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ABSTRACT
The morphology of corellids (Ascidiacea) has led to numerous mis-
identifications and wrong taxonomic decisions over the last century.
Paradoxically, the morphology has also enabled new species to be
identified and ancient entities to be re-established in the Southern
Hemisphere. There are many examples of the integration of morpho-
logical and molecular data leading to the same taxonomic conclu-
sions, and therefore we aimed to analyse DNA sequences of the gene
cytochrome oxidase subunit I of currently accepted species within
Corellidae occurring in the Southern Hemisphere. Haplotype net-
works along with phylogenetic trees and genetic distances not only
corroborate the distinction between Corella eumyota and Corella
antarctica, but also separate the latter into two potential groups,
one located in Terre Adélie and the other in the Antarctic Peninsula
(AP). Furthermore, the C. antarctica group from the AP was closely
related to the allied abyssal species, Corynascidia suhmi from
Terre Adélie. Although the number of new sequences is reduced,
our results are congruent with a long record of suspicion on the
matter and stress the need for deeper and more extensive investiga-
tion of this ascidian family.
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Introduction

Species that belong to the family Corellidae (Ascidiacea: Phlebobranchia), and particularly
those of the genus Corella, not only exhibit a wide range of morphological variability
(Herdman 1910; Hartmeyer 1924; Ärnbäck-Christie-Linde 1938; Van Name 1945; Brewin
1946; Kott 1969; Lambert et al. 1981, 1995; Monniot 1994, 2013; Monniot and Monniot
1994; Sanamyan and Sanamyan 2002, 2005; Lambert 2004; Varela et al. 2007; Alurralde et al.
2013), but also present a similar range of genetic discrepancies (Dupont et al. 2007; Monniot
et al. 2011). The most recent debate involved Corella eumyota Traustedt, 1882, a Corella
species from southern South America and Antarctica (Alurralde et al. 2013; Monniot 2013),
successfully invasive in the Northern Hemisphere (Lambert 2004; Arenas et al. 2006; Minchin
2007; Varela et al. 2007; Collin et al. 2010; Nagar et al. 2010) and with a high invasive
potential in similar environments (Locke 2009).
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Corella eumyota is assumed to be native to the Southern Hemisphere and has long
been considered widely distributed throughout this vast region, including Antarctica.
Nevertheless, low allelic richness has been observed in populations of South Africa and
New Zealand, which suggests that they may be the result of a more recent invasion
(Dupont et al. 2007). Subsequently, Alurralde et al. (2013) re-established the Antarctic
species, Corella antarctica Sluiter, 1905, based on morphological differences with its
congener from Sub-Antarctic areas, while Monniot (2013) described a new species
(Corella brewinae Monniot F., 2013) from New Zealand. Furthermore, Monniot et al.
(2011) reported over 10% divergence among cytochrome oxidase subunit I (COI) mito-
chondrial gene sequences of C. antarctica (referred to as C. eumyota in that paper) and
C. eumyota, but 93.75% similarity with Corynascidia suhmi Herdman, 1882, another
corellid species. The morphology of C. eumyota and C. antarctica are clearly different
(Alurralde et al. 2013; Monniot 2013), which raises the question of whether the mor-
phological variation is genetically supported, and also what the genetic data may tell us
in regard to Southern Hemisphere corellids. Molecular barcoding is an efficient tool for
identifying species (Bucklin et al. 2011), and can help to detect misidentifications
(McGlashan et al. 2008) or to support correct morphological identifications (Bishop
et al. 2013). By gathering new COI sequences and merging them with published
datasets, this study analysed genetic variation in corellid specimens occurring in south-
ern South America (Argentina and Chile) and Antarctica.

Material and methods

Samples of C. eumyota were collected from Las Grutas (Argentina) and samples of
C. antarctica from Potter Cove (25 de Mayo/King George Island, Antarctic Peninsula).
Total genomic DNA was obtained from muscle tissue using the DNeasy Blood and Tissue
kit (Qiagen, Hilden, Germany). A fragment of the mitochondrial gene COI was amplified
using a universal primer pair (Folmer et al. 1994). Amplification was performed according
to Turon et al. (2016). After initial denaturation (2 min, 94°C), the PCR ran for 35 cycles
(1 min, 94°C; 1 min, 50°C; 1 min, 72°C) with a terminal elongation of 7 min at 72ºC. The
amplifications were sequenced by Macrogen Inc. (Seoul, Rep. of Korea). Only one speci-
men of C. eumyota and three of C. antarctica were successfully sequenced; sequences
were submitted to GenBank (accession numbers MG877558–MG877561).

Sequences obtained from GenBank and BOLD System databases were included in the
analysis for comparison and as outgroups (Stach and Turbeville 2002; Kurabayashi et al.
2003; Monniot et al. 2011; Pyo et al. 2012; López-Legentil et al. 2015; Turon et al. 2016).
Once aligned using the BioEdit program 7.0.5.3 (Hall 1999), sequences were collapsed
into haplotypes; the number of polymorphic sites and haplotypes were calculated using
the program DNAsp 6 (Rozas et al. 2017).

The average genetic diversity for each species was estimated using nucleotide (π) and
haplotype (h) diversity according to Nei’s (1987) method. Mean distances within and
between species were calculated by Kimura’s 2-parameter method (1000 bootstrap
replicates) using MEGA 7 (Kumar et al. 2016). Two median-joining networks (one for
C. eumyota samples, and one for samples of C. antarctica and C. suhmi) were generated
to infer the most parsimonious phylogenetic relationships among concatenated mtDNA
haplotypes using NETWORK v.4.6 (www.fluxus-engineering.com). Phylogenetic analyses
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were based on three approaches: maximum parsimony (MP), maximum likelihood (ML)
and the Bayesian inferred (BI) analysis approach. For MP analyses, the TNT 1.5 program
(Goloboff and Catalano 2016) was used. A heuristic search was performed with 300
random stepwise additions of taxa and tree bisection reconnection branch swapping.
Standard bootstrap based on 1000 replications was used to assess the stability of each
node. The best fitting models for the ML and BI analyses were selected using jModelTest
version 2.1.9 (Darriba and Posada 2016), based on the Akaike information criteria and
Bayesian information criteria, respectively. The selected model for both phylogenetic-
reconstruction strategies was GTR+G. For the ML analysis, bootstrap with 1000 replicates
was performed with the general time-reversible (GTR) mode of substitution with gamma
distributed rate variation among sites, as inferred from the best-fit models using MEGA 7
software. The BI approach used four chains and the starting tree was random in MrBayes
3.2.5 (Zhou et al. 2011). The analysis was run for 100,000 generations, with a sample
frequency of 100. The first 25% of the trees were discarded as ‘burn-in’. The posterior
probabilities supporting the nodes were calculated. In the three methods, gaps were
considered a fifth character.

Results and discussion

As expected, the COI sequences analysed support the morphological distinction
between C. eumyota and C. antarctica (Alurralde et al. 2013; Monniot 2013): 70 mutations
were detected separating samples from southern South America (attributed to
C. eumyota) and those from Antarctica (C. antarctica and C. suhmi) (Figure 1). The
interspecific distance was high between C. eumyota and their Antarctic relatives
(22.2–23%). The sequences of each species were then analysed separately, revealing
19 haplotypes in 20 sequences from C. eumyota. The 545 bp showed 22 polymorphic
sites (14 parsimony informative sites) with a haplotype diversity (h) of 0.995 and
a nucleotide diversity (π) of 0.01. The partial sequence of C. eumyota from Argentina
included in this work belongs to a new haplotype not observed previously either in Chile
or elsewhere. Although this haplotype was the most similar to the three observed in
Chile (H3, H6 and H8 from Dupont et al. unpublished paper), differences were deter-
mined by six to eight mutations.

When the Antarctic sequences were analysed, intriguing relationships were observed
among haplotypes. Three sequences of 713 bp length of C. antarctica from Potter Cove
(Antarctic Peninsula) were analysed together with two sequences from Terre Adélie
(Adélie Land): one of the same species and one of C. suhmi. The sequences collapsed
into five haplotypes, showing 40 polymorphic sites (four parsimony informative sites)
with a haplotype diversity (h) of 1.00 and a nucleotide diversity (π) of 0.033. The
sequences from Potter Cove presented three exclusive haplotypes, differing by 32–34
mutations from that of Terre Adélie. Surprisingly, the sequence of C. suhmi (Terre Adélie)
was more closely related to the sequences of C. antarctica from the far Potter Cove (only
three to nine mutations) than to the sequence of C. antarctica from the same location.
Genetic distances are summarised in Table 1. Considering the amount of mutations
observed within the Antarctic set of haplotypes (Figure 1), further comparisons were
conducted among these sequences. The intra- and interspecific distances were strikingly
high among C. antarctica haplotypes when the haplotype from Terre Adélie was
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included. Conversely, C. suhmi proved to be closest to the haplotypes of C. antarctica
from the Antarctic Peninsula. The three phylogenetic approaches showed congruent
and similar topologies (Figure 2). The clade that includes all individuals of C. eumyota is
highly supported, as well as that representing C. antarctica and C. suhmi. The species
C. suhmi is part of a well-supported group with C. antarctica from Potter Cove, clearly
separated from C. antarctica from Terre Adélie.

The observed interspecific distance between C. eumyota and C. antarctica (22.7%)
exceeds the upper range of the interspecific divergence threshold to separate ascidian
species (based on COI) discussed by Pérez-Portela et al. (2013 and references therein).
This interspecific distance is also higher than the intraspecific distances found for
C. eumyota (0.9%) and C. antarctica (4.2%), supporting the differentiation of both species
using COI sequences as molecular markers. Despite the few DNA sequences available for
Corella (highlighted by Monniot et al. 2011), this study shows lower variable intraspecific
distances than previous reports (up to 20.77%) for Antarctic and Sub-Antarctic ascidians
(Dettai et al. 2011; Monniot et al. 2011). Our haplotype network and phylogenetic trees
are the first to collate all available data, both molecular and morphological, and agree
with the preliminary findings of Monniot et al. (2011) showing a close relationship
between C. suhmi and C. antarctica (mentioned as C. eumyota in that study).
Nonetheless, lower genetic differences were observed between C. antarctica (only

Figure 1. Haplotype network for corellid species from COI data. Localities where the haplotypes
have been found are indicated in shaded polygons. Areas of the circles are proportional to the
number of haplotypes. Small white crossed dots without name represent missing, probably
unsampled, haplotypes or extinct sequences. Dots along the lines between circles represent one
mutational step. For haplotype ID see Figure 2. Ce: Corella eumyota; Ca: Corella antarctica; Cs:
Corynascidia suhmi.
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Figure 2. Maximum parsimony strict consensus tree of partial COI gene analysis. A total of 15 equally
parsimonious trees were obtained (975 length; consistency index: 0.689; retention index: 0.767). Branches
retrieved by the three methods are indicated by three support values on the nodes. Values represent
bootstrap supportswhen>50% forMPandML analyses andposterior probabilities for BIwhen>0.5, in that
order. Hyphen (-) denotes < 50% bootstrap values and posterior probabilities < 0.5; underscore (_) indicates
the nodes that did not appear in the tree. Specimen haplotype IDs and GenBank sequences or BOLD System
accession numbers are shown.
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sequences from Potter Cove) and C. suhmi (1.2%) than previously reported (6.25%) by
Monniot et al. (2011). Indeed, the latter value matches our estimation of interspecific
distance between C. antarctica from Terre Adélie and C. suhmi (6.8%). Hence, our results
suggest that the specimens from Terre Adélie may have been misidentified or that there
is an unnoticed cryptic species within the Corella genus.

The specimen of C. antarctica from Terre Adélie was collected deeper (927 m) than
the C. suhmi specimen (214 m), even though the latter is considered a deep-sea species
(Kott 1969; Monniot et al. 2011). We dismiss a misidentification made by Monniot et al.
(2011), who analysed four specimens of C. suhmi, since the general body shape of both
species is markedly different, particularly in the presence of a peduncle in C. suhmi
(Monniot et al. 2011; Maggioni et al. in prep.). Nonetheless, both Herdman (1882) and
Van Name (1945), when re-describing C. suhmi, suggested that the species could be an
abyssal form of Corella based on morphological traits. Monniot (2013) aroused suspi-
cions about the individual variability of species of Corella from different locations for
both shallow and deep specimens. Similar conclusions were reached by Alurralde et al.
(2013), who found consistent variability patterns among South American C. eumyota
populations. In addition to C. antarctica, Corella dohrni and Corella benedeni (Van
Beneden and Selys Longchamps 1913) were also proposed as Antarctic Corella species,
and were finally synonymised with C. eumyota under the assumption of high intraspe-
cific variability (Ärnbäck-Christie-Linde 1938; Van Name 1945). Monniot (2013) high-
lighted the need for further investigation to determine if all the specimens attributed
to C. antarctica represent a single species around the Antarctic Continent. The high
genetic distance observed between C. antarctica sequences from Potter Cove and
Terre Adélie indicates that we may be dealing with a genus that is more varied than
previously thought throughout the Southern Hemisphere.

Our analyses of COI sequences support the taxonomic status of C. eumyota and
C. antarctica, but they also yielded intriguing insights into the entity of Corella species
from Antarctic waters. The present study did not aim to make a taxonomic review of the
family Corellidae, but clearly underlines the need for a deeper appraisal, since we may
be dealing with more species than previously thought, especially in Antarctica. Thus,
there is still work clearly to be done on the taxonomical status of these Antarctic entities,
as happened with C. antarctica (Alurralde et al. 2013; Monniot 2013). Several authors
have stated that distinguishing corellids is taxonomically challenging (Herdman 1886;

Table 1. Genetic distances among haplotypes of corellids.
Comparisons Distance Standard error

Intraspecific
Corella eumyota 0.009 0.003
Corella antarctica 0.0420 0.007
Corella antarctica-Potter Cove 0.010 0.003

Interspecific
Corella eumyota/Corella antarctica 0.227 0.028
Corella eumyota/Corella antarctica-Potter Cove 0.229 0.030
Corella eumyota/Corella. antarctica-Terre Adélie 0.222 0.030
Corella eumyota/Corynascidia suhmi 0.230 0.029
Corella eumyota/Corella antarctica + Corynascidia suhmi 0.228 0.029
Corella antarctica/Corynascidia suhmi 0.028 0.006
Corella antarctica-Terre Adélie/Corynascidia suhmi 0.068 0.013
Corella antarctica-Potter Cove/Corynascidia suhmi 0.015 0.005
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Van Name 1945; Monniot 2013), as the results presented here have demonstrated. Given
the lack of sufficient material for study (from a classical taxonomic point of view) and of
genetic data, there is a need for deeper and more extensive investigation on this matter.
The identification of species is one of the greatest obstacles to understanding broader
patterns of invasion, which highlights the importance of more rigorous and integrative
taxonomic studies. In the current context of global changes in the marine biota and the
spread of invasive species, proper species identification becomes indispensable to avoid
uncertainty concerning the status of a given species, i.e. native, invasive or cryptogenic.
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