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Determining fat content in hamburgers is very important to minimize or control the negative effects of fat on
human health, effects such as cardiovascular diseases and obesity, which are caused by the high consumption
of saturated fatty acids and cholesterol. This study proposed an alternative analytical method based on Near In-
frared Spectroscopy (NIR) and Successive Projections Algorithm for interval selection in Partial Least Squares re-
gression (iSPA-PLS) for fat content determination in commercial chicken hamburgers. For this, 70 hamburger
samples with a fat content ranging from 14.27 to 32.12 mg kg−1 were prepared based on the upper limit recom-
mended by the Argentinean Food Codex, which is 20% (w w−1). NIR spectra were then recorded and then
preprocessed by applying different approaches: base line correction, SNV, MSC, and Savitzky-Golay smoothing.
For comparison, full-spectrum PLS and the Interval PLS are also used. The best performance for the prediction
set was obtained for the first derivative Savitzky-Golay smoothing with a second-order polynomial and window
size of 19 points, achieving a coefficient of correlation of 0.94, RMSEP of 1.59 mg kg−1, REP of 7.69% and RPD of
3.02. The proposed methodology represents an excellent alternative to the conventional Soxhlet extraction
method, sincewaste generation is avoided, yetwithout the use of either chemical reagents or solvents, which fol-
lows the primary principles of Green Chemistry. The newmethodwas successfully applied to chicken hamburger
analysis, and the results agreedwith those with reference values at a 95% confidence level, making it very attrac-
tive for routine analysis.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Foods of animal origin are excellent sources of high quality protein,
whose energy value depends mainly on this group of nutrients and
also on the amount and quality of fat content. Furthermore, taste and
texture of food products depend on fat composition [15]. Among foods
of animal origin, hamburgers deserve special attention since they are in-
cluded in the eating habits of children and teenagers and they require
simple preparation. Their consumption is quite large. For example,
some fast-food chains such as McDonald's report to have sold about
twelve hamburgers per capita around the world. Furthermore, on
iz).
average, a person living in the United States consumes three burgers
per week.

From the nutritional point of view, hamburgers provide protein, fat,
vitamins and minerals. Fat content in hamburgers depends mainly on
the type of animal used for its manufacture. In the case of prepared
hamburgers with chicken meat, they usually have fewer calories than
beef hamburger [12,16]. The high consumption of saturated fatty acids
and cholesterol is mainly responsible for cardiovascular diseases and
obesity [23,26]. The Food and Drug Administration (FDA) requires the
declaration of the amount of fatty acids present in foods on their nutri-
tion label [25]. The Argentinean Food Codex (Article 330) established
that the amount of fat in hamburgers should not exceed 20% (w w−1)
[2]. The fat content determination in hamburgers is required to ensure
the quality of the product. In literature, the official Soxhlet extraction
method recommended by the AOAC [18] is widely used for determining
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Fig. 1. Mean NIR spectra of the 70 chicken hamburger samples: raw (a) and preprocessed spectra with base line correction (b), SNV (c), MSC (d) and first derivative Savitzky-Golay
smoothing with a second-order polynomial and window sizes of 17 (e), 19 (f), 21 (g) and 23 (h) points.
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fat content in natural products, pharmaceuticals and foodstuffs, includ-
ing meat and meat products. The efficiency of several lipid extraction
methods for quantification of fat in different meat products has been
evaluated by Pérez-Palacios et al. [19]; however, these methodologies
have the disadvantage of being laborious and they use large amounts
of sample and harmful solvents (chloroform, methanol, ether, etc.).

During the last decade, the importance of the development of new
reliable methods of analysis for the quality control of meat products

Image of Fig. 1


Table 1
Best results for PLS modeling with different pre-processing methods for fat content deter-
mination in chicken hamburger samples.

Pre-processing
method

LVs Cross validation Prediction

rCV RMSECV
(mg kg−1)

RPD Pred rPred RMSEP
(mg kg−1)

REP
(%)

Raw 11 0.79 3.35 1.19 0.50 3.86 18.7
Baseline correction 13 0.81 3.22 1.59 0.78 3.44 16.4
SNV 10 0.74 3.83 1.57 0.78 3.13 14.7
MSC 9 0.72 3.94 1.41 0.71 3.09 14.6
SG-1d-2o-17w 9 0.72 3.71 1.51 0.75 2.73 13.4
SG-1d-2o-19w 10 0.72 3.80 2.16 0.88 2.46 11.9
SG-1d-2o-21w 10 0.74 3.73 2.31 0.90 2.33 11.2
SG-1d-2o-23w 9 0.70 3.94 2.15 0.88 2.42 11.7

Best result for eachmultivariate calibrationmodeling (PLS, iPLS or iSPA-PLS) is indicated inbold.
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like hamburgers has become evident. Vibrational spectroscopy such as
Raman, Mid- and Near-Infrared Spectroscopy (MIR and NIR) has been
highlighted because they are noninvasive and nondestructive methods,
besides being sensible and fast. Furthermore, sample treatment is often-
times not required.

TypicalMIR andRaman spectra present peaks/bands at a specific fre-
quency/wavenumber that are characteristics of functional groups of the
sample constituents. Changes in the molecular dipole moment and in
the polarizability during vibration are responsible for obtaining MIR
and Raman spectra, respectively. This can be very useful for qualitative
analysis, because the “fingerprints” of functional groups have narrow
and intense peaks/bands in the region of 4000–400 cm−1. For quantita-
tive analysis, MIR has numerous applications, while Raman spectrosco-
py is more limited due to the need for complex pretreatment of the
spectra. On the other hand, the peaks in the NIR region (1100–
2500 nm or 9091–4000 cm−1) are combinations and overtones of the
sample functional groups and, for this reason, can be exhibited broadly
and weakly [11,28]. Despite having frequently overlapping signals, NIR
is still the most used technique, especially when coupled with suitable
chemometric tools, and has been successfully applied as a routine ana-
lytic technique for meat quality control in different kinds of meats and
meat products in terms of their fat content [1,3,4,20–22,24,27,29]. Addi-
tionally, the progress in instrumentation technology associatedwith the
need for field-portable and easy-to-use devices has led to a current
trend of miniaturization of various instruments. In such scenario, a
handheld NIR spectrometer has been already used for meat quality con-
trol, in terms of investigating the content for fat, moisture and protein
[30].

To achieve quantification of one or more analytes using NIR spec-
troscopy, suitable multivariate calibration techniques need to be used
to relate the constituent concentration in a test sample tomultiplemea-
sured instrumental responses (spectra). This procedure differs from
univariate calibration, because in this case a single instrumental re-
sponse is measured for each sample. In other words, in a more general
Table 2
Best results for iPLSmodelingwith different pre-processingmethods for fat content deter-
mination in chicken hamburger samples.

Pre-processing
method

LVs Cross validation Prediction

rCV RMSECV
(mg kg−1)

RPD Pred rPred RMSEP
(mg kg−1)

REP
(%)

Raw 6 0.76 3.54 1.45 0.72 3.09 14.9
Baseline correction 5 0.79 3.32 1.49 0.74 3.46 16.5
SNV 5 0.75 3.63 1.71 0.81 2.55 12.0
MSC 5 0.77 3.59 1.64 0.79 2.74 12.9
SG-1d-2o-17w 5 0.69 3.90 1.76 0.82 2.36 11.6
SG-1d-2o-19w 5 0.72 3.78 2.10 0.88 2.36 11.4
SG-1d-2o-21w 5 0.72 3.74 2.10 0.88 2.36 11.4
SG-1d-2o-23w 5 0.73 3.73 2.11 0.88 2.34 11.3

Best result for eachmultivariate calibrationmodeling (PLS, iPLS or iSPA-PLS) is indicated inbold.
multivariate calibration process it is possible to perform a rapid deter-
mination of mixture components (often with no prior separation, in
the case of NIR spectroscopy) taking into account only the analyte of in-
terest in complex samples while disregarding the concentrations of
other components. This can be easily accomplished by using Partial
Least Squares Regression (PLS), which works attributing weights to
the X-variables, resulting in models that are easier to handle and inter-
pret [13,14].

As typical NIR spectra have a large number of wavelengths for each
sample, sometimes there is a redundancy of the recorded data due to
the strong correlation over the different analytical channels. This affects
both precision and accuracy of the results of themultivariate regression
models such as PLS, which requires proper data preprocessing. In this
context, selection of most informative spectral regions can significantly
improve the performance of PLS regression, generating more stable
models with superior interpretability, and fewer prediction errors.
These improved predictions and parsimonious models are attained be-
cause the reduced set of variables diminishes consequently the number
of interferences [5,8,10,17].

Other problems that generally affect typical NIR spectra are random
noise and systematic variations in the baseline. These drawbacks can be
overcame applying different preprocessing techniques, such as base line
correction, standard normal variate transformation (SNV), multiplica-
tive scatter correction (MSC), and Savitzky-Golay smoothing (SG).
These mathematical pre-processing techniques remove the undesirable
variations in the spectra that are unrelated to analyte concentration
changes, providing better statistical performance bymeans ofmore par-
simonious PLS models (generally with fewer latent variables) than
those based on raw data [5,8].

The present work is focused on the development of an alternative
analytical method based on near infrared spectroscopy and Successive
Projections Algorithm for interval selection in PLS regression (iSPA-
PLS) as used in the determination of fat content in commercial chicken
hamburgers. The iSPA-PLS algorithm is an extension of SPA to select in-
tervals of variables for use in PLS modeling, by combining the noise-re-
duction properties of PLS with the discard of non-informative variables
in SPA [5,10]. For comparison purposes, full-spectrum PLS and the Inter-
val PLS (iPLS) [17] were also used.

2. Materials and Methods

2.1. Samples Preparation

Chicken hamburgers were prepared in the laboratory with different
fat content andminced chickenmeat acquired in a local butcher shop in
Bahía Blanca city, Buenos Aires, Province, Argentina. A stainless steel
meat mincer machine was employed to mince the chicken fat and
meat. Each one was passed 5 times in the mincer to ensure homogeni-
zation of the particle size. It is worth noting that themincerwas proper-
ly sanitized before the preparation of the chicken hamburger samples.

Seventy samples with a fat content ranging from 14.27 to
32.12 mg kg−1 were prepared in triplicate. We chose this range based
on the upper limit recommended by the Argentinean Food Codex,
which is 20% (ww−1), taking into account that there might be possible
adulterations with fat contents higher than that established in the
regulation.

All samples were placed in a ring-shaped rubber support (sample
holder) of 1.3 cm of internal diameter, 0.9 cm of height, and 1.5 g of ca-
pacity, in order to maintain the same dimensions.

2.2. Instrumentation and Software

2.2.1. Near Infrared (NIR) Spectroscopic Analysis
Chicken hamburgers samples were analyzed in triplicate using a

Thermo Scientific Spectrophotometer, Model Nicolet® IS50 FT-IR, in
the reflectance mode and a spectral range between 4000 and



Fig. 2. Predicted vs reference plots for both calibration (circles) and prediction (squares) sets (a,c,e) and their respective elliptical joint confidence region plots containing the ideal
theoretical point for the prediction set (b,d,f) for the best results obtained by PLS (a,b), iPLS (c,d) and iSPA-PLS (e,f), respectively.

Table 3
Best results for iSPA-PLS modeling with different pre-processing methods for fat content determination in chicken hamburger samples.

Pre-processing method LVs Best number of selected intervals Cross validation Prediction

rCV RMSECV (mg kg−1) RPD Pred rPred RMSEP (mg kg−1) REP (%)

Raw 11 20/16 0.82 3.15 1.23 0.58 3.76 18.2
Baseline correction 13 5/4 0.81 3.22 1.60 0.77 3.37 16.1
SNV 5 5/4 0.75 3.63 1.70 0.81 2.55 12.0
MSC 9 10/4 0.78 3.51 1.67 0.80 2.51 11.8
SG-1d-2o-17w 9 20/17 0.75 3.52 1.70 0.81 2.45 12.0
SG-1d-2o-19w 10 20/16 0.76 3.59 3.02 0.94 1.59 7.69
SG-1d-2o-21w 10 10/7 0.76 3.51 2.90 0.94 1.83 8.81
SG-1d-2o-23w 9 10/5 0.75 3.64 3.02 0.94 1.78 8.56

Best result for each multivariate calibration modeling (PLS, iPLS or iSPA-PLS) is indicated in bold.
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Fig. 3. Intervals of variables selected by the iSPA-PLS modeling constructed with NIR
spectra preprocessed with first derivative Savitzky-Golay smoothing with a second-
order polynomial and window size of 19 points.
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10,000 cm−1, with near-infrared reflectors (CaF2/KBr) and detectors
(InGaAs/KBr-DLaTGS). Reflectance spectrums were recorded using the
integrated software, at 8 cm−1 spectral resolution and by integrating
32 scans. For each sample, an average spectrum was calculated from
the triplicates registered for both upper and lower faces of the sample
holder containing the chicken hamburgers. All measurementswere car-
ried out at room temperature (23 ± 1 °C) and used a reference internal
standard of gold as the blank.
Fig. 4. Linear regression coefficients obtained for the best results of PLS (a), iPLS (b) and
iSPA-PLS (c), respectively.
2.2.2. Chemometric Procedure
Initially, the dataset was organized in a matrix, where the samples

are placed in rows and the registered spectra in columns. Since the spec-
tra are noisy and exhibit systematic variations on the baseline, different
preprocessing methods were applied to overcome these drawbacks:
base line correction; standard normal variate transformation (SNV);
multiplicative scatter correction (MSC); and first derivative Savitzky-
Golay smoothing (SG) with a second-order polynomial and window
sizes of 17, 19, 21 and 23 points.

From the dataset, 50 and 20 samples were selected for the calibra-
tion and prediction sets, respectively, by applying the Kennard–Stone
(KS) uniform sampling algorithm that takes into account the X and y
distances, simultaneously, in order to avoid extrapolation problems,
and guarantees that the samples with the smallest and largest values
of y are included in the calibration set. Then, three different Partial
Least Squares (PLS) algorithms were evaluated: full spectrum PLS, the
Interval PLS (iPLS) and the Successive Projections Algorithm for interval
selection in PLS (iSPA-PLS). iPLS and iSPA-PLS were partitioned into 5,
10, 15 and 20 intervals. To optimize the number of PLS factors or latent
variables (LV) to be included in the calibration set, the leave-one-out
cross-validation technique was used, and its efficiency was evaluated
according to the lowest root mean square error of cross-validation
(RMSECV) and the highest correlation coefficient (r). The prediction
was then only used for the final data evaluation and comparison of
the multivariate calibration models. The predictive ability of the final
models was evaluated in terms of the lowest values of both root mean
square error of prediction (RMSEP), and the highest correlation coeffi-
cient (r). Relative error of prediction (REP) and ratio performance devi-
ation (RPD) in the external prediction set were also evaluated for
comparison of the performance of the models [5,7,9,10]. The elliptical
joint confidence region (EJCR) test was applied in the prediction set
for all PLS models with different pre-processing methods in order to verify
the accuracy of the constructed models, in which the results obtained by
the chemometric modeling are compared with their respective reference
values. For this purpose, an ordinary least squares (OLS) fittingwas obtain-
ed, and the estimated intercept (a) and slope (b) were compared (with
their ideal values of 0 and 1) using the EJCR test [6].

Image of Fig. 3
Image of Fig. 4
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All chemometric procedures used throughout the workwere imple-
mented using Matlab® 2010a (Mathworks, USA).

3. Results and Discussion

3.1. Spectra Investigation and Pre-processing Procedures

Mean spectrum of the chicken hamburger samples with fat content
ranging from 14.27–32.12 mg kg−1 is shown in Fig. 1a. As can be seen,
intense spectral bands at 5150 cm−1 (a combination of O\\H stretch
and deformation) and 6900 cm−1 (thefirst overtone of O\\H stretch vi-
bration) have been mainly ascribed to water. The absorption band at
5900 cm−1 is associated with protein as amide. Other peaks at
8350 cm−1 (the second overtone of\\CH stretch), 5800–5700 cm−1

(the first overtone of\\CH stretch) and 4300–4260 cm−1 (combined
\\CH stretch and deformation band) correspond to fat content [31].

In order to eliminate noise and systematic variations on the base-
line, different preprocessing methods were applied, as presented in
Fig. 1b–h: (b) baseline correction, (c) SNV, (d) MSC, and first
derivative Savitzky-Golay smoothing with a second-order
polynomial and window sizes of (e) 17, (f) 19, (g) 21 and (h) 23 points.
After pre-processing of theNIR spectra, PLS, iPLS and iSPA-PLSmodelswere
constructed. Their respective results are discussed in the next section.

3.2. Determination of Fat Content in Chicken Hamburgers

The reference values for the determination of fat content in chicken
hamburgers were in the range of 14.27–32.12mg kg−1. These reference
values were employed in the construction and prediction steps of PLS,
iPLS and iSPA-PLS models using raw and pre-processed NIR spectra.
Best results of the determinations of fat content in chicken hamburgers
by using NIRS and PLS algorithms are summarized in Tables 1 to 3, re-
spectively. Note that only the best results for the selection of intervals
(partitioned into 5, 10, 15 and 20) in iPLS and iSPA-PLS are presented.

As indicated in Table 1, all pre-processingmethods improved the re-
sult for PLS modeling when compared with raw spectra. The best per-
formance was obtained by using first derivative Savitzky-Golay
smoothing with a second-order polynomial and a window size of 21
points (PLS-SG-1d-2o-21w), achieving rCV of 0.74, RMSECV of
3.73 mg kg−1, rPred of 0.90, RMSEP of 2.33 mg kg−1, REP of
11.2% mg kg−1 and RPDPred of 2.31. To demonstrate the fit of the PLS-
SG-1d-2o-21wmodel, a predicted vs reference plot for both calibration
and prediction samples are shown in Fig. 2a. EJCR test (Fig. 2b)was then
applied and demonstrates that the ellipse of the prediction model in-
cludes the theoretical ideal point, and therefore it presents no signifi-
cant bias.

When iPLS was applied (Table 2), the REP values were slightly im-
proved in relation to those obtained by full-spectrum PLS. As also ob-
served for PLS modeling, the differing pre-processing methods
presented a trend towards improving the results by using raw spectra,
being the first derivative Savitzky-Golay smoothing with a second-
order polynomial and window size of 23 points (iPLS-SG-1d-2o-23w).
This was the best approach, achieving rCV of 0.73, RMSECV of
3.73 mg kg−1, rPred of 0.88, RMSEP of 2.34 mg kg−1, REP of
11.3% mg kg−1 and RPDPred of 2.11. These results associated with the
predicted vs reference plot for both calibration and prediction samples
for the iPLS-SG-1d-2o-23w model (Fig. 2c) confirms that the selection
of one interval alone does not improve the result obtained for the full
spectrum approach. Despite this, the EJCR test (Fig. 2d) demonstrated
that the ellipse of the predictionmodel for iPLS-SG-1d-2o-23w present-
ed no significant bias.

In the case of the iSPA-PLS models (Table 3), all approaches im-
proved their respective results for PLS modeling. This occurred because
the iSPA-PLS algorithm is an extension of SPA for selecting intervals of
variables for use in PLS modeling, combining the noise-reduction prop-
erties of PLS with discarding non-informative variables in SPA.
Moreover, the adequate use of pre-processingmethods of the NIR spec-
tra enhanced the performance of the multivariate calibration tech-
niques under study. Comparing the results, the best one was obtained
with the first derivative Savitzky-Golay smoothing with a second-
order polynomial and window size of 19 points (iSPA-PLS-SG-1d-2o-
19w), achieving rCV of 0.76, RMSECV of 3.59 mg kg−1, rPred of 0.94,
RMSEP of 1.59 mg kg−1, REP of 7.69% mg kg−1 and RPDPred of 3.02.
The predicted vs reference plot for both calibration and prediction sam-
ples using iSPA-PLS-SG-1d-2o-19w revealed the best linear fittingwhen
comparedwith PLS and iPLS. Moreover, when the EJCR test (Fig. 2f) was
applied, the ellipse obtained for the iSPA-PLS-SG-1d-2o-19wmodelwas
more accurate and also included the ideal theoretical point. Note that
only the iSPA-PLS-SG-1d-2o-19w model presented a RPD value higher
than 3, as recommended and consensually accepted in the literature
[7]. To achieve this result, the iSPA-PLS-SG-1d-2o-19w model selected
16 from 20 intervals (Fig. 3), which include the\\OH,\\NH and\\CH
band absorptions from water, protein and fat content, respectively.
Therefore, the influence of the intrinsic variations of these parameters
was included in the model, guaranteeing its stability. This agrees with
the linear regression coefficients obtained for the best results obtained
by PLS, iPLS and iSPA-PLS that exhibited higher intensities in the regions
of the band absorptions related to water, protein and/or fat (Fig. 4).
Comparatively, the linear regression coefficients obtained for iSPA-PLS
generated a more parsimonious model with a higher predictive ability,
as already confirmed by its figures of merit.

4. Conclusion

In this work, we demonstrated that the quality control of chicken
hamburgers can be improved in terms of fat content by combining
NIR spectroscopy and a suitable technique of selection of spectral inter-
vals. For this, the Successive Projections Algorithm for interval selection
in Partial Least Squares regression (iSPA-PLS) exhibited superior predic-
tive performance when compared with full-spectrum PLS and iPLS. This
was obtained by using NIR spectra preprocessed with first derivative
Savitzky-Golay smoothing with a second-order polynomial and win-
dow size of 19 points, achieving a coefficient of correlation of 0.94,
RMSEP of 1.59 mg kg−1, REP of 7.69% and RPD of 3.02. The proposed
methodology represents an excellent alternative to conventional
Soxhlet extraction method, since it avoids waste generation, moreover
without the use of either chemical reagents or solvents, which follows
the primary principles of Green Chemistry. The new method was suc-
cessfully applied to chicken hamburger analysis, and the results agreed
with those of the reference values at a 95% confidence level, making it
very attractive for routine analysis. However, a larger and more varied
testing of meat types (e.g., bovine, swine, poultry) must be implement-
ed to guarantee any generalization of the proposed methodology.
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