
CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-1

AN EMPIRICAL FRAMEWORK TO APPLYING UNIT TESTING IN OPERATIONAL RESEARCH TO
IMPROVE MAINTAINABILITY

M. Vidoni1, M.L. Cunico1,andA. Vecchietti1*

1Institute of Design and Development, INGAR CONICET-UTN
Avellaneda 3657, Santa Fe, Argentina

{melinavidoni, laura-cunico, aldovec}@santafe-conicet.gov.ar

ABSTRACT

Operational Research (OR) models usually deal with uncertain, changing requirements. This
leads to a continuous process of adapting and reworking the mathematical code. However,
there are scarce mechanisms to control its quality. This is essential to Software Engineering
(SE), as it enforces the use of Unit Testing: automatically running tests after any alterations,
to assess specific parts of the code. This is done to discover where and how errors are
happening, simplifying its correction while evaluating their possible ramifications. This
article aims to define how these concepts can be adapted to them, how tests should be used
to detect faults and to provide a workflow to use them while developing an OR model. It
provides guidelines on what should be tested and what to expectof possible errorsand a
process to use it.

Keywords: Operational Research, Software Engineering, Unit Testing, Decision Support
Systems.

*
 Corresponding Author

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-2

1 INTRODUCTION

In the last decades, given the increased computational capacities of computers and
software, Operational Research (OR) mathematical models are becoming more complex,with
more difficult maintenance. The model design and support is an important issue to take into
account since it is subjected to continuous changes in its requirements during its lifecycle
[3]. It is essential tokeep models up to date[4],and for this purpose, it is crucial to
incorporate techniques that can enhance a model’s capability to adapt to changes while
reducing the risk of introducing errors [10].

In this article, it is discussed the use of Unit Testing (UT), which is a technique of Software
Engineering (SE) that can be adopted for ORmodels. Unit Testing assesses individual units of
source code, to discover if they work as expected [17]. The idea behind UT is to write test
cases along with the regular code, and automatically execute themeach time a new codeis
writtenorexisting one is modified, with the purpose of discovering errors [7].

Adapting UT to OR brings several advantages.First, it helps to control and reduce the number
of errors introduced after altering the code, as well as decreases the time and workrequired
to locate those errors. Second, UThelps to reuse tested code by lessening the effort needed
to adapt it and,finally, it can ensure that the model behaves according to the
expectations[23,24].

Because many languages used to implement OR models –such as Octave, MatLab, Python,
R,and others- already provide automated Unit Testing features[7], this research aims to
define how these concepts can be adapted to OR models, how tests should be used to detect
faults and to provide a workflow to use them while developing a model.

2 UNIT TESTING CONCEPTS

In SE, generaltesting is an investigation conducted to provide stakeholders with information
about the quality of the product or service under test[15].There are at least four levels of
testing, as summarized as columns in Figure 1[16]:

Figure 1.Levels of software testing, what and how it is tested.

Usually, a UT follows a predefined structure, regardless of the framework or language used.
It is composed of two main parts:

 Assertionsare statements where a predicate is always true at that point in code
execution[18]. It works by sending specific known data to a function and comparing
its result to an expected outcome. An outcome is not only positive –the function
working correctly- but it canalso bean expected warning or error. In the latter, the
assertion will be true if the error appeared[16].

 Tests group assertions that evaluate the same function with either different results
or expected outcomes[18]. This way, it possible to run a single test to cover a wide
range of aspects for the same target.

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-3

Testing is a fundamental activity of SE, asthe software will always need to be eventually
tried andmonitored[15].Regarding its benefits,UT allows finding deeper, intrinsic errors than
manual testing [9], improving the reusability and repeatability of the code.This builds a
mechanism that ensures that no compound errors –i.e., those that do not break the code but
conflict with requirements- are present [19], generating a predictable code base [16].

3 TESTING PROCESS IN OR

Traditional OR testing and UT are different concepts, yet complementary. In OR, testingis
understood as checking that the obtained solution follows the logic of the modeled problem;
for example, evaluating that if there is stock of a product, it has been manufactured in any
previous period. However, UT searches for compound errors. This means that the written
code must be coherent with what was modeled; this is to say that it actually solves the
targeted situation, without considering the solution’s optimality.

This article considers porting UT to OR, because SE has made several contributions to OR
[13,14], with Soft OR methodologies being the most relevant [1], and since many
mathematical languages widely used for OR models –such as MatLab, Octave, R, Python, and
others- already provide UT functionalities [7].

Figure 2 shows a comparison between a traditional OR implementationand a Test-Driven one
that applies UT.

Figure 2.Traditional OR development, compared to Test-Driven

As a result, traditional OR testing is applied before or after running each model scenario;
i.e., it is performed at use time, every time the model is run to find a particular solution.
However, tests generated for UT are only used while writing new code, after correcting a
specific error, when simplifying or improving existing code, or after altering it; this is to say,
they are only executed at development time[15]. For example, while traditional OR testing
checks that a product to be producedis tabulated in the input data, UT evaluates that the
data is correctly read and parsed and that their type and dimensions match the expected
ones.

This new, test-driven development in OR implies coding model functions one at a time,
iteratively building an incremental, whole working model [22]. After selectinga
functionality, tests should be written first. The element is thenwritten and refactored –i.e.,
improved- until the corresponding assertions pass.

Another important point is that tests need to be delivered along with the code [16]. This is
crucial for models that are used daily or weekly as part of an organization process, as they
are more vulnerable to changes and new requirements.

4 TESTS CASES IN OR

In OR, the units to be assessed through UT are input data, variables, constraints and
objectives. Their tests are not exclusive, as they complement each other, helping to

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-4

discover where errors are located and how they are happening.

The following subsections detail how each of these units are tested, and what to expect
from them. Here, code samples are written in pseudo-code; this is done to avoid limiting the
proposal to a specific language;Section 4 will discuss how these are implemented in specific
case studies. Thus, the code fragment (C1) showcases the pseudo-code parts of an assertion:

assert(type_of_assertion, tested_unit, comparison, expected_value) (C1)

It is relevant to mention that the expected value is always known:

4.1 Testing Input Data

Input data is a group of known or predicted values that limit the problem, its variables and
relationships, such as planning periods, raw material prices,products, demandforecasts, and
so on [21]. The goal of testing input data is to discern if the read values are the same as the
expected ones.

There are three sources for them: (a) embedded directly into the mathematical model,
known as hard-coded, (b) imported from external sources, such as databases, spreadsheets,
text files, and others, or (c) calculated in the model by using input data of sources (a) or
(b).In any case, it can be a single number, or structured in vectors, matrices, tables or data-
frames. More relevant tests are obtained when evaluating the latter.

Though testing hard-coded data can detect typographic and similar mistakes, it is more
useful when depending on external sources. In this case, it helps to find importing errors,
incorrect parsing, and encoding defects.The following is a non-exhaustive list of
assessments, its goals, and example cases:

 Assertthe value of a specific element of a matrix, to determine if values are correctly
read and if any parsing error is happening.For example, if reading from a CSV file, a
failed assertion could mean that some values are using a comma, with a decimal

number written as 3,15instead of 3.15, or a name including said character, leading
towards a parsing error.

 Assert the type of a specific element to discover if data was adequately converted
while reading. For example, if a matrix should contain integer values and the test
detects it is read as a string, it may imply an incorrect use of the importing functions
or another parsing error. Code (C2) shows a pseudo-code example.

 Assert the dimensionsto discover if all values are read. For example, if a data-frame
of expected (10,20) dimensions contains more columns, it may lead to an internal
error; however, if a table has fewer rows than expected, it meansthat either the
source is corrupted or the reading was halted.

 Assert if the external sources exist and if they are located in the specified location.
Therefore, if it exists but it fails to read, the error may be caused by an incorrect
connection, a corrupted file, or a misused reading function.

The third source is calculated input data. There should be one test for each specific
calculus, including multiple asserts. Some possibilities for assertions are:

 Comparing to expect correct and incorrect values. For tabular data, these assertions
can be done for the whole, or for individual cells. It is the most comprehensive
assertion, as it evaluates if both the calculus structure (dimensions and operations
order)and the values involvedare correct.

assert(true, myMatrix[2,4], getType, Integer)
assert(false, myMatrix[2,4], getType, String) (C2)

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-5

 Evaluating the size of the matrix. A failed calculus may result on a table of incorrect
dimensions. By assessing the number of rows and columns, it ensures that the
structure of the elements used is correct.

 Checking the internal data type. Many mathematical languages allow writing tabular
where each cell can be of a different data type. These assertions should compare the
value types (either individually, or by row/column, or completely), to discover if any
parsing error is happening; these may be due to incorrect functions used on the
calculus.

4.2 Testing Variables

Decision variablesrepresent entities of the problem whose values are unknown until the
mathematical model is solved[21]; examples are the number of equipment, available
personnel, warehouses, and others.Two types of testsare recommended:

 Evaluate the variable initialization, to discover if it is correctly set up. This implies
testing its type –positive integer, floating point, and others- and quantity. In some
languages, this test may not be required, as it is checked on the compilation stage,
previous to the solving.

 Gauge which values can be assumed by a variable. This is done in conjunction with
the model’s constraints and is discussed in the next subsection.

4.3 Testing Constraints

Constraints are logical propositions or symbolic algebraic relationships -set of equalities and
inequalities- that delimit the search space and are responsible for linking input data and
variables to influence the model classification[21].Constraints can also be clustered by
constraint groups: subsetsthatrepresent a specific portion of the target situation. For
example, a set of four equations –i.e.,individual constraints- that limit the purchase of raw
materials; there, each equation represents provider selection, units to be purchased,
purchase and transport cost.

As a result, constraints UT is the coreassessment that needs to be carried out. This process
involves checking constraints incrementally. Hence, there should be three levels of tests;
this is exemplified using an example of transport limitations constraints.

1. For individual constraints, as it ensures that there are no compound errors. This is to
say that all constraints work adequately by themselves. Then, if one ofthese tests
fail, the error search can be limited to a specific constraint.In the context of the
example, this is a test that ensures that the maximum capacity of any truck is never
exceeded.

2. For constraint groups. These tests allow moving towards an Integration Testing (see
Figure 1), appraising how the constraints interact: it is possible for them to work
adequately by themselves, but create a conflict when they are working together.
Following the example, this test evaluates that a truck is assigned a load (through
one constraint), only if it is chosen (using another constraint).

3. For increasing combinations of groups. As on (2), it allows checking different levels of
the integration, until the whole model is appraised. The goal is to detect possible
conflicts between groups and their interaction. In the example, this could be the
case for merging transport and cost constraint groups, through a test that ensures
that routes that are not chosen do not generate additional costs.

Evaluating constraints imply directly appraising the feasibility region (FR). Because the
process is incremental, it can take manyshapes until it reaches the final form delimited by
all the constraints.These are named as temporal feasibility regions (TFR), and all of
themneed to be evaluated.

Thisis done by asserting if a point –a known value for the variables- belongs to each TFR or

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-6

not. As the TFR change, it is possible that a point that belongs to a previous simpler TFR
would not belong to another more complex, or to the final FR. As this is not the only possible
type of assertion, Figure 3 summarizes other options.

Figure 3.Types of assertions for each constraint test level.

It is possible to see that checking the TFRs is relevant at all levels, other assertions –such as
checking the coefficient values- are only useful for individual constraints. Even more,
depending on how the filestructure of a model is organized, it could be convenient to assert
if the files exist on the specified location, to distinguish between corrupted and non-existent
files.

Regarding expected values, it is worth noting that they must be on the central zone of the
TFR, but also at the edgeto detect solutions sensitive to rounding.

4.3.1 TFR Evaluation Example

A running example will be used to deepen in the TFR assessment.

Suppose a model with two variables, 𝑥1 ≥ 0and 𝑥2 ≥ 0, with the constraints seen on equation
(E1), where 𝑒𝑞1 and 𝑒𝑞2 represent a constraint group. In a rice packaging factory, the
variables are the quantity of packaged containers of 1kilo (𝑥1), or half a kilo (𝑥2) of product.
There, 𝑒𝑞1 refers to the maximum packaging capacity, and 𝑒𝑞2 establishes a relation
between the packages generated, caused by a warehouse limitation; finally, 𝑒𝑞3 corresponds
to demand satisfaction. Thus, the first constraint group represents capacity, and the second
one sales.

𝑒𝑞1: 2 ∗ 𝑥1 + 3 ∗ 𝑥2 ≤ 12

𝑒𝑞2: − 𝑥1 + 𝑥2 ≤ 1

𝑒𝑞3: 3 ∗ 𝑥1 + 2 ∗ 𝑥2 ≥ 12

(E1)

The goal is to assess the valuesthat the variables can assume; this is done by manually
selecting a known point and evaluating if it belongs to a TFR or not. Some example
assertions for this case are:

I. Two assertions: (a) assert if the point 𝑥1 ,𝑥2 = (6,1) belongs to the TFR defined by
𝑒𝑞3 should be true (Figure 3-A).

II. Check the constraint group (𝑒𝑞1and 𝑒𝑞2) by asserting that 𝑥1 ,𝑥2 = (6,1) belongs to
the TFR. This should be true (Figure 3-B).

III. Asserting if point 𝑥1 ,𝑥2 = (4,2) belongs to the final FR (Fig. 3-C) should be false.

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-7

IV. Corroborating that point 𝑥1 ,𝑥2 = (6,1) should be true for the final FR (Fig. 3-D).

Figure 4.Visualizations of asserts I-IV on plots A-D, respectively.

In this case, stating that “an assertion failed” implies that it didn’t behave as expected. For
example, if assert (I) fails, then the point 𝑥1 ,𝑥2 = (6,1) is outside the TFR, when it should
be inside it (as pictured in Figure 3-A). The reverse happens if assertion (III) fails: in this
case, the point 𝑥1 , 𝑥2 = (4,2) belongs to the final FR, when it should be outside of it.

Then, if assert (I) and (IV) fail –they are not true- it is possible to assume that the error is
being caused by a fault on 𝑒𝑞3 (the demand is not satisfied), but not on the whole
model.However, a deeper analysis depends on the result of assert (II):

 If (II) passes, this means that 𝑒𝑞3 is incorrectly written, generating a different TFR. It
could be the case where inequality (≥) has been written as an equality (=); as a
result, the fault in (IV) is caused only by 𝑒𝑞3. In the running example, this means that
the capacity is correctly modeled, but the demand satisfaction is too
restricted.Therefore, the modeler needs to fix 𝑒𝑞3 and run the tests again.

 However, if (II) also fails, it means that both the demand satisfaction and constraint
capacity were incorrectly modeled, generating different TFR. In this case, additional
assertions are needed to find which constraint of the capacity group is failing. As a
result, fixing this error requires correcting both sets of equations.

This flow of thought contributes to discriminate faults from their symptoms, allowing an
easier detection by discarding possibilities.The pseudo-code (C3) transcribes the assertions:

assert(true, eq3, includesPoint, [6,1])
assert(true, eq1 & eq2, includesPoint, [6,1])
assert(false, eq1 & eq2 & eq3, includesPoint, [4,2])
assert(true, eq1 & eq2 & eq3, includesPoint, [6,1])

(C3)

It is worth noting that this is a simplified example used to visualize what type of

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-8

corroborations mustbe done, and what possible results they could imply. This is not
exhaustive,as more assertions –grouped on tests- should be written for a real case.

4.4 Testing Objectives

Objectives are the search direction used in the problem solution, and at least one objective
functiondetermines it[21].Two points can be considered: (a) the values assumed by the
variables used in the objective are limited by the constraints, and tested with them (b)
evaluating the objective does not imply discovering the global optimum, because doing this
requires solving the model.

Another possibility to test the objective functions is discovering whether the search
direction (maximization or minimization) is indeed the expected one. For example, in a
maximization problem, this means stopping the solving process at different iterations to
check that the objective function is subsequently providing better results.

5 CONCLUSIONS

This paper presents guidelines for the creation and use of Unit Testing in OR. It focuses on
what should be tested and what possible errors to expect,showing example tests to be
performed. This presents a change of paradigm compared to traditional OR testing, as it
aims to be applied at developing time, every time the source code is altered.

This is done to provide a tool for improving the quality of the code, giving the models the
capacity to adapt to the changes. Even more, it simplifies code reuse by allowing salvaging
working, tested code and using it again in another project. Testing can contribute to
teamwork by prematurely detecting the occurrence of errors in parts developed by different
modelers. However, though the simultaneous implementation of the tests and main code
reduces the error detection times, it does not guarantee a fault-free code.

Spendingadditional time onUnit Tests in OR interventions may be a source of resistance to
this proposal, due to the increased requirements in coding, which are linked tothe limited
project's deadlines. The fact that adding UT alters the whole development stage of a model,
and that it has a steep learning curve, also contributes to this situation. Additionally, even if
some mathematical languages already provide automation tools for Unit Testing that can be
used for this, others do not.

However, this proposal does not pretend to be exhaustive since it will primarily depend on
the problem and the programming language used. Future lines of work are generating
automated tools,refining the tests to be carried out, and evaluating its use in real-world
interventions.

6 ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support for the work presented in this
article to Universidad Tecnológica Nacional (UTN) through PID EIUTIFE0003974TC.

7 REFERENCES

[1] L. Fortuin and M. Zijlstra, "Operational research in practice: Consultancy in industry
revisited," European Journal of Operational Research, vol. 120, no. 1, pp. 1-13, 2000,
https://doi.org/10.1016/S0377-2217(98)00377-4.

[2]
A.P. Wierzbicki, "Modelling as a way of organizing knowledge," European Journal of
Operational Research, vol. 176, no. 1, pp. 610-635, 2007,
https://doi.org/10.1016/j.ejor.2005.08.018.

[3]
G. Büyüközkan and O. Feyzioğlu, "Group Decision Making to Better Respond Customer
Needs in Software Development," Computers & Industrial Engineering, vol. 48, no. 2,

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-9

pp. 427-441, 2005, https://doi.org/10.1016/j.cie.2005.01.007.

[4]
D. Huizinga and A. Kolawa, Automated Defect Prevention: Best Practices in Software
Management, 1st ed. New Jersey, USA: Wiley-IEEE Computer Society, 2007.

[5]
E. Daka and G. Fraser, "A Survey on Unit Testing Practices and Problems," in 25th
International Symposium on Software Reliability Engineering, Naples, Italy, 2014, pp.
201-211, https://doi.org/10.1109/ISSRE.2014.11.

[6]
L. Williams, E.M. Maximilien, and M. Vouk, "Test-driven development as a defect-
reduction practice," in 14th International Symposium on Software Reliability
Engineering, Denver, USA, 2003, pp. 34-45,
https://doi.org/10.1109/ISSRE.2003.1251029.

[7]
B. Turhan, L. Layman, M. Diep, F. Shull, and H. Erdogmus, "How Effective is Test Driven
Development," in Making Software, 1st ed., A. Oram and G. Wilson, Eds. USA: O'Reilly
Media, 2010, ch. 12, pp. 207-2019.

[8]
G.J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, 3rd ed. Canada:
John Wiley & Sons Inc., 2012.

[9]
P. Bourque and R.E. Fairley, Guide to the Software Engineering Body of Knowledge,
30th ed.: IEEE Computer Society, 2014, http://www.swebok.org/.

[10]
E. Mera, P. Lopez-García, and M. Hermenegildo, "Integrating Software Testing and Run-
Time Checking in an Assertion Verification Framework," in International Conference on
Logic Programming, vol. LNCS 5649, Pasadena, USA, 2009, pp. 281-295,
https://doi.org/10.1007/978-3-642-02846-5_25.

[11]
L. Gren and V. Antinyan, "On the Relation Between Unit Testing and Code Quality," in
Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
Vienna, Austria, 2017, pp. 52-56, https://doi.org/10.1109/SEAA.2017.36.

[12]
D.M. Rafi, K.R.K. Moses, K. Petersen, and M.V. Mäntylä, "Benefits and limitations of
automated software testing: systematic literature review and practitioner survey," in
7th International Workshop on Automation of Software Test, vol. 1, Zurich,
Switzerland, 2012, pp. 36-42.

[13]
J. Mingers and L. White, "A review of the recent contribution of systems thinking to
operational research and management science," European Journal of Operational
Research, vol. 207, no. 3, pp. 1147-1161, 2010,
https://doi.org/10.1016/j.ejor.2009.12.019.

[14]
R.J. Ormerod, "The transformation competence perspective," Journal of the
Operational Research Society, vol. 59, no. 11, pp. 1435–1448, 2008,
https://doi.org/10.1057/palgrave.jors.2602482.

[15]
J.C. Ranyard, R. Fildes, and T.-I. Hu, "Reassessing the scope of OR practice: The
Influences of Problem Structuring Methods and the Analytics Movement," European
Journal of Operational Research, vol. 245, no. 1, pp. 1-13, 2015,
https://doi.org/10.1016/j.ejor.2015.01.058.

[16]
D. Janzen and H. Saiedian, "Test-driven development concepts, taxonomy, and future
direction," Computer, vol. 38, no. 9, pp. 43-50, 2005,
https://doi.org/10.1109/MC.2005.314.

CIE48 Proceedings, 2-5 December 2018, The University of Auckland

[PaperNr]-10

[17]
D.G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 4th ed. Switzerland:
Springer International Publishing, 2016, vol. 228, DOI: 10.1007/978-3-319-18842-3.

