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ABSTRACT 

Operational Research (OR) models usually deal with uncertain, changing requirements. This 
leads to a continuous process of adapting and reworking the mathematical code. However, 
there are scarce mechanisms to control its quality. This is essential to Software Engineering 
(SE), as it enforces the use of Unit Testing: automatically running tests after any alterations, 
to assess specific parts of the code. This is done to discover where and how errors are 
happening, simplifying its correction while evaluating their possible ramifications. This 
article aims to define how these concepts can be adapted to them, how tests should be used 
to detect faults and to provide a workflow to use them while developing an OR model. It 
provides guidelines on what should be tested and what to expectof possible errorsand a 
process to use it. 
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1 INTRODUCTION 

In the last decades, given the increased computational capacities of computers and 
software, Operational Research (OR) mathematical models are becoming more complex,with 
more difficult maintenance. The model design and support is an important issue to take into 
account since it is subjected to continuous changes in its requirements during its lifecycle 
[3]. It is essential tokeep models up to date[4],and for this purpose, it is crucial to 
incorporate techniques that can enhance a model’s capability to adapt to changes while 
reducing the risk of introducing errors [10]. 

In this article, it is discussed the use of Unit Testing (UT), which is a technique of Software 
Engineering (SE) that can be adopted for ORmodels. Unit Testing assesses individual units of 
source code, to discover if they work as expected [17]. The idea behind UT is to write test 
cases along with the regular code, and automatically execute themeach time a new codeis 
writtenorexisting one is modified, with the purpose of discovering errors [7].  

Adapting UT to OR brings several advantages.First, it helps to control and reduce the number 
of errors introduced after altering the code, as well as decreases the time and workrequired 
to locate those errors. Second, UThelps to reuse tested code by lessening the effort needed 
to adapt it and,finally, it can ensure that the model behaves according to the 
expectations[23,24]. 

Because many languages used to implement OR models –such as Octave, MatLab, Python, 
R,and others- already provide automated Unit Testing features[7], this research aims to 
define how these concepts can be adapted to OR models, how tests should be used to detect 
faults and to provide a workflow to use them while developing a model. 

2 UNIT TESTING CONCEPTS 

In SE, generaltesting is an investigation conducted to provide stakeholders with information 
about the quality of the product or service under test[15].There are at least four levels of 
testing, as summarized as columns in Figure 1[16]: 

 

Figure 1.Levels of software testing, what and how it is tested. 

Usually, a UT follows a predefined structure, regardless of the framework or language used. 
It is composed of two main parts: 

 Assertionsare statements where a predicate is always true at that point in code 
execution[18]. It works by sending specific known data to a function and comparing 
its result to an expected outcome. An outcome is not only positive –the function 
working correctly- but it canalso bean expected warning or error. In the latter, the 
assertion will be true if the error appeared[16]. 

 Tests group assertions that evaluate the same function with either different results 
or expected outcomes[18]. This way, it possible to run a single test to cover a wide 
range of aspects for the same target. 
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Testing is a fundamental activity of SE, asthe software will always need to be eventually 
tried andmonitored[15].Regarding its benefits,UT allows finding deeper, intrinsic errors than 
manual testing [9], improving the reusability and repeatability of the code.This builds a 
mechanism that ensures that no compound errors –i.e., those that do not break the code but 
conflict with requirements- are present [19], generating a predictable code base [16]. 

3 TESTING PROCESS IN OR 

Traditional OR testing and UT are different concepts, yet complementary. In OR, testingis 
understood as checking that the obtained solution follows the logic of the modeled problem; 
for example, evaluating that if there is stock of a product, it has been manufactured in any 
previous period. However, UT searches for compound errors. This means that the written 
code must be coherent with what was modeled; this is to say that it actually solves the 
targeted situation, without considering the solution’s optimality.  

This article considers porting UT to OR, because SE has made several contributions to OR 
[13,14], with Soft OR methodologies being the most relevant [1], and since many 
mathematical languages widely used for OR models –such as MatLab, Octave, R, Python, and 
others- already provide UT functionalities [7]. 

Figure 2 shows a comparison between a traditional OR implementationand a Test-Driven one 
that applies UT. 

 

Figure 2.Traditional OR development, compared to Test-Driven 

As a result, traditional OR testing is applied before or after running each model scenario; 
i.e., it is performed at use time, every time the model is run to find a particular solution. 
However, tests generated for UT are only used while writing new code, after correcting a 
specific error, when simplifying or improving existing code, or after altering it; this is to say, 
they are only executed at development time[15]. For example, while traditional OR testing 
checks that a product to be producedis tabulated in the input data, UT evaluates that the 
data is correctly read and parsed and that their type and dimensions match the expected 
ones. 

This new, test-driven development in OR implies coding model functions one at a time, 
iteratively building an incremental, whole working model [22]. After selectinga 
functionality, tests should be written first. The element is thenwritten and refactored –i.e., 
improved- until the corresponding assertions pass. 

Another important point is that tests need to be delivered along with the code [16]. This is 
crucial for models that are used daily or weekly as part of an organization process, as they 
are more vulnerable to changes and new requirements. 

4 TESTS CASES IN OR 

In OR, the units to be assessed through UT are input data, variables, constraints and 
objectives. Their tests are not exclusive, as they complement each other, helping to 
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discover where errors are located and how they are happening.  

The following subsections detail how each of these units are tested, and what to expect 
from them. Here, code samples are written in pseudo-code; this is done to avoid limiting the 
proposal to a specific language;Section 4 will discuss how these are implemented in specific 
case studies. Thus, the code fragment (C1) showcases the pseudo-code parts of an assertion: 

assert(type_of_assertion, tested_unit, comparison, expected_value) (C1) 

It is relevant to mention that the expected value is always known:   

4.1 Testing Input Data 

Input data is a group of known or predicted values that limit the problem, its variables and 
relationships, such as planning periods, raw material prices,products, demandforecasts, and 
so on [21]. The goal of testing input data is to discern if the read values are the same as the 
expected ones. 

There are three sources for them: (a) embedded directly into the mathematical model, 
known as hard-coded, (b) imported from external sources, such as databases, spreadsheets, 
text files, and others, or (c) calculated in the model by using input data of sources (a) or 
(b).In any case, it can be a single number, or structured in vectors, matrices, tables or data-
frames. More relevant tests are obtained when evaluating the latter. 

Though testing hard-coded data can detect typographic and similar mistakes, it is more 
useful when depending on external sources. In this case, it helps to find importing errors, 
incorrect parsing, and encoding defects.The following is a non-exhaustive list of 
assessments, its goals, and example cases: 

 Assertthe value of a specific element of a matrix, to determine if values are correctly 
read and if any parsing error is happening.For example, if reading from a CSV file, a 
failed assertion could mean that some values are using a comma, with a decimal 

number written as 3,15instead of 3.15, or a name including said character, leading 
towards a parsing error. 

 Assert the type of a specific element to discover if data was adequately converted 
while reading. For example, if a matrix should contain integer values and the test 
detects it is read as a string, it may imply an incorrect use of the importing functions 
or another parsing error. Code (C2) shows a pseudo-code example. 

 Assert the dimensionsto discover if all values are read. For example, if a data-frame 
of expected (10,20) dimensions contains more columns, it may lead to an internal 
error; however, if a table has fewer rows than expected, it meansthat either the 
source is corrupted or the reading was halted. 

 Assert if the external sources exist and if they are located in the specified location. 
Therefore, if it exists but it fails to read, the error may be caused by an incorrect 
connection, a corrupted file, or a misused reading function. 

The third source is calculated input data. There should be one test for each specific 
calculus, including multiple asserts. Some possibilities for assertions are:  

 Comparing to expect correct and incorrect values. For tabular data, these assertions 
can be done for the whole, or for individual cells. It is the most comprehensive 
assertion, as it evaluates if both the calculus structure (dimensions and operations 
order)and the values involvedare correct. 

assert(true, myMatrix[2,4], getType, Integer) 
assert(false, myMatrix[2,4], getType, String) (C2) 
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 Evaluating the size of the matrix. A failed calculus may result on a table of incorrect 
dimensions. By assessing the number of rows and columns, it ensures that the 
structure of the elements used is correct. 

 Checking the internal data type. Many mathematical languages allow writing tabular 
where each cell can be of a different data type. These assertions should compare the 
value types (either individually, or by row/column, or completely), to discover if any 
parsing error is happening; these may be due to incorrect functions used on the 
calculus. 

4.2 Testing Variables 

Decision variablesrepresent entities of the problem whose values are unknown until the 
mathematical model is solved[21]; examples are the number of equipment, available 
personnel, warehouses, and others.Two types of testsare recommended: 

 Evaluate the variable initialization, to discover if it is correctly set up. This implies 
testing its type –positive integer, floating point, and others- and quantity. In some 
languages, this test may not be required, as it is checked on the compilation stage, 
previous to the solving. 

 Gauge which values can be assumed by a variable. This is done in conjunction with 
the model’s constraints and is discussed in the next subsection. 

4.3 Testing Constraints 

Constraints are logical propositions or symbolic algebraic relationships -set of equalities and 
inequalities- that delimit the search space and are responsible for linking input data and 
variables to influence the model classification[21].Constraints can also be clustered by 
constraint groups: subsetsthatrepresent a specific portion of the target situation. For 
example, a set of four equations –i.e.,individual constraints- that limit the purchase of raw 
materials; there, each equation represents provider selection, units to be purchased, 
purchase and transport cost.  

As a result, constraints UT is the coreassessment that needs to be carried out. This process 
involves checking constraints incrementally. Hence, there should be three levels of tests; 
this is exemplified using an example of transport limitations constraints. 

1. For individual constraints, as it ensures that there are no compound errors. This is to 
say that all constraints work adequately by themselves. Then, if one ofthese tests 
fail, the error search can be limited to a specific constraint.In the context of the 
example, this is a test that ensures that the maximum capacity of any truck is never 
exceeded. 

2. For constraint groups. These tests allow moving towards an Integration Testing (see 
Figure 1), appraising how the constraints interact: it is possible for them to work 
adequately by themselves, but create a conflict when they are working together. 
Following the example, this test evaluates that a truck is assigned a load (through 
one constraint), only if it is chosen (using another constraint). 

3. For increasing combinations of groups. As on (2), it allows checking different levels of 
the integration, until the whole model is appraised. The goal is to detect possible 
conflicts between groups and their interaction. In the example, this could be the 
case for merging transport and cost constraint groups, through a test that ensures 
that routes that are not chosen do not generate additional costs. 

Evaluating constraints imply directly appraising the feasibility region (FR). Because the 
process is incremental, it can take manyshapes until it reaches the final form delimited by 
all the constraints.These are named as temporal feasibility regions (TFR), and all of 
themneed to be evaluated.  

Thisis done by asserting if a point –a known value for the variables- belongs to each TFR or 
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not. As the TFR change, it is possible that a point that belongs to a previous simpler TFR 
would not belong to another more complex, or to the final FR. As this is not the only possible 
type of assertion, Figure 3 summarizes other options. 

 

Figure 3.Types of assertions for each constraint test level. 

It is possible to see that checking the TFRs is relevant at all levels, other assertions –such as 
checking the coefficient values- are only useful for individual constraints. Even more, 
depending on how the filestructure of a model is organized, it could be convenient to assert 
if the files exist on the specified location, to distinguish between corrupted and non-existent 
files. 

Regarding expected values, it is worth noting that they must be on the central zone of the 
TFR, but also at the edgeto detect solutions sensitive to rounding. 

4.3.1 TFR Evaluation Example 

A running example will be used to deepen in the TFR assessment.  

Suppose a model with two variables, 𝑥1 ≥ 0and 𝑥2 ≥ 0, with the constraints seen on equation 
(E1), where 𝑒𝑞1  and 𝑒𝑞2  represent a constraint group. In a rice packaging factory, the 
variables are the quantity of packaged containers of 1kilo (𝑥1), or half a kilo (𝑥2) of product. 
There, 𝑒𝑞1  refers to the maximum packaging capacity, and 𝑒𝑞2  establishes a relation 
between the packages generated, caused by a warehouse limitation; finally, 𝑒𝑞3 corresponds 
to demand satisfaction. Thus, the first constraint group represents capacity, and the second 
one sales. 

𝑒𝑞1:   2 ∗ 𝑥1 + 3 ∗ 𝑥2 ≤ 12 

𝑒𝑞2:  − 𝑥1 + 𝑥2 ≤ 1 

𝑒𝑞3:   3 ∗ 𝑥1 + 2 ∗ 𝑥2 ≥ 12 

(E1) 

The goal is to assess the valuesthat the variables can assume; this is done by manually 
selecting a known point and evaluating if it belongs to a TFR or not. Some example 
assertions for this case are: 

I. Two assertions: (a) assert if the point  𝑥1 ,𝑥2 = (6,1) belongs to the TFR defined by 
𝑒𝑞3 should be true (Figure 3-A). 

II. Check the constraint group (𝑒𝑞1and 𝑒𝑞2) by asserting that  𝑥1 ,𝑥2 = (6,1) belongs to 
the TFR. This should be true (Figure 3-B). 

III. Asserting if point  𝑥1 ,𝑥2 = (4,2) belongs to the final FR (Fig. 3-C) should be false. 
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IV. Corroborating that point  𝑥1 ,𝑥2 = (6,1) should be true for the final FR (Fig. 3-D).  

 

Figure 4.Visualizations of asserts I-IV on plots A-D, respectively. 

In this case, stating that “an assertion failed” implies that it didn’t behave as expected. For 
example, if assert (I) fails, then the point  𝑥1 ,𝑥2 = (6,1) is outside the TFR, when it should 
be inside it (as pictured in Figure 3-A). The reverse happens if assertion (III) fails: in this 
case, the point  𝑥1 , 𝑥2 = (4,2) belongs to the final FR, when it should be outside of it. 

Then, if assert (I) and (IV) fail –they are not true- it is possible to assume that the error is 
being caused by a fault on 𝑒𝑞3  (the demand is not satisfied), but not on the whole 
model.However, a deeper analysis depends on the result of assert (II): 

 If (II) passes, this means that 𝑒𝑞3 is incorrectly written, generating a different TFR. It 
could be the case where inequality (≥) has been written as an equality (=); as a 
result, the fault in (IV) is caused only by 𝑒𝑞3. In the running example, this means that 
the capacity is correctly modeled, but the demand satisfaction is too 
restricted.Therefore, the modeler needs to fix 𝑒𝑞3 and run the tests again. 

 However, if (II) also fails, it means that both the demand satisfaction and constraint 
capacity were incorrectly modeled, generating different TFR. In this case, additional 
assertions are needed to find which constraint of the capacity group is failing. As a 
result, fixing this error requires correcting both sets of equations. 

This flow of thought contributes to discriminate faults from their symptoms, allowing an 
easier detection by discarding possibilities.The pseudo-code (C3) transcribes the assertions: 

assert(true, eq3, includesPoint, [6,1]) 
assert(true, eq1 & eq2, includesPoint, [6,1]) 
assert(false, eq1 & eq2 & eq3, includesPoint, [4,2]) 
assert(true, eq1 & eq2 & eq3, includesPoint, [6,1]) 

(C3) 

It is worth noting that this is a simplified example used to visualize what type of 
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corroborations mustbe done, and what possible results they could imply. This is not 
exhaustive,as more assertions –grouped on tests- should be written for a real case.  

4.4 Testing Objectives 

Objectives are the search direction used in the problem solution, and at least one objective 
functiondetermines it[21].Two points can be considered: (a) the values assumed by the 
variables used in the objective are limited by the constraints, and tested with them (b) 
evaluating the objective does not imply discovering the global optimum, because doing this 
requires solving the model.  

Another possibility to test the objective functions is discovering whether the search 
direction (maximization or minimization) is indeed the expected one. For example, in a 
maximization problem, this means stopping the solving process at different iterations to 
check that the objective function is subsequently providing better results. 

5 CONCLUSIONS 

This paper presents guidelines for the creation and use of Unit Testing in OR. It focuses on 
what should be tested and what possible errors to expect,showing example tests to be 
performed. This presents a change of paradigm compared to traditional OR testing, as it 
aims to be applied at developing time, every time the source code is altered. 

This is done to provide a tool for improving the quality of the code, giving the models the 
capacity to adapt to the changes. Even more, it simplifies code reuse by allowing salvaging 
working, tested code and using it again in another project. Testing can contribute to 
teamwork by prematurely detecting the occurrence of errors in parts developed by different 
modelers. However, though the simultaneous implementation of the tests and main code 
reduces the error detection times, it does not guarantee a fault-free code. 

Spendingadditional time onUnit Tests in OR interventions may be a source of resistance to 
this proposal, due to the increased requirements in coding, which are linked tothe limited 
project's deadlines. The fact that adding UT alters the whole development stage of a model, 
and that it has a steep learning curve, also contributes to this situation. Additionally, even if 
some mathematical languages already provide automation tools for Unit Testing that can be 
used for this, others do not.  

However, this proposal does not pretend to be exhaustive since it will primarily depend on 
the problem and the programming language used. Future lines of work are generating 
automated tools,refining the tests to be carried out, and evaluating its use in real-world 
interventions. 
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