene
(43 MPa).

4. Conclusions

This paper introduced the use of the beam-IFEM for the design of compliant mechanisms to exactly fit a specified shape after
large elastic deformations. IFEM determines the undeformed configuration of the mechanism by solving the non-linear
equilibrium equation only once, unlike classical methods based on optimization techniques, which have to solve similar equations
tens, hundreds, and even more times.

The IFEM-computed undeformed configuration has to pass some tests to become an admissible manufacturing shape: the
validity of the elastic hypothesis, the absence of points of unstable equilibrium, the absence of interpenetrated beams, and to keep
into a design domain. At the present state of development, IFEM is not capable of satisfying these requirements automatically.

Three successful applications in the field of medical devices were detailed: a microgripper, a microvalve, and a lens folding
device. They served to illustrate the potential of [FEM to design new devices and improve existing ones.
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