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A B S T R A C T

Continuous monitoring of cattle foraging behavior is a major requirement for precision livestock farming ap-
plications. Several strategies have been proposed for this task but monitoring of free-ranging cattle for a long
period of time has not been fully achieved yet. In this study, an algorithm is proposed for long-term analysis of
foraging behavior that uses the regularity of this behavior to recognize grazing and rumination bouts. Acoustic
signals are analyzed offline in two main stages: segmentation and classification. In segmentation, a complete
recording is analyzed to detect regular masticatory events and to define the time boundaries of foraging activity
blocks. This stage also defines blocks that correspond to no foraging activity (resting bouts). The detection of
event regularity is based on the autocorrelation of the sound envelope. For classification, the energy of sound
signals within a block is analyzed to detect pauses and to characterize their regularity. Rumination blocks
present regular pauses, whereas grazing blocks do not. The evaluation of the proposed algorithm showed very
good results for the segmentation task and activity classification. Both tasks were extensively analyzed with a
new set of multidimensional metrics. Frame-based F1-score was up to 0.962, 0.891 and 0.935 for segmentation,
rumination classification, and grazing classification, respectively. The average time estimation error was below
0.5min for classification of rumination and grazing on recordings of several hours in length. In addition, a
comparison for rumination time estimation was done between the proposed system and a commercial one (Hi-
Tag; SCR Engineers Ltd., Netanya, Israel). The proposed algorithm showed a narrower error distribution, with a
median of −2.56min compared to −13.55min in the commercial system. These results suggest that the pro-
posed system can be used in practical applications.

Web demo available at: http://sinc.unl.edu.ar/web-demo/rafar/.

1. Introduction

In recent years, much effort has been put into the development of
animal monitoring applications for precision livestock farming.
Monitoring of foraging behavior is key to ensure the fulfillment of the
basic health and welfare requirements of grazing cattle and to improve
the efficiency of pasture-based production systems (Hodgson and Illius,
1998). Foraging activities, particularly grazing and rumination, occupy
most of the animal’s day. Thus, the continuous monitoring of such
behavior can help retrieve individual status information for each an-
imal, build a log, detect emerging diseases or the onset of estrus, and
optimize pasture and animal management. For example, decreased
rumination is interpreted as an indicator of stress (Herskin et al., 2004),

anxiety (Bristow and Holmes, 2007), or disease (Welch, 1982). Con-
versely, an increase in rumination time is associated with more saliva
production and improved rumen health (Beauchemin, 1991).

Cattle foraging behavior is mainly composed of grazing and rumi-
nation times. Grazing can cover from 25% to 50% of the day and ru-
mination, from 15% to 40% (Kilgour, 2012). The grazing process in-
volves searching, apprehending, chewing, and swallowing herbage.
Rumination includes bolus regurgitation, chewing, and deglutition.
While grazing, the animal moves its jaw continuously with no pre-
defined interruptions or sequence of events. By contrast, a typical ru-
mination phase involves chewing for 40–60 s and a 3-to-5 s interruption
during bolus deglutition and regurgitation (Hodgson and Illius, 1998;
Trindade et al., 2011; Benvenutti et al., 2016). During both activities,
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jaw movements (or masticatory events) are performed rhythmically
with a frequency that ranges from 0.75 to 1.20 events per second
(Andriamandroso et al., 2016). The masticatory events are biting, when
herbage is apprehended and severed; chewing, when herbage is com-
minuted; and a compound movement called chew-bite, when herbage is
severed and comminuted in the same jaw movement (Laca et al., 1992;
Ungar and Rutter, 2006; Galli et al., 2017). Events have a length close
to 1 s, whereas activity bouts can last from minutes to hours. Thus,
foraging behavior is characterized by events (short timescale) and ac-
tivities (longer timescale).

Many strategies have been proposed for monitoring foraging beha-
vior, but they are limited by several factors (Andriamandroso et al.,
2016; Delagarde et al., 1999; Hodgson and Illius, 1998). For instance,
foraging behavior could be measured by direct observation or by
watching video recordings. However, these methodologies are ex-
tremely time-consuming and unfeasible for large herds; besides, it is
very difficult to collect data in pasture-based systems over long periods
of time. To be of practical use, monitoring should be performed in a
fully automatic and noninvasive manner so as not to disturb the normal
behavior of the animal. In addition, the system should be capable of
working continuously and keep accurate measurements from days to
weeks.

Automatic monitoring systems have been developed based on dif-
ferent sensing technologies: motion sensors, noseband pressure sensors,
and microphones. The most commonly used motion sensors are accel-
erometers (González et al., 2015; Arcidiacono et al., 2017; Giovanetti
et al., 2017; Martiskainen et al., 2009) and inertial measurement units
(Andriamandroso et al., 2017; Smith et al., 2016; Greenwood et al.,
2018). These systems typically seek to recognize a broader set of ac-
tivities, such as rumination, grazing, resting, drinking, and walking. An
activity is determined by postural analysis of the animal, where the
sensors are used to estimate the relative position and motion of its head
and body. However, this strategy can confuse activities that share the
same posture. For example, resting can be easily confused with rumi-
nation, which can be performed while the cow is standing or lying on
the ground. A better strategy for recognizing ruminating, eating, and
drinking activities is the use of noseband pressure sensors (Rutter et al.,
1997; Rutter, 2000; Nydegger et al., 2010; Zehner et al., 2017; Werner
et al., 2018). The IGER Behavior Recorder was a pioneer development
using these sensors. Recently, the RumiWatch system was used to
analyze housed and free-ranging cows during one- and two-hour ses-
sions. This yielded very good results, but further studies are required on
continuous long-term monitoring. By contrast, acoustic monitoring has
proven to be reliable for recognizing short-term ingestive events in free-
ranging cows (Laca et al., 1992; Galli et al., 2011; Clapham et al., 2011;
Navon et al., 2013; Milone et al., 2012; Galli et al., 2017; Chelotti et al.,
2016; Chelotti et al., 2018). A popular monitoring system that includes
a logger with a built-in microphone is the Hi-Tag system (SCR Engineers
Ltd., Netanya, Israel). However, the sound signal processing is ex-
clusively focused on monitoring rumination in housed cows (Schirmann
et al., 2009; Goldhawk et al., 2013). No long-term acoustic monitoring
of foraging activities has yet been studied for free-ranging cows.

In this study, an algorithm is proposed for identifying grazing, ru-
mination, and resting bouts from acoustic signals. The algorithm pro-
vides the start and finish times of each activity block by analyzing the
input signal. It is based on the periodic characteristics of jaw move-
ments during grazing and rumination. Jaw-movement sequences, and
the occurrence of interruptions, differ greatly between activities.
During grazing, bites, chews, and chew-bites are heterogeneously dis-
tributed in time with irregular interruptions. Conversely, rumination
presents homogeneous phases of chews interrupted by bolus deglutition
and regurgitation. The algorithm has two stages. First, the complete
recording is analyzed to delimit the blocks of the signal that show
periodical jaw movements. The absence of such periodicity defines
discarded blocks (resting bouts). Second, the delimited blocks are fur-
ther analyzed to detect and characterize the interruptions, thus defining

which activity corresponds to each block.
The identification of rumination and grazing bouts can be seen as a

particular case of continuous activity recognition problem. In this
context, recognition systems are typically assessed with standard per-
formance metrics, such as sensitivity, specificity, precision, or correla-
tion coefficient (concordance, Pearson, or Spearman) (Sokolova et al.,
2009; Werner et al., 2018; Zehner et al., 2017). However, to use these
metrics the problem of continuous activity recognition must be re-
formulated as a classic classification problem, where input data is
mapped to a single category. Unfortunately, restating the problem to
conform to standard metrics can be misleading and can produce con-
fusing results (Ward et al., 2011). In this study, we propose the use of a
new set of multidimensional performance metrics, which provides a
detailed description of the recognition process at multiple timescales.
This allows for a more accurate assessment of the strengths and
weaknesses of the proposed recognizers.

2. Materials and methods

Grazing and rumination are activities with quasiperiodic char-
acteristics. The proposed regularity-based algorithm aims to use this
discriminative information to provide grazing and rumination bouts.
Two main stages are involved in the offline recognition process: activity
segmentation and activity classification (Fig. 1). The complete re-
cording is first analyzed to delimit the blocks of the signal that show
regular events (jaw movements). A short sliding window on the en-
velope of the sound signal is used to analyze this regularity. De-
marcation of the activity blocks also defines blocks of no activity
(resting bouts), which correspond to silence or noisy intervals. Auto-
correlation is a well-known technique that has been useful to detect
periodicity in noisy signals (Oppenheim and Schafer, 2011) and it will
be used in this stage. During classification, activity blocks are further
analyzed to detect interruptions and to characterize their regularity.
The energy of the sound signal within a block is analyzed to detect
sudden drops, which are related to the interruptions. Regular inter-
ruptions are related to bolus deglutition and regurgitation during ru-
mination. Grazing does not show interruptions corresponding to this
particular regularity, although it may present irregular interruptions by
searching a new plant or patch.

2.1. Segmentation by regularity

Segmentation is based on regularity of masticatory events during
grazing and rumination. The analysis of the envelope of the sound
signal can reveal these events and their periodicity. Envelope

Fig. 1. Tasks of (a) segmentation and (b) classification stages for the proposed
algorithm. Steps of regularity analysis during segmentation are also detailed.
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computation is the first task of this stage (Fig. 1a). It allows one to
operate with low-frequency signals and to discard high-frequency de-
tails, unrelated to event regularity (Chelotti et al., 2016). Envelope
computation requires three steps: (i) signal rectification, (ii) signal fil-
tering, and (iii) signal subsampling. In the first step the absolute value
of signal samples is computed. In the second step the signal is filtered
using a low-pass filter, thereby producing the sound envelope. In the
third step, a subsample of the original sound envelope is conducted. The
main objective of this step is to reduce the computational requirements
in the subsequent tasks, since this process significantly reduces the
amount of information to be processed without compromising the
performance of the algorithm.

Sound envelope is analyzed by frames of 30 s without overlapping
(Fig. 1a). The autocorrelation of each frame x n[ ]30 is performed,
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where k≥ 0 is the lag, and N30 is the number of samples in a frame.
Regular activities are expected to have a peak at the typical period of
masticatory events. Thus, a local maximum is searched in a surrounding
interval Lpeak,
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To be considered as a regular activity, kp must be in Lreg (Fig. 2). In
such a case, a positive label (P) is assigned to the frame. Otherwise, the
frame will be set with a negative label (Q), which means that no peri-
odicity was detected.

A sequence of labeled frames (as P or Q) is obtained after the whole
recording has been analyzed (Fig. 1a). A few intermediate Q frames are
undesired breaks from the activity point of view because they lead to
fragmentation and unrealistic short activity blocks in the recognized
sequence. Since activity segmentation is focused on long-term behavior,
these breaks should be reduced. A smoothing filter is applied to labeled
sequences to avoid the presence of one or two successive Q frames
(<1min) surrounded by P frames. Activity classification is more reliable
when long blocks (several minutes) are analyzed.

2.2. Classification of activity blocks

Information on event regularity is not enough to discriminate be-
tween rumination and grazing. A new characteristic must be extracted
to make such distinction. Typical sound waves recorded during grazing
and rumination in a free-ranging environment (as detailed in Section
2.4) are shown in Fig. 3. It is clear that rumination presents regular
interruptions (short periods of low-intensity sound). Grazing does not
show interruptions corresponding to this particular regularity, although
it may present other interruptions by searching a new plant or patch.
Detection of these interruptions and characterizing their regularity are
the keys to discriminate between rumination and grazing.

The sound in an activity block is analyzed by 1 s frames x n[ ]1 to

detect interruptions related to bolus regurgitation (pointed by arrows in
Fig. 3b). These brief interruptions (3-to-5 s) might be undetected using
longer frames, thus 1 s frames were chosen for the analysis. Interrup-
tions could be inferred from changes in the amplitude of the sound
signal. However, variations in the amplitude across sessions, micro-
phones, recording devices and cows do not allow a reliable detection.
Preliminary experiments showed that an energy-related measure per-
forms better at detecting interruptions. Hence, in this study a frame is
characterized by computing the =e j x[ ] log(‖ ‖ )1 2 , which is proportional
to the energy (Fig. 1b). The center of a frame j indicates its position in
that block. For example, the solid line in Fig. 3c shows the corre-
sponding e j[ ] for the sound recorded during rumination (Fig. 3b). The
algorithm aims to detect sudden drops in e j[ ] so as to characterize in-
terruptions.

Drop detection starts by computing e j[ ] for each 1 s frame in the
whole block (Fig. 1b). A sliding window of fixed length is used to
perform the search. The median mw is computed in this window and the
first position j, where e j[ ] is lower than a given threshold is assumed to
be a sudden drop (to be specified in Section 2.5). The search continues
after a big step when a drop is found in the window. Otherwise, a small
step is performed. Once drops have been identified, the interruptions in
a block are characterized in two ways: (i) the mean interval between
interruptions (intm) and (ii) the rate of interruptions per minute (). A
block would be identified as rumination if the interruptions meet spe-
cific criteria. Otherwise, the activity block would be identified as a
grazing block.

2.3. Processing blocks and gaps

Segmentation by regularity can produce long blocks (hundred of
minutes in length) to be classified. These blocks typically correspond to
grazing or rumination bouts. However, a single block can occasionally
comprise a rumination bout followed by grazing, or vice versa (i.e., a
mixed block). Since the classification stage does not change the limits of
a block, classifying mixed blocks can introduce partial misclassification.
To deal with these misclassifications, larger blocks (>10min) are ana-
lyzed for possible partition. Changes in energy computed by 60 s frames
are the guide for partition. A partition is performed if an energy change
is greater than a threshold. When this stage is considered, blocks are
partitioned before classification.

Segmentation can also lead to short gaps (<5min) between activity
blocks, which are not relevant from a practical point of view. These
gaps can be merged before or after classification. Prior to classification,
short gaps are merged, thus creating long activity blocks to be classi-
fied. After merging, the partition of long blocks is expected to play a
critical role in system performance. After classification, gap merging is

Fig. 2. Autocorrelation r k[ ]xx of a frame x n[ ]30 identified as regular. Maximum
search in Lpeak yielded kp in Lreg.

Fig. 3. Sound recorded during (a) grazing and (b) rumination in a free-ranging
environment. (c) Energy of sound wave during grazing (dashed line), and ru-
mination (solid line). Interruptions related to bolus regurgitation are indicated
by arrows. Regularity of events is depicted in (a′) and (b′).
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performed only if previous and posterior blocks correspond to the same
activity. In this case, short gaps are combined with contiguous blocks to
form a long block that is equally labeled. For instance, a short gap
between two rumination blocks will be reassigned and a single longer
rumination block will be created.

In this study, several variants are evaluated in the combination of
these stages of the algorithm. They differ in the order of stages in the
process flow. Their names and stages are detailed in Table 1. Available
stages are segmentation by regularity (Seg), gap merging before clas-
sification (MB), partition of long blocks (BP), classification of activity
blocks (Cla), and gap merging after classification (MA). The baseline
variant is called regularity-based acoustic foraging activity recognizer
(RAFAR). Merging stages are mutually exclusive, thus each variant will
include MB or MA. The reason is that a gap that would be merged by
MA will have already been merged by MB. A detailed description of the
parameters of these stages is given in Section 2.5.

2.4. Acoustic signal database

The acoustic signals were obtained from an experiment performed
at the dairy facility in the Kellogg Biological Station (Michigan State
University), in August 2014. Protocols for animal handling and care
were reviewed, approved, and conducted according to the Institutional
Animal Care and Use Committee of Michigan State University. In this
experiment, the foraging behavior of five multiparous Holstein lac-
tating cows grazing perennial ryegrass/white clover and orchardgrass/
white clover pastures was continuously monitored during six days.
These signals were recorded using SONY ICDPX312 recorders (Fig. 4a).
A microphone was placed facing inwards on the forehead of cows
(Fig. 4b) and was protected with rubber foam (Milone et al., 2012). All
recordings were made at 44.1 kHz sampling rate and 16-bit resolution,
providing a nominal 22 kHz recording bandwidth and 96 dB dynamic
range, and they were saved in WAV (waveform audio) file format. For

this study, 24 h of recordings containing rumination and grazing ses-
sions were selected to tune the parameters of the algorithm and they
were never used again. The results were obtained from 137 h of re-
cordings, which were selected taking care that they corresponded to a
free-ranging environment. Those portions of the recordings that were
captured inside the feeding barn were excluded from this study. This
selection has been guided by the labels (time-stamps) provided by the
experts.

All the signals used in this study were aurally segmented and la-
beled independently by two experts in animal behavior, who were able
to identify, classify, and label the activity blocks as grazing or rumi-
nation. Blocks of no interest were labeled as null. In most cases, experts
largely agreed on the labeling of signals, and when there was dis-
agreement, they worked together to reach a final decision. This labeling
was used as the reference for comparing and evaluate the performance
of the algorithm.

For comparison purposes on rumination time estimation, the Hi-Tag
rumination monitor system was used to continuously monitor the ani-
mals during the experiments. The Hi-Tag system, consists of rumination
loggers, stationary or mobile readers, and software for processing
electronic records (Schirmann et al., 2009). Rumination was recorded
with this system using a built-in microphone on the collar of the animal
(Fig. 4c) and it was summarized as the total time spent ruminating
during two-hour chunks.

2.5. Experimental setup

The experiments conducted considered the following implementa-
tion of the regularity-based algorithm. During segmentation, in the
second step of the envelope computation, the signal was filtered using a
third-order low-pass Butterworth filter with a cutoff frequency of 2 Hz.
In the third step, a subsample of the original sound envelope to 1 kHz
was conducted. Sound envelope was analyzed by frames of 30 s and the
autocorrelation of each frame x n[ ]30 was computed. This length pro-
vided enough time resolution to catch the periodicity peak in the au-
tocorrelation and the desired time resolution for segmentation. Regular
activities were expected to have a peak at around 0.8 s. This is related
to the typical frequency of masticatory events, which is slightly higher
than 1 Hz (Andriamandroso et al., 2016). The local maximum was
searched in a surrounding interval Lpeak, which corresponded to (0.3 s,
1.25 s). The frame was considered positive if the maximum was in

⊂L Lreg peak. This interval corresponded to the interval (0.55 s, 1.06 s)
that covered the typical period of masticatory events. The smoothing
filter applied to the labeled sequences was a fifth-order median filter.
The intervals were defined from experiments with the 24 h of record-
ings detailed in Section 2.4. The remaining parameters was defined
from preliminary experiments with signals similar to those used in this
study.

In the classification stage, the detection of drops in e j[ ] was per-
formed with a sliding window of 80 s. This length made possible to find
contiguous interruptions during rumination. The median mw of energy
was computed in this window, which helped to define an adaptive
threshold to detect sudden drops in e j[ ]. A sudden drop was assumed
where <e j m[ ] 0.65 w, which has provided the desired sensibility in
preliminary experiments. The steps during the search were set to 44 s
and 5 s for the big and small step, respectively. These parameters were
defined from preliminary experiments with signals similar to those used
in this study. The criterion to define an activity block as rumination was
that ∈intm (25 s, 110 s) and ∈intr (0.5 int/min, 1.5 int/min). The first
condition corresponded to the expected interval between interruptions
during rumination and it was computed from detected interruptions.
The second one corresponded to the expected frequency of the inter-
ruptions, and it considered the number of interruptions and the length
of the block. Otherwise, the activity block would be identified as a
grazing block. This criterion were defined from experiments with the
24 h of recordings detailed in Section 2.4.

Table 1
Algorithm variants considered in the experiments. RAFAR: regularity-based
acoustic foraging activity recognizer. Seg: segmentation. MB: gap merging be-
fore classification. BP: partition of long blocks. Cla: classification of activity
blocks. MA: gap merging after classification.

RAFAR-MB: input sound → Seg → MB → Cla → output labels
RAFAR-MA: input sound → Seg → Cla → MA → output labels
RAFAR-BP: input sound → Seg → BP → Cla → output labels
RAFAR-BPMA: input sound → Seg → BP → Cla → MA → output labels
RAFAR-MBBP: input sound → Seg → MB → BP → Cla → output labels

Fig. 4. (a) Recording device, (b) microphone and (c) Hi-Tag logger location on
the cows head and neck.
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In the block partition stage, larger blocks (10min or longer) were
analyzed for possible partition. Frames of 60 s were considered to
compute the energy and the partition was performed if the relative
energy change was greater than a threshold of 0.4. A partition was not
performed when the resulting blocks were shorter than 200 s. In the
merging stages, a 5min or shorter gap was considered a short gap that
should be merged. These parameters were fixed from experiments with
the 24 h of recordings detailed in Section 2.4. A web demo of the al-
gorithm was developed with the tool (Stegmayer et al., 2016) and can
be accessed at: http://sinc.unl.edu.ar/web-demo/rafar/.

2.6. Performance metrics

In a standard classification task, a data input is assigned into one,
and only one, of the predefined classes. There are clear definitions of
true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). Hence, a recognizer performance can be assessed with
standard metrics such as accuracy, precision, recall and F1-score
(Sokolova et al., 2009). In continuous activity recognition, performance
evaluation requires the comparison between a reference sequence and a
recognized sequence. The activity blocks of the reference sequence and
the recognized sequence may not be in a one-to-one correspondence.
For example, a single block of the reference sequence can be partially
detected by three shorter blocks in the recognized sequence. The defi-
nition of TP does not contemplate this kind of relation between a single
input and several outputs. Thus, standard definitions of TP, FP, TN, and
FN are no longer suitable. Furthermore, redefining the classification
task to provide the input counts required by standard metrics can be
equivocal (Ward et al., 2011). For instance, standard metrics can be
computed based on frames, but they do not distinguish between serious
frame errors (block insertion or deletion) and timing offsets (partially
detected blocks). Also, they fail to capture common artifacts such as
fragmentation, merging, and timing offsets of blocks. A simplified ex-
ample of the complexity involved in the analysis of continuous activity
recognition can be seen in Appendix A.

A comprehensive set of performance metrics for continuous activity
recognition has been proposed by Ward et al. (2011). These metrics are
based on two complementary short- and long-term timescales. They
present a multidimensional and detailed description instead of a single
performance number. In this way, the strengths and weaknesses of a
recognizer can be assessed, avoiding ambiguity in the results. Short-
term metrics are frame-based, which is the smallest fixed-length unit of
time considered by the recognizer. Frame-based metrics facilitate a
fine-grain analysis that resembles a continuous time analysis. In this
context, a block is defined as a contiguous sequence of equally labeled
frames and it has no fixed-length. Long-term metrics are block-based,
which provides a different point of view, a big picture of the recogni-
tion. This is particularly valuable to detect coarse-grain artifacts and to
propose modifications in the recognizer. Errors can be related to seg-
mentation, classification, or a combination of both tasks.

The comparison of two binary sequences is based on the notion of
segments. A segment has been defined as the longest part of a block in
which the reference and the recognized sequences can be compared in
an unambiguous way (i.e., TP, TN, FP, and FN are clearly defined).
Segments have no fixed length and can be derived by comparing the
reference and the recognized sequences: any change in either sequence
marks a segment boundary. This aspect points up a clear difference
from blocks and frames, which can be defined from a single sequence.
The TP and TN segments keep those labels. The FP and FN segments are
assigned into subcategories to better capture block artifacts (details are
given in Appendix B). Final labeling of frames is obtained from the
corresponding segments. A block is labeled from segments that overlap
with them. If a block in the reference sequence is overlapped by a single
block in the recognized sequence, the block will be labeled as C (cor-
rectly classified).

The frame- and block-based error metrics were used to characterize

each variant of the algorithm. They are false negative rate ( ∗FNR ), false
discovery rate ( ∗FDR ), recall ( ∗R ), precision ( ∗P ), fragmentation ( ∗F ),
merging ( ∗M ), deletion ( ∗D ), insertion ( ∗I ), and the standard F1-score
( ∗F1 ). All metrics were computed for each recording analyzed and then
averaged for results presentation. For details about the computation of
these metrics see Appendix C.

3. Results

3.1. Segmentation of foraging activities

Segmentation of foraging activities focuses on the delimitation of
activity blocks regardless of their activity label. Three variants of the
algorithm were considered: basic segmentation and classification
(RAFAR), segmentation and gap merging before classification (RAFAR-
MB), and segmentation and gap merging after classification (RAFAR-
MA). The other variants in Table 1 were not considered for segmenta-
tion analysis because they were included in the selected variants. The
block partition (BP) stage in the other variants did not modify the ex-
ternal limits of an activity block, thus segmentation was not altered.

A spider plot considering frame- and block-based error metrics is
shown in Fig. 5a. A perfect algorithm would yield 0 for each error
metric, which matches the boundary of the polygon. Frame-based me-
trics (left-hand side of the spider plot) revealed low FNR and FDR for all
variants, which means that segmentation was extremely accurate. The
addition of a merging stage before classification (RAFAR-MB) decreased
the FNR and increased the merging errors (∼13%). This is expected
since gap merging incorporates more positive frames into the re-
cognized sequence. By contrast, gap merging after classification
(RAFAR-MA) was more moderate because it merged the gaps that were
surrounded by equally classified blocks. Thus, the MA stage had a
modest effect compared to the MB stage. In addition, the increase of the
merging errors showed a reduction of fragmentation errors.

Regarding block-based metrics (right-hand side of the spider plot),
these variants of the algorithm showed surprisingly large FNR and FDR.
This illustrates the importance of considering long-term error metrics of
the sequences, because they can reveal and characterize unseen arti-
facts of the recognition process. Most of the errors were due to block
merging (up to 37%) and block fragmentation (up to 38%). There were
also some insertions of blocks. Compared to RAFAR segmentation, the
MB stage increased the block merging rate by 17% and reduced block
fragmentation by 22%. The MA stage reduced fragmentation and
slightly increased merging but it had no substantial effect. Block FDR
was reduced but it was still high (>40%). A comparison between frame-
and block-based results indicated that most blocks in the recognized
sequence correctly overlapped with the blocks of the reference se-
quence, and most regions of non-foraging activities were not assigned
to activity blocks. However, the recognized sequence was mostly
comprised of long merging blocks. This should be taken into account for
the analysis of classification results and the role of a block partition
stage.

A different and practical way of analyzing the segmentation stage
was to compare the estimated and the actual duration of the activities.
The violin plots in Fig. 5b show the time estimation errors in minutes
for the variants analyzed. Vertical ticks indicate the median and the
extremes of the error distribution. In general, the three variants ana-
lyzed achieved very low error with just a few outliers near the extremes.
In a single recording, the mean duration of foraging activities was
158.6 min. The algorithm was able to segment these activities with an
error ranging between −10 and 10min. The segmentation with RAFAR
tended to underestimate the duration by a median error of 4.16min.
The inclusion of the MB stage in RAFAR-MB substantially reduced the
median error of the duration (−0.36min) but it also showed more
overestimation, which is reasonable since the blocks in the recognized
sequence are enlarged. Compared to RAFAR, gap merging after classi-
fication (RAFAR-MA) reduced the median error to −1.41min and
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resulted in a narrower error distribution. This may be explained by an
appropriate discrimination of the gaps to merge and an exclusion of the
real gaps between activities. It was expected that these accurate seg-
mentation results could help to provide a reliable classification output.

3.2. Classification of foraging activities

The results for the classification of foraging activities consider all
the RAFAR variants. Baseline classification corresponds to RAFAR,
which has the elementary stages in the process flow. Frame-based error
metrics showed low FNR for most RAFAR variants on grazing re-
cognition (Fig. 6a). By contrast, FDR ranged from ∼20% to ∼10%. This
means that almost every frame that corresponds to grazing was cor-
rectly classified but some RAFAR variants incorrectly identified extra
grazing frames (FP frames). The worst variant was RAFAR-MB, which
had the highest FNR and the highest deletion rate. The addition of a
block partition stage (RAFAR-BP and RAFAR-BPMA) reduced the FDR

from ∼20% to 15%, which must be related to a decrease in FP frames.
Finally, the combination of MB and BP stages (RAFAR-MBBP) achieved
the lowest FDR, that is, a precision above 90% ( = −P FDR1f f ). Com-
pared to other variants, insertions were highly reduced by RAFAR-
MBBP.

Regarding block-based metrics, most RAFAR variants showed a FNR
below 30% and FDR below 50% (Fig. 6a). Several grazing blocks of the
reference sequence were correctly identified but there were some re-
cognition artifacts. Most errors corresponded to block insertions (up to
26%) and fragmentation (up to 25%). Previous segmentation analyses
did not reveal such insertions. Thus, they may be misclassified blocks,
which should be compensated by deletion of rumination blocks. RAFAR
and RAFAR-BP variants yielded modest results: moderate FNR and FDR,
0% merging, 30% fragmentation, ∼25% of insertions and <5% deletion.
The high fragmentation level indicates that blocks in the reference se-
quence were partially detected. Therefore, FNR and FDR may be in-
creased because of this non critical artifact. RAFAR-MB increased

Fig. 5. Segmentation of foraging activities. (a) Spider plot of frame- and block-based error metrics. The lowest errors correspond to the boundary of the polygon. (b)
Violin plots of time estimation errors. The top axis was normalized with the mean duration of foraging activities (158.6 min) across the recordings analyzed. RAFAR:
baseline segmentation and classification. RAFAR-MB: gap merging before classification. RAFAR-MA: gap merging after classification.
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deletions but it significantly reduced fragmentation and insertions as
well. A possible explanation is that deletions correspond to blocks
identified as rumination after merging grazing and rumination blocks in
the MB stage. Fragmentation and insertions were reduced as an ex-
pected result of the MB stage. RAFAR-MA and RAFAR-BPMA reduced
the insertion and fragmentation errors, which lowered the FDR by 10%
and the FNR by 5% compared to RAFAR. However, the merging was
slightly increased in the MA stage. Finally, the combination of MB and
BP stages (RAFAR-MBBP) reached a good compromise, where FNR and
FDR were close to 20%, and insertions were reduced to less than 10%.
Fragmentation, merging and deletion were also limited up to 10%.

The results for rumination recognition are summarized in the spider
plot in Fig. 6b. Frame-based metrics showed low FDR (below 20%) for
all RAFAR variants, which means that rumination frames were hardly
ever falsely assigned. By contrast, several RAFAR variants identified
many rumination frames but not all frames. For instance, FNR for
RAFAR and RAFAR-MA was ∼40% and insertions, merging, and frag-
mentation were extremely low. The addition of a block partition stage
(RAFAR-BP and RAFAR-BPMA) helped to reduce FNR to ∼30% and
deletions to 20%. Once again, the combination of stages in RAFAR-
MBBP reached a good compromise between frame FNR and FDR, ob-
taining the lowest deletion rate and very low fragmentation, merging
and insertion.

The analysis of block results shows that two variants (RAFAR and
RAFAR-BP) correctly recognized ∼50% of the rumination blocks. These
variants merged no blocks and presented up to 10% of insertions. The
fragmentation errors of 20% indicate that blocks in the reference se-
quence were partially detected. This explains the moderate FNR and
FDR. The inclusion of a merging stage (RAFAR-MB or RAFAR-MA)
achieved the lowest FDR and highly reduced fragmentation and inser-
tions. RAFAR-BPMA and RAFAR-MBBP lowered the FNR and sig-
nificantly reduced deletions. In addition, these two variants kept frag-
mentation, merging, and insertions at low rates. The best option was
RAFAR-MBBP, which obtained a block FNR below 30% and a slightly
lower FDR.

The results for the estimation of the duration of the foraging ac-
tivities are shown in the violin plots of Fig. 7. They exhibit the error
distribution across all the recordings analyzed. In addition, there were a

few outliers and the distribution medians of the estimation error were
very close to zero for all RAFAR variants. Most RAFAR variants showed
a relatively wide distribution, which ranged from −35min to 30min.
The best results were obtained with RAFAR-MBBP, which had a nar-
rower distribution (−20 to 20min) and yielded a median estimation
error of 0.00 and 0.12min for rumination and grazing, respectively.
These median errors were extremely low compared to the mean dura-
tion of the activities in the recordings analyzed: 88.8min for grazing
and 69.9 min for rumination.

4. Discussion

The set of metrics proposed for analysis of the algorithm variants
provided a new multidimensional view of the recognition performance
at two different timescales. Frame-based metrics facilitate a fine-grain
analysis that compare the reference and the recognition sequences on a
timescale of seconds (1 s frame). Block-based metrics compare the se-
quences on a timescale of minutes or hours, which provides a big pic-
ture of the recognition. To compare and select a variant, a summary of
segmentation and classification results is given in Table 2. Frame- and
block-based results were summarized with the F1-score averaged across
the recordings analyzed. Segmentation showed impressive frame-based
scores (above 0.94), which means that the proposed algorithm was
highly accurate in discriminating foraging activities from others. Block-
based scores were up to 0.715. In addition to some blocks being par-
tially detected, most activities were correctly identified. The best ac-
tivity segmentation was achieved with RAFAR-MB and RAFAR-MBBP
(equivalent for segmentation). Regarding classification, frame-based
scores were lower than the segmentation for the same algorithm var-
iation, which indicates that some of the correctly identified activity
blocks were misclassified in the latter stage. By contrast, block-based
scores obtained for classification highly improved segmentation scores.
This is particularly evident for RAFAR-MBBP, which combines a mer-
ging stage that reduced fragmentation and insertions, and a block
partition stage that avoided misclassifications (deletions and insertions
exchange between activities). Block fragmentation and insertions were
reduced because the merging stage combined the short gaps resulting
from the basic segmentation, which resulted in longer blocks for

Fig. 6. Spider plot of frame- and block-based error metrics for (a) grazing and (b) rumination classification. The lowest errors correspond to the boundary of the
polygon. RAFAR: baseline segmentation and classification. RAFAR-MB: gap merging before classification. RAFAR-MA: gap merging after classification. RAFAR-BP:
partition of long blocks. RAFAR-BPMA: partition of blocks and gap merging after classification. RAFAR-MBBP: gap merging before classification and partition of
blocks.
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classification. As expected, a single block could include a mix of grazing
and rumination bouts. Thus, the partition of blocks helped to prevent
the misclassification of mixed blocks. Having analyzed all the variants,
RAFAR-MBBP has shown the best tradeoff and will be considered for
the following comparisons.

A comparison is made of the rumination time estimation obtained
by the Hi-Tag system and the proposed algorithm RAFAR-MBBP. The
Hi-Tag rumination system summarizes the total time the animal spent
ruminating during two-hour chunks (Schirmann et al., 2009). It pro-
vides no access to raw data on timing or duration of rumination bouts
within a two-hour chunk (Goldhawk et al., 2013). Therefore, the esti-
mations with the RAFAR-MBBP were aligned, and total duration of
rumination was summarized to match the same two-hour chunks of the
Hi-Tag system. The comparison was made with a total of 53 two-hour
chunks from all the recordings analyzed. The remaining 2 h chunks that
overlapped with times of highly-noisy environment (e.g. barn or engine
noises) were discarded from this analysis.

The results of time estimation error for rumination are shown in
Fig. 8. The Hi-Tag system exhibited a wide distribution that ranged
from heavy underestimation (-75min) to equally high overestimation
(60min). In practical terms, these values are not negligible since they
are in the same order of magnitude of the two-hour chunk analyzed.
The distribution shows a tendency toward underestimation with a
median of −13.55min, in agreement with the results reported in
Goldhawk et al. (2013). The histogram also shows this tendency and a
uniform-like distribution between −40 and 30min. By contrast, the

proposed RAFAR-MBBP obtained a much lower error, which mostly
ranged from −25min of underestimation to 15min of overestimation.
The distribution also shows a tendency toward underestimation with a
lower median of −2.56min. The histogram shows that most errors are
very close to zero and that the distribution is clearly narrower. In
practical terms, this comparison suggests that the Hi-Tag system esti-
mate rumination time with error that can be greater than 1 h. By con-
trast, the proposed system provides rumination time with errors that
are only a small time fraction of 1 h.

The success of the proposed algorithm RAFAR-MBBP in estimating
rumination time might be explained by the appropriate combination of
two distinctive features of rumination: (i) the regularity of masticatory
events and (ii) the homogeneous phases of chews and pauses associated
with bolus regurgitation and swallowing. These features allow for the
correctly discrimination rumination blocks from grazing blocks. By
contrast, the Hi-Tag system might be confusing rumination times with
grazing, since it is aimed at detecting rumination exclusively.

It should be noted that the proposed algorithm has been tested with
acoustic signals recorded on Holstein dairy cows of similar age and live
weight. During the signals recording, cows grazed mixed pastures
(ryegrass/white clover and orchardgrass/white clover) in free-ranging
environments. Testing the applicability and practicality on other type of
animals and grazing environments would require further experiments.
For instance, monitoring beef cattle or discontinuous pastures could
require an adaptation of the algorithm. The applicability on animals
seldom handle by humans could require improvement on the hardware

Fig. 7. Time estimation error for clas-
sification of (a) grazing and (b) rumi-
nation. The top axis is normalized with
the mean duration across the recordings
analyzed for grazing (88.8 min) and
rumination (69.9 min). RAFAR: base-
line segmentation and classification.
RAFAR-MB: gap merging before classi-
fication. RAFAR-MA: gap merging after
classification. RAFAR-BP: partition of
long blocks. RAFAR-BPMA: partition of
blocks and gap merging after classifi-
cation. RAFAR-MBBP: gap merging be-
fore classification and partition of
blocks.

Table 2
Activity segmentation and classification summary. Frame- and block-based F1-score is averaged across signals analyzed (standard deviation).

Activity segmentation Rumination classification Grazing classification

Frame-based Block-based Frame-based Block-based Frame-based Block-based

RAFAR 0.943 0.612 0.780 0.703 0.849 0.770
(±0.097) (±0.347) (±0.208) (±0.288) (±0.191) (±0.291)

RAFAR-MB 0.962 0.715 0.778 0.818 0.878 0.829
(±0.057) (±0.303) (±0.176) (±0.231) (±0.141) (±0.233)

RAFAR-MA 0.956 0.688 0.789 0.791 0.854 0.787
(±0.068) (±0.322) (±0.206) (±0.221) (±0.180) (±0.269)

RAFAR-BP 0.943 0.612 0.836 0.719 0.882 0.770
(±0.097) (±0.347) (±0.178) (±0.274) (±0.157) (±0.288)

RAFAR-BPMA 0.956 0.688 0.844 0.813 0.885 0.796
(±0.068) (±0.322) (±0.172) (±0.227) (±0.151) (±0.274)

RAFAR-MBBP 0.962 0.715 0.891 0.873 0.935 0.852
(±0.057) (±0.303) (±0.125) (±0.191) (±0.114) (±0.225)

RAFAR: baseline segmentation and classification. RAFAR-MB: gap merging before classification. RAFAR-MA: gap merging after classification. RAFAR-BP: partition of
long blocks. RAFAR-BPMA: partition of long blocks and gap merging after classification. RAFAR-MBBP: gap merging before classification and partition of long blocks.
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robustness. In discontinuous patchy pastures an animal may interrupt
its active grazing producing similar interruptions to those seeked by the
algorithm. However, it is expected that the distinctive regularity of
interruptions during rumination will continue to allow discriminating
rumination from grazing, even in patchy pastures.

The design of the algorithm has been focused on offline processing
of acoustic recordings of several hours. It provides long-term timescale
analysis of ruminant foraging behavior, and it complements previous
acoustic methods that have been suitable for the recognition and
characterization of jaw movements on a short-term timescale. The re-
sults were highly satisfactory since sound recordings of several hours
were processed in a few minutes on a standard desktop computer (e.g.,
6 h of sound recording can be processed in approximately 5min). It is
probable that the proposed equipment is less practical than the Hi-Tag
system. The Hi-Tag system has been designed for commercial purposes
(simple and easy to apply in a wide range of environments). For ex-
ample, the attachment procedure is straightforward and it can operate
for long periods of time without being recharged. The hardware of our
system requires further development to provide ease of use and flex-
ibility in diverse environments, to take advantage of its superior per-
formance in a wider range of applications.

5. Conclusions

In this study, an algorithm is proposed for segmenting and classi-
fying foraging activity bouts in grazing cows. Remarkable results were
obtained for segmentation. Frame-based F1-score was above 0.96 and

the average time estimation error was below 0.5 min for signals of
several hours. Classification of rumination and grazing also produced
very good results. For both activities, the frame-based F1-score was
above 0.89 and the average time estimation error was very close to
zero. Grazing was slightly better identified than rumination. The pro-
posed system estimated rumination duration with a much lower error
than the commercial system on a free-ranging environment. The
median of the error were −2.56min for the proposed system and
−13.55min for the commercial one. The proposed system can be im-
plemented for practical applications on similar environments to those
considered in this study. Future work will focus on testing the algorithm
on other types of animals and grazing environments, on developing a
preprocessing stage to deal with highly noisy environments, and on
applying advanced machine learning techniques to improve classifica-
tion.
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Appendix A. Example of continuous activity recognition

A simplified example is presented in Fig. A.1 to show the complexity involved in the analysis of continuous activity recognition. Two recognized
sequences (A and B) are compared with a reference sequence. Recognizer A returns a sequence that tends to merge blocks of the reference, whereas
recognizer B yields a much more fragmented sequence compared to the reference. The number of blocks in each sequence is different. The first block
of the reference is fragmented in sequence B. The second and third blocks are merged in sequence A. Then, there are an insertion, a deletion, and the
last two blocks are simultaneously fragmented and merged in sequence B. This kind of visual analysis can provide insight into the recognition
process. However, it is difficult to establish which recognizer is better.

Fig. 8. Time estimation error of rumi-
nation for RAFAR-MBBP (brown) and
Hi-Tag (light blue). The top axis is
normalized with the length of segments
analyzed (2 h). RAFAR-MBBP: gap
merging before classification and par-
tition of long blocks. (For interpreta-
tion of the references to colour in this
figure legend, the reader is referred to
the web version of this article.)

Fig. A.1. Example of recognized sequences A and B compared to the reference sequence. Common artifacts found in continuous activity recognition are surrounded
by dashed blue rectangles.
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Appendix B. Labeling of segments

The TP and TN segments keep those labels. The FP and FN segments are assigned into subcategories to better capture block artifacts. The
subcategories are summarized in Table B.1 and an example of segment assignments is shown in Fig. B.1.

Appendix C. Definitions of frame- and block-based error metrics

The frame- and block-based error metrics are defined in Table C.1. Frame-based metrics are defined considering the counts of true positives TP,
false positives FP, false negatives FN, fragmented F, merged M, and deleted D frames in the reference sequence, and the count of inserted I frames in
the recognized sequence, respectively. Frames of 1 s were considered as the smallest time unit for results analysis. Block-based metrics are defined
considering the counts of total (Bref ), correctly detected (C), fragmented (F), merged (M), and deleted (D) blocks in the reference sequence, and the
counts of total (Brec) and inserted (I) blocks in the recognized sequence, respectively. In addition, the standard F1-score was computed for frames

=
+

F1f
R P

R P
2 f f

f f
and blocks =

+
F1b

R P
R P
2 b b
b b

based on the corresponding precision and recall defined in Table C.1.
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