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1 Introduction

The AdS/CFT correspondence explicitly realizes the notion that certain field theories admit

an equivalent description in terms of string theories. The most prominent and precise ex-

amples of such equivalences are: (i) the duality between N = 4 supersymmetric Yang-Mills

in four dimensions and type IIB string theory on AdS5×S5 and (ii) N = 6 supersymmetric

Chern-Simos with gauge group U(N)k × U(N)−k coupled to matter in three dimensions

and type IIA string theory on AdS4 × CP3.

The advent of localization techniques has provided a plethora of exact results relevant

for the field theory sides of this correspondence, that is, for N = 4 SYM [1] and for

ABJM [2]. In the context of the AdS/CFT correspondence, it is then natural to extrapolate

the exact field theory results to the regime where they could be directly compared with the

supergravity and semiclassical approximations. This approach was attempted very early

on in the insightful work of Drukker, Gross and Tseytlin [3]; it did not, however, led to a

match with the field theory prediction. This discrepancy motivated much work [4–7] that

largely confirmed the original discrepancy. A recent revival of this line of effort took place

in [8, 9] which considered, on the gravity side, the one-loop effective actions corresponding

to the ratio of the expectation values of the 1
4 to the 1

2 BPS Wilson loops. Various groups

have made important subsequent contributions to this question [10] and recently a precise

match has been described, for the N = 4 SYM case, [11] after imposing a diffeomorphism

preserving cutoff.

In this manuscript we take one step in the direction of extending some of the techniques

developed thus far to the context of the AdS/CFT pair AdS4×CP3/ABJM. We hope that

by turning our attention to the AdS4/ABJM pair we can gather complementary information

to the one already available and ultimately learn about string perturbation theory in curved

backgrounds with Ramond-Ramond fluxes. There are, indeed, a number of exact results

obtained via localization of the ABJM theory starting with the free energy of the theory on

S3 [2] but most importantly to us there are various exact results for supersymmetric Wilson

loops for the 1
2 BPS [12] and, more recently, for the 1

6 BPS configuration [13]. We consider

one-loop effective actions of string configurations dual to those supersymmetric Wilson

loops in ABJM. Our focus is in understanding some aspects of the picture of precision

holography, that is, the matching of sub-leading corrections on the string theory side with

the prediction of field theory. As the first step in attacking the N = 6 case, in this first work

we provide all the details to set the wheels of precision holography in AdS4 × CP3/ABJM

with Wilson loops in motion.

The rest of the paper is organized as follows. We briefly review the field theory status of

the expectation values of the relevant Wilson loops in section 2. In section 3 we discuss the

classical string configurations and in section 4 we present the quadratic fluctuations. The

string theory semiclassical one-loop effective action is equivalent to the computations of

quotients of determinants. In section 5 we consider the perturbative computation of deter-

minants to first non-trivial order in the latitude angle θ0. Section 6 tackles the computation

of the one-loop effective actions using ζ-function regularization. We conclude with some

comments and open problems in section 6. We relegate a number of more technical aspects

– 2 –
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to a series of appendices, including: conventions A, geometric data B, an explicit discussion

of regularity conditions for the gauge fields C, and details of the fermionic reduction D.

2 The 1
6
-BPS latitude Wilson loop

The ABJM theory is a three-dimensional Chern-Simons-matter theory with U(N)k×U(N)k
gauge group where the subindices indicate the Chern-Simons level [14]. The matter sector

contains four complex scalar fields CI , (I = 1, 2, 3, 4) in the bifundamental representation

(N, N̄) and the corresponding complex conjugate in the (N̄,N) representation; the theory

also contains fermionic superpartners (see [14] for details).

To build 1
6 supersymmetric Wilson loops, one starts considering only one of the gauge

fields of the whole U(N)×U(N) gauge group, denoted by Aµ. To preserve supersymmetry

we need to include a contribution from the matter sector. The main intuition comes from

the construction of supersymmetric Wilson loops in N = 4 SYM. However, in the absence

of adjoint fields, an appropriate combination of bi-fundamentals, CI , namely [15–17] is

required:

WR =
1

dim[R]
TrR P

∫ (
iAµẋ

µ +
2π

k
|ẋ|M I

JCIC̄
J

)
ds, (2.1)

where R denotes the representation. It was shown in [15–17] that the above operator

preserves 1
6 of the 24 supercharges when the loop is a straight line or a circle and the

matrix takes the form M I
J = diag (1, 1,−1,−1).

A remarkable result of [2] was to show that the computation of the vacuum expectation

values of these Wilson loops reduces to a matrix model. Namely, the Wilson loop vev is

obtained by inserting TrR e
µi inside the following partition function:

Z(N, k) =
1

(N !)2

∫ N∏
i=1

dµi
2π

dνi
2π

∏
i<j

(
2 sinh

µi−µj
2

)2 (
2 sinh

νi−νj
2

)2

∏
i,j

(
2 cosh

µi−νj
2

)2 exp

[
ik

4π

∑
i

(µ2
i − ν2

i )

]
.

(2.2)

A particularly impressive exact result was the computation of the supersymmetric free

energy of ABJM on S3 in terms of Airy functions [18, 19] which elucidated various aspects

of the interpolation between week and strong coupling in the context of ABJM. The results

that are more relevant for our current work pertain exact evaluations of Wilson loops. The

construction of the Wilson loop presented above in equation (2.1) does not capture the 1
2

BPS string configurations. These involved the introduction of a superconnection [20]. The

exact expectation values of the 1
2 - and certain 1

6 -BPS Wilson loops were presented in [12]

and take the general form

〈W
1
2
� 〉 =

1

4
csc

(
2π

k

) Ai
[(

2
π2k

)−1/3 (
N − k

24 −
7
3k

)]
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
1
3k

)] , (2.3)

where the denominator is recognized as the partition function of the ABJM theory obtained

in [21, 22]. The above result and many others in this class are exact to all orders in 1/N ,
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up to exponentially small corrections in N . Recently, in [13], a matrix model for the exact

evaluation of the latitude BPS Wilson loops has been proposed. The expectation value for

any genus of the fermionic (in the sense of the superconnection [20]) latitude Wilson loop

is given in terms of Airy functions by (see equations (1.3) and (5.44) in [13]),

〈W
1
6
F (ν)〉ν = −

ν Γ
(
−ν

2

)
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
6ν+1

3k

)]
2ν+2

√
π Γ

(
3−ν

2

)
sin
(

2πν
k

)
Ai
[(

2
π2k

)−1/3 (
N − k

24 −
1
3k

)] , (2.4)

where ν = sin(2α) cos θ0, the angle α can be freely chosen and determines the coupling to

matter, the geometric parameter we are interested in is θ0, and 0 ≤ ν ≤ 1. The beautiful

result above is the culmination of an impressive series of papers [23–26] (see also [27, 28]).

The fermionic latitude Wilson loop maps to a type IIA string configuration in the

AdS4×CP3 background with endpoints moving in a circle inside CP3. When expanded to

the regime of validity of the holographic computation, namely, taking the leading genus-

zero expansion in the above, it has been shown to coincide with the semi-classical string

computation of the 1
6 -BPS Wilson loop expectation value [29].

〈W
1
6
F (ν)〉ν |g=0 = −ι

2−ν−2 κν Γ
(
−ν

2

)
√
π Γ

(
3
2 −

ν
2

) (2.5)

We will consider the ratio of 1
6 -BPS Wilson loop expectation value with the 1

2 -BPS one,

dual to a circular Wilson loop. Therefore, the field theory prediction to be matched to

our computation of the one-loop effective action of the string configuration takes the form

(ν = cos θ0)

∆Γ1-loop
effective(θ0) = ln

〈W 1
6
F (ν)〉ν

〈W
1
2
F (1)〉1

 = ln

(
1

π
cot

(
π

cos θ0

2

))
− ln

(
sin2 θ0

2

)

+ 2 ln Γ

(
cos2 θ0

2

)
− ln (Γ(cos θ0))− ln

(
cos θ0

)
=

1

2
θ2

0 +O
(
θ4

0

)
.

(2.6)

Anticipating the use of a perturbative result using heat kernel techniques, in the last line

above we have expanded the field theory answer for small latitude angle θ0.

3 String configurations dual to supersymmetric Wilson loops

In this section we review the classical string configurations dual to the fermionic latitude

family of BPS Wilson loops. We present these results for the convenience of the reader

and to set up our notation but refer the interested reader to the original literature [15–17]

for the 1
2 BPS cofiguration and [29] for the latitude 1

6 BPS configuration.
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3.1 The AdS4 × CP3 background

The Euclidean AdS4 (EAdS4) metric is written as an H2 × S1 foliation,

ds2
EAdS4

= cosh2 u
(
sinh2 ρ dψ2 + dρ2

)
+ sinh2 u dφ2 + du2 . (3.1)

Similarly, the metric on CP3 is taken to be

ds2
CP3 =

1

4

[
dα2 + cos2 α

2

(
dϑ2

1 + sin2 ϑ1 dϕ
2
1

)
+ sin2 α

2

(
dϑ2

2 + sin2 ϑ2 dϕ
2
2

)
+ cos2 α

2
sin2 α

2
(dχ+ cosϑ1 dϕ1 − cosϑ2 dϕ2)2

]
. (3.2)

The full metric is

ds2 = L2
(
ds2

EAdS4
+ 4 ds2

CP3

)
, L2 =

R3

4k
. (3.3)

Finally, the other background fields read

eΦ =
2L

k
, F(4) = −3ikL2

2
vol (AdS4) , F(2) =

k

4
dA , (3.4)

where

vol (AdS4) = cosh2 u sinhu sinh ρ dψ ∧ dρ ∧ du ∧ dφ , (3.5)

A = cosαdχ+ 2 cos2 α

2
cosϑ1 dϕ1 + 2 sin2 α

2
cosϑ2 dϕ2 . (3.6)

The factor of i in F(4) is due to the Euclidean continuation. The 2-form is proportional to

the Kahler form in CP3.

3.2 Classical string solution

The classical 1/6-BPS string solution we are interested in has

u = 0 ,

α = 0 ,

ρ′ = − sinh ρ ,

ϑ′1 = − sinϑ1 ,

ψ = τ ,

ϕ1 = τ .
(3.7)

The induced metric is then

ds2 = L2A
(
dτ2 + dσ2

)
, A = sinh2 ρ+ sin2 ϑ2

1 = ρ′2 + ϑ′21 . (3.8)

The solution to (3.7) involves the latitude parameter θ0. We write,

sinh ρ =
1

sinhσ
, sinϑ1 =

1

cosh (σ + σ0)
, cos θ0 = tanhσ0. (3.9)

The induced geometry is disk shaped and asymptotes AdS2 at the boundary. The 1/2-BPS

limit corresponds to σ0 →∞, and the induced geometry then becomes an exact AdS2.

– 5 –
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3.3 Symmetries of the classical solution

We start by recalling that the background geometry is constructed out from coset spaces

AdS4 = SO(2, 3)/SO(1, 3) and CP3 = SU(4)/SU(3)×U(1).

Before gauge-fixing, the string embedding is characterized by 10 worldsheet scalars

xm(τ, σ) and a 10-dimensional Majorana spinor θ whose dynamics is determined by the

type IIA Green-Schwarz action (more details below). The symmetries of the theory are:

• Local:

– Diffeomorphisms:

δξx
m = ξa∂ax

m , δξθ = ξa∂aθ , (3.10)

where ξa is an arbitrary worldsheet vector field.

– κ-symmetry:

δκx
m =

i

2
θΓmδκθ , δκθ = (1 + ΓF )κ , ΓF =

εab

2
√
−g

ΓabΓ11 , (3.11)

where κ is an arbitrary 10-dimensional Majorana spinor and worldsheet scalar.

• Global:

– Target space isometries:

δλx
m = Km , δλθ = Ka∂aθ −

1

4
(∇mKn −∇nKm) Γmnθ , (3.12)

where Km is any target space Killing vector and Ka = ∂ax
mKm.

– Target space supersymmetries:

δεx
m = − i

2
θΓmδεθ , δεθ = ε , Dmε = 0 , (3.13)

where ε is any target space Killing spinor.

Given a classical solution (with fermions set to zero, θ = 0), the preserved bosonic

symmetries correspond to the set of transformations satisfying

δxm = 0 ⇒ Km + εa∂ax
m = 0 . (3.14)

In other words, the target space isometries inherited by the solution are those that leave

the embedding invariant up to worldsheet diffeomorphisms. Contracting this condition

with gmn∂ax
n we can solve

εa = −Ka , (3.15)

where Ka = ∂ax
mKm. This in turn implies that, in order to generate a symmetry, the

Killing vector must satisfy

Km = gab∂ax
m∂bx

nKn . (3.16)

– 6 –
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The logic for the fermionic symmetries is the same. The ones preserved by the back-

ground are those satisfying

δθ = 0 ⇒ ε+ (1 + ΓF )κ = 0 . (3.17)

These are target space supersymmetries which can be compensated by a local κ-symmetry

transformation. Multiplying by (1 − ΓF ), we find that

(1− ΓF ) ε = 0 . (3.18)

This is the usual condition for preserved supersymmetries. This condition is in fact suffi-

cient since then we can solve

κ = −1

2
ε . (3.19)

For the case at hand, we find that the AdS4 × CP3 Killing vectors

K1 = ∂ψ + ∂ϕ1 , (3.20)

K2 = ∂φ ,

K3 = − cosϕ2 ∂ϑ2 + cotϑ2 sinϕ2 ∂ϕ2 +
sinϕ2

sinϑ2
∂χ ,

K4 = sinϕ2 ∂ϑ2 + cotϑ2 cosϕ2 ∂ϕ2 +
cosϕ2

sinϑ2
∂χ ,

K5 = ∂ϕ2

K6 = ∂χ ,

generate a symmetry of the solution. The first Killing vector must be accompanied by a

translation in the worldsheet coordinate τ such that ετcl = −λcl and εσcl = 0; it corresponds

to an isometry of the induced geometry. The rest have zero norm on the worldsheet so

εacl = 0. Altogether we have a U(1)︸︷︷︸
K1

×U(1)︸︷︷︸
K2

× SU(2)︸ ︷︷ ︸
K3,K4,K5

×U(1)︸︷︷︸
K6

symmetry.

The geometric interpretation of the symmetries is most easily seen in the embedding

coordinates of EAdS4 ⊂ R5 and the Hopf fibration S1 ↪→ S7 → CP3:

X0 = coshu cosh ρ ,

1 = X2
0 −X2

1 −X2
2 −X2

3 −X2
4 , X1 = coshu sinh ρ cosψ ,

ds2 = −dX2
0 + dX2

1 + dX2
2 + dX2

3 + dX2
4 , X2 = coshu sinh ρ sinψ ,

X3 = sinhu cosφ ,

X4 = sinhu sinφ ,

z1 = cos
α

2
cos

ϑ1

2
e
i
2(ϕ1+χ

2 ) , z3 = sin
α

2
cos

ϑ2

2
e
i
2(ϕ2−χ2 ) ,

z2 = cos
α

2
sin

ϑ1

2
e
i
2(−ϕ1+χ

2 ) , z4 = sin
α

2
sin

ϑ2

2
e
i
2(−ϕ2−χ2 ) .

(3.21)

The worldsheet has z3 = z4 = 0.

In the next section we will consider perturbations of the string embedding around the

classical solution and look at the transformation properties of the fluctuations under the

– 7 –
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preserved symmetries. It will prove convenient to take linear combinations of K3, K4 and

K5 that have a simple action on the fluctuations. We find that such combinations are

K ′3 = cos(ϑcl2 )
(

sin(ϕcl2 )K3 + cos(ϕcl2 )K4

)
+ sin(ϑcl2 )K5 , (3.22)

K ′4 = cos(ϕcl2 )K3 − sin(ϕcl2 )K4 , (3.23)

K ′5 = sin(ϑcl2 )
(

sin(ϕcl2 )K3 + cos(ϕcl2 )K4

)
− cos(ϑcl2 )K5 , (3.24)

K ′3 = cos(ϑcl2 ) sin(ϕ2 − ϕcl2 )∂ϑ2 +
(

cotϑ2 cos(ϑcl2 ) cos(ϕ2 − ϕcl2 ) + sinϑcl2

)
∂ϕ2

+
cos(ϑcl2 ) cos(ϕ2 − ϕcl2 )

sinϑ2
∂χ , (3.25)

where ϑcl2 and ϕcl2 are the (constant) values that the coordinates ϑ2 and ϕ2 take on the

classical solution. We shall drop the primes henceforth.

4 Quadratic fluctuations

Having reviewed the classical solution dual to the 1
6 -BPS latitude Wilson loop and its

symmetries, in this section we derive the corresponding spectrum of quadratic fluctuations.

There has already been some previous work for the case of the 1
2 -BPS configuration in [30]

and [31] whose spectrum is a limit of our result. We will start by giving a general expression

for the quadratic fluctuations of the type IIA string in AdS4 ×CP3 and then specialize to

the case of the 1
6 BPS string dual to the latitude Wilson loop. In what follows, target-

space indices are denoted by m,n, . . ., world-sheet indices are a, b, . . ., while the directions

orthogonal to the string are represented by i, j, . . .. All corresponding tangent space indices

are underlined.

4.1 Type IIA strings on AdS4 × CP3

In the bosonic sector, the string dynamics is dictated by the Nambu-Goto (NG) action

SNG =
1

2πα′

∫
d2σ
√
−g , (4.1)

where gab is the induced metric on the world sheet and g = det gab. Our first goal in this

section is to consider perturbations xm → xm + εym, ε � 1, around any given classical

embedding and find the quadratic action that governs them. To this purpose, let us choose

convenient vielbeins for the AdS4 ×CP3 metric that are properly adapted to the study of

fluctuations. Using the local SO(9, 1) symmetry, we can always pick a frame Em = (Ea, Ei)

such that the pullback of Ea onto the world-sheet forms a vielbein for the induced metric,

while the pullback of Ei vanishes. Of course, these are nothing but the 1-forms dual to

the tanget and normal vectors fields, respectively. The Lorentz symmetry is consequently

broken to SO(1, 1)× SO(8). Having made this choice we may define the fields

χm ≡ Emmym , (4.2)

– 8 –
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and gauge fix the diffeomorphism invariance by freezing the tangent fluctuations, namely,

by requiring

χa = 0 . (4.3)

The physical degrees of freedom are then parameterized by the normal directions χi. In

this gauge the variation of the induced metric is

ε−1δgab = −2Hiabχ
i +∇aχi∇bχjδij +

(
H

c
ia Hjbc −Rminj∂axm∂bxn

)
χiχj , (4.4)

where H
i
ab is the extrinsic curvature of the embedding and

∇aχi = ∂aχ
i +Aijaχj (4.5)

is the world-sheet covariant derivative, which includes the SO(8) normal bundle connection

Aija. These objects, as well as the world-sheet spin connection wab, are related to the

pullback of the target-space spin connection Ωmn by

wab = P [Ωab] , H
i
ab = P [Ω

i
a]ae

a
b , Aij = P [Ωij ] , (4.6)

where e
a
a = P [Ea]a is the induced geometry vielbein. Using the well-known expansion of

the square root of a determinant, a short calculation shows that, to quadratic order, the

NG action becomes

S
(2)
NG =

1

4πα′

∫
dτdσ

√
−g
(
gab∇aχi∇bχjδij −

(
gabH

c
ia Hjbc + δabRaibj

)
χiχj

)
, (4.7)

where we have used the equations of motion gabH
i
ab = 0 and written gabRminj∂ax

m∂bx
n =

δabRaibj . The continuation of this expression to Euclidean signature is straightforward.

Let us now discuss the fermionic degrees of freedom. In Lorentzian signature, the type

IIA string involves a single 10-dimensional Majorana spinor θ. At quadratic order, the

Green-Schwarz (GS) action that controls its dynamics on AdS4 × CP3 is given by

SGS =
i

4πα′

∫
d2σ
√
−g θ

(
gab − εab√

−g
Γ11

)
ΓaDbθ , (4.8)

where the symbol εab is a density with ετσ = 1, Γa = Γm∂ax
m is the pullback of the 10-

dimensional Dirac matrices and Γ11 ≡ Γ0123456789. Also, Da = ∂ax
mDm is the pullback

of the spacetime covariant derivative appearing in the supersymmetry variation of the

gravitino, which includes the contribution from the RR fluxes. Explicitly,

Da = ∂ax
m∇m +

1

8
eΦ
[
/F (2)Γ11 + /F (4)

]
Γa . (4.9)

The above action can be simplified considerably. Indeed, given our choice of vielbein

we have

Da = ∇a −
1

2
H
i a
a Γai +

1

8
eΦ
[
/F (2)Γ11 + /F (4)

]
Γa , (4.10)

where the world-sheet covariant derivative ∇a includes the normal bundle connection Aija,
that is,

∇a = ∂a +
1

4
w
ab
aΓab +

1

4
AijaΓij . (4.11)
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Using the relation εabΓa =
√
−g Γ01Γb, it is easy to see that the terms proportional to the

extrinsic curvature drop out from the action because of the equations of motion H
i
abΓ

aΓb =

H
i
abg

ab = 0. Then,

SGS =
i

4πα′

∫
dτdσ

√
−g θ

(
1− Γ01Γ11

)
Γa
(
∇a +

1

8
eΦ
[
/F (2)Γ11 + /F (4)

]
Γa

)
θ . (4.12)

Now, in addition to diffeomorphism invariance and local Lorentz rotations, the full string

action enjoys the local κ-symmetry

δκθ =
1

2

(
1 + Γ01Γ11

)
κ , δκx

m =
i

2
θΓmδκθ . (4.13)

It is then possible to gauge fix to

1

2

(
1− Γ01Γ11

)
θ = θ ⇔ 1

2
θ
(
1− Γ01Γ11

)
= θ , (4.14)

resulting in

SGS =
i

2πα′

∫
dτdσ

√
−g θ Γa

(
∇a +

1

8
eΦ
[
−/F (2)Γ01 + /F (4)

]
Γa

)
θ . (4.15)

Finally, we will need the Euclidean continuation of the action:

SGS =
1

2πα′

∫
dτdσ

√
g θ Γa

(
∇a +

1

8
eΦ
(
i /F (2)Γ01 + /F (4)

)
Γa

)
θ . (4.16)

The κ-symmetry fixing becomes iΓ01Γ11θ = θ where now Γ11 ≡ −iΓ0123456789. We will take

this expression as our starting point; all quantities involved are intrinsically Euclidean,

including the fluxes and Dirac matrices.

4.2 Bosonic fluctuations

Putting everything together we find that the action that governs the bosonic fluctuations is

S(2,3) =
L2

πα′

∫
dτdσ

√
g

(
gab
(
∂aχ

23
)∗
∂bχ

23 +
2 sinh2 ρ
√
g

∣∣χ23
∣∣2) , χ23 =

1√
2

(
χ2 + iχ3

)
,

(4.17)

S(4,5) =
L2

πα′

∫
dτdσ

√
g

(
gab
(
DAa χ

45
)∗
DAb χ

45 − 2m2

√
g

∣∣χ45
∣∣2) , χ45 =

1√
2

(
χ4 + iχ5

)
,

(4.18)

S(6,7) =
L2

πα′

∫
dτdσ

√
g

(
gab
(
DBa χ

67
)∗
DBb χ

67 − sin2 ϑ1

2
√
g

∣∣χ67
∣∣2) , χ67 =

1√
2

(
χ6 + iχ7

)
,

(4.19)

S(8,9) =
L2

πα′

∫
dτdσ

√
g

(
gab
(
DBa χ

89
)∗
DBb χ

89 − sin2 ϑ1

2
√
g

∣∣χ89
∣∣2) , χ89 =

1√
2

(
χ8 + iχ9

)
,

(4.20)

– 10 –



J
H
E
P
0
8
(
2
0
1
8
)
0
4
4

where

m =
sinh ρ sinϑ1(ρ)

cosh ρ− cosϑ1(ρ)
, (4.21)

and the U(1) covariant derivatives read

DA = d+ iA , DB = d+ iB , (4.22)

with

A ≡ A45 =

(
1− cosh ρ cosϑ1(ρ) + 1

cosh ρ+ cosϑ1(ρ)

)
dτ, (4.23)

B ≡ A67 = A89 =
1

2
(cosϑ1(ρ)− 1) dτ.

We have factored out the radius L from the metric and the fluctuations. Notice that the

U(1) × U(1) × SU(2) × U(1) symmetry structure is evident, with χ67 and χ89 forming a

doublet.

4.3 Fermionic fluctuations

For the case at hand, the fermionic action reads

SGS =
L2

πα′

∫
dτdσ

√
g θ (Γa∇a +M) θ , (4.24)

where

∇τ = ∂τ +
1

2
Γ01w +

1

2
Γ45A+

1

2

(
Γ67 + Γ89

)
B , (4.25)

∇σ = ∂σ , (4.26)

M =
iΓ01

4A

((
3Γ23 − Γ45

) (
sinh2 ρ− sin2 ϑ1(ρ) Γ0145

)
+
(
Γ67 + Γ89

)
A
)
. (4.27)

HereA and B are the connections defined above in equation (4.23), A is the conformal factor

of the induced worldsheet metric defined in (3.8) and w the worldsheet spin connection given

by (B.18).

As for the bosons we have extracted the radius L from the metric and rescaled the

fermionic fields by L1/2. The symmetry of the action under the U(1)×U(1)×SU(2)×U(1)

bosonic subgroup follows from the fact that all the objects involved commute with the

preserved generators (3.22).

4.4 One-loop effective action

The induced world-sheet geometry is that of the 2d Euclidean manifoldM with the metric1

ds2
M = M(ρ)

(
dρ2 + sinh2 ρ dτ2

)
,

M(ρ) = 1 +
sin2 θ(ρ)

sinh2 ρ
, sin θ(ρ) =

sinh ρ sin θ0

cosh ρ+ cos θ0

(4.28)

where 0 ≤ θ0 ≤ π
2 is the latitude angle. θ0 = 0 corresponds to the 1

2 - BPS solution.

1To simplify the notation, in the following sections we renamed θ(ρ) ≡ ϑ1(ρ).
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The difference in 1-loop effective actions of 1
6 -BPS string withrespect to the 1

2 -BPS is

e−∆Γ1-loop
effective(θ0) =


(

detO4+(θ0)
detO4+(0)

)2(
detO4−(θ0)
detO4−(0)

)2(
detO5+(θ0)
detO5+(0)

)(
detO5−(θ0)
detO5−(0)

)(
detO6+(θ0)
detO6+(0)

)(
detO6−(θ0)
detO6−(0)

)
(

detO1(θ0)
detO1(0)

)2(
detO2+(θ0)
detO2+(0)

)(
detO2−(θ0)
detO2−(0)

)(
detO3+(θ0)
detO3+(0)

)2(
detO3−(θ0)
detO3−(0)

)2


1
2

(4.29)

where the bosonic spectrum of operators is

O1(θ0) = M−1
(
− gµν ∇µ∇ν + 2

)
,

O2±(θ0) = M−1
(
− gµν Da

µ D
a
ν + V2

)
, Da

µ = ∇µ ± ιAµ, (4.30)

O3±(θ0) = M−1
(
− gµν Db

µ D
b
ν + V3

)
, Db

µ = ∇µ ± ι Bµ.

Effective 2d fermionic operators Oi± (i = 4, 5, 6) are obtained by a judicious choice of the

10d Gamma matrices (see (D.2)). Calling α, β, γ the eigenvalues of Γ45,Γ67,Γ89 respec-

tively, the 10d operator appearing in (4.24) take a block diagonal form with entries

Oα,β,γ(θ0) = M−
1
2

(
− ι
(
/D +

1

4
/∂ lnM

)
− ι Γ01

(
m+ V

)
+ αW

)
, (4.31)

The operators in (4.29) are defined as:

O4,α ≡ Oα,β,−β , O5,α ≡ Oα,α,α, O6,α ≡ Oα,−α,−α . (4.32)

Explicitly we have Aρ = Bρ = 0, Aτ = A(ρ), Bτ = B(ρ) with gµν and ∇µ evaluated for the

AdS2 metric,

Dµ = ∇µ + ι
α

2
Aµ + ι

β + γ

2
Bµ, (4.33)

and

A(ρ) = 1− 1 + cosh ρ cos θ(ρ)

cosh ρ+ cos θ(ρ)
, B(ρ) =

1

2

(
cos θ(ρ)− 1

)
, (4.34)

V2(ρ) = −∂ρA(ρ)

sinh ρ
, V3(ρ) = −∂ρB(ρ)

sinh ρ
, (4.35)

V (ρ) =
(1− 3 β γ)

4

1√
M(ρ)

− α(β + γ)

4

√
M(ρ)−m, (4.36)

W (ρ) =
1− 3 β γ

4

sin2 θ(ρ)√
M(ρ) sinh2 ρ

. (4.37)

Here m corresponds to the value of potential, V , at ρ =∞.

m =
(1− 3 β γ)

4
− α(β + γ)

4
(4.38)

For completeness we quote that

cos θ(ρ) =
1 + cosh ρ cos θ0

cosh ρ+ cos θ0
. (4.39)

It is important to mention that the O6,α operators give rise to asymptotically massless

fermions.
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5 One-loop effective action: perturbative heat kernel

We now proceed to evaluate fluctuations determinant using the heat kernel techniques. To

evaluate the determinants we will exploit the fact that heat kernel techniques for AdS2

are well-developed [7, 32, 33]. More precisely, we will use perturbation theory valid in the

limit when the induced world-sheet geometry can be considered as a small deformation

of AdS2 govern by the deformation parameter θ0. This approach has been successfully

applied the holographic perturbative computation of a ratio of Wilson loops expectation

values [10]. Namely, we will expand around the parameter α = θ2
0, where the near AdS2

geometry corresponds to the latitude in S2 ⊂ S5 parametrized by angle θ0. For θ0 = 0,

the worldsheet metric reduces to AdS2. Under the conditions clarified below we will be

able to determine the first leading order correction to the string partition function by the

perturbative expansion of the heat kernels.

LetM be a d dimensional smooth compact Riemannian manifold with metric gij and

O be a second order elliptic operator of the Laplace type. Then, we can define the logarithm

of the determinant using ζ-function regularization as,

log DetM O = −ζ ′O(0), (5.1)

The ζ function is related to the integrated heat kernel by the Mellin transform,

ζO(s) =
1

Γ(s)

∫ ∞
0

dt ts−1KO(t), KO(t) =

∫
ddx
√
g trKO(x, x; t), (5.2)

where by construction, KO(x, x′; t) satisfies the heat conduction equation

(∂t +Ox)KO(x, x′; t) = 0, (5.3)

with the initial condition

KO(x, x′; 0) =
1
√
g
δ(d)

(
x− x′

)
I. (5.4)

Let us now assume that the manifold M can be viewed as a deformation of another

manifold M̄. Namely, for α = 0 we have M̄ with metric ḡij ; we further assume that in

this limit the spectral problem can be solved exactly and seek to construct the solution for

M. We can expand KO and subsequently DetMO in perturbation theory in α:

gij = ḡij + α g̃ij +O
(
α2
)
,

O = Ō + α Õ +O
(
α2
)
,

KO(x, x′; t) = K̄O(x, x′; t) + α K̃O(x, x′; t) +O
(
α2
)
,

(5.5)

such that K̄O(x, x′; t) satisfies (5.3) and (5.4).

It can be shown [10], that K̃O(x, x′; t) can be solved from(
∂t + Ōx

)
K̃O(x, x′; t) + Õx K̄O(x, x′; t) = 0, (5.6)
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with the initial condition

K̃O(x, x′; t) = − g̃

2 ḡ3/2
δ(d) (x− x′) I. (5.7)

The trace of heat kernel can be written as;

K̃O(t) = −t
∫
ddx
√
ḡ tr
[
Õx K̄O(x, x′; t)

]
x=x′

. (5.8)

In perturbation theory, the ζ-function and the determinant takes the form

log DetMO = −ζ̄ ′O(0) +−α ζ̃ ′O(0) +O
(
α2
)
, (5.9)

ζ̃
′
O(s) =

1

Γ(s)

∫ ∞
0

dt ts−1K̃O(t). (5.10)

In our context, the string partition function corresponding to the Wilson loop in the

gauge theory is given by

Z = 〈W (λ, α)〉 ≡ e−Γ, Γ =
√
λ Γ(0)(α) + Γ(1)(α) +O

(
λ−1/2

)
(5.11)

where Γ(0)(α) is the classical piece and object of current interest is Γ(1)(α), which corre-

sponds to the one-loop corrections to the string action. In particular, we are interested in

evaluating Γ̃(1)(0).

5.1 Circular Wilson loop

In the limit θ0 = 0, or σ0 =∞, the operators take the following form;

Bosons: Ō1 = −∆ρ,τ + 2, Ō2± = Ō3± = −∆ρ,τ

Fermions: Ōα,β,γ = −ι /∇ρ,τ + ι m σ3

(5.12)

where 4 m = α+ β + γ − 3 α β γ with α, β, γ = ±1 as follows from the spinor reduction

described in appendix D.

The integrated AdS2 heat kernel and ζ-function for the massive Laplace operator

−∆ +m2 is known to be,

K̄−∆+m2(t) =
VAdS2

2 π

∫ ∞
0

dv v tanh(πv) e−t (v2+m2+ 1
4

) (5.13)

ζ̄−∆+m2(s) =
VAdS2

π

[
(m2 + 1

4)1−s

2 (s− 1)
− 2

∫ ∞
0

dv
v

(e2πv + 1) (v2 +m2 + 1
4)s

]
. (5.14)

The regularized determinants for θ0 = 0 bosonic operators becomes

ζ̄
′
O1

(0) = −25

12
+

3

2
log 2π − 2 logA, (5.15)

ζ̄
′
O2±(0) = ζ̄

′
O3±(0) = − 1

12
+

1

2
log 2π − 2 logA, (5.16)
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where A is the Glaisher constant. The spectrum of the bosonic fluctuations correspond to

2 massive scalars (m2 = 2) and 6 massless scalars.

Γ̄
(1)
B (0) = −2

2
ζ̄
′
O1

(0)− 6

2
ζ̄
′
O2±,3±(0)

=
7

3
− 3 log 2π + 8 logA

(5.17)

The standard expression for the AdS2 heat kernel corresponding to the square of the

massive Dirac operator − /∇+m Γ3 is,

K̄− /∇2
+m2(t) =

VAdS2

π

∫ ∞
0

dv v coth(πv) e−t (v2+m2) (5.18)

and the ζ-function is given by

ζ̄− /∇2
+m2(s) =

VAdS2

π

[
(m2)1−s

2 (s− 1)
+ 2

∫ ∞
0

dv
v

(e2πv − 1) (v2 +m2)s

]
. (5.19)

In the present case, the fermionic excitations involve 2 modes with m2 = 0 and 6

modes with m2 = 1. Then,

ζ̄ ′m2=0(0) =
1

3
− 4 logA (5.20)

ζ̄ ′m2=1(0) = −5

3
− 4 logA + 2 log 2π (5.21)

The final contribution from fermions results,

Γ̄
(1)
F (0) = −2

2
ζ̄ ′m2=0(0)− 6

2
ζ̄ ′m2=1(0)

= 2

(
7

3
+ 8 logA− 3 log 2π

)
.

(5.22)

Thus, the one-loop correction in the circular Wilson loop case becomes

Γ̄(1)(0) = Γ̄
(1)
B (0)− 1

2
Γ̄

(1)
F (0) = 0 (5.23)

This result certainly requires further scrutiny.2 Here we simply note that, as it stands, it

does not agree with the field theory prediction of (2.3) in the string theory limit given by

〈W
1
2
� 〉 =

eπ
√

2λ

8πλ
+O

(
λ−1/2

)
(5.24)

It also does not agree with a Gelfand-Yaglom based computation which further involved

numerical evaluation [31]. We leave a proper treatment of the expectation value of the

half BPS Wilson loop to a separate work. Here we are mostly concerned with the ratio of

expectation values.

2We acknowledge various discussions in the summer of 2015 with Jewel Ghosh regarding the heat kernel

approach to the one-loop effective action of the half BPS configuration.
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5.2 Difference of one-loop effective actions

The perturbative expansion of the relevant operators here,

Oi(θ0) = Ōi + Õi θ2
0 +O

(
θ4

0

)
, i = 1, 2±, 3± (5.25)

Oα,β,γ(θ0) = Ōα,β,γ + Õα,β,γ θ2
0 +O

(
θ4

0

)
, (5.26)

O2
α,β,γ(θ0) = Ō2

α,β,γ + θ2
0 {Ōα,β,γ , Õα,β,γ}+O

(
θ4

0

)
. (5.27)

where {..} denotes the anticommutator of two differential operators.

In the expansion scheme of (5.5), the corresponding perturbative operator is

Õ1 =
1

(1 + cosh ρ)2

(
∆ρ,τ − 2

)
,

Õ2± =
1

(1 + cosh ρ)2

[
∆ρ,τ −

1

2

(
1± ι ∂τ

)]
Õ3± =

1

(1 + cosh ρ)2

[
∆ρ,τ −

sinh2 ρ

(1 + cosh ρ)2
(2± ι ∂τ )

]
,

(5.28)

for the bosonic second order operators. While, for the first order fermionic operator,

we have,

Õα,β,γ(θ0) =
1

2 (1 + cosh ρ)2

[
ι /∇+

sinh ρ

1 + cosh ρ

(
ιΓ0
)

+ Γ1

(
α (1− cosh ρ)2

2
− β + γ

4
sinh2 ρ

)
−(−1 + 3 β γ)

2

(
ιΓ01

)
+
α(1− 3βγ)

2

]
. (5.29)

Bosons: substituting the Õ1 in (5.8), we get,

K̃O1(t) = −t
∫ 2π

0
dτ

∫ Λ

0
dρ

sinh ρ

(1 + cosh ρ)2

[(
∆ρ,τ−2

)
K̄−∆+2 (ρ, τ, ρ′, τ ′; t)

]
ρ=ρ′,τ=τ ′

(5.30)

We know that K̄ satisfies, the following equation,

(∂t −∆ρ,τ + 2) K̄O1 (ρ, τ, ρ′, τ ′; t) = 0 (5.31)

Thus, plugging it back in (5.30), we obtain

K̃O1(t) = −t
∫ 2π

0
dτ

∫ Λ

0
dρ

sinh ρ

(1 + cosh ρ)2
∂t K̄O1 (ρ, τ, ρ, τ ; t) (5.32)

Now we can take the limit Λ→∞ and using the integral representation of heat kernel K̄

K̃O1(t) =
t

2

∫ ∞
0

dv v tanh(π v)

(
v2 +

9

4

)
e−t
(
v2+9/4

)
(5.33)

Using tanh(π v) = 1− 2/(e2πv + 1) and we can write the corresponding ζ-function as,

ζ̃O1(s) =

∫ ∞
0

dv
s v

2 (v2 + 9/4)s
−
∫ ∞

0
dv

s v

(e2πv + 1) (v2 + 9/4)s
(5.34)
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The first integral converges only for Re s > 1, we can first integrate over v and then

analytically continue to all values of s

ζ̃O1(s) =
s

4 (s− 1)

(
9

4

)1−s
− s

∫ ∞
0

dv
v

(e2πv + 1) (v2 + 9/4)s
. (5.35)

The final result is

ζ̃
′
O1

(0) = − 7

12
. (5.36)

In the case of O2±, we add the contribution from O2+ and O2− to get rid of the ∂τ term,

this substantially simplifies the calculation. Then,

K̃O2+(t) + K̃O2−(t) = t

∫ ∞
0

dv

[(
v2 +

5

4

)
v tanh(πv) e−t

(
v2+ 1

4

)]
, (5.37)

ζ̃O2+(s) + ζ̃O2−(s) = s

∫ ∞
0

dv v

(
v2 + 5

4

)(
v2 + 1

4

)1+s − 2 s

∫ ∞
0

dv
v

e2πv + 1

(
v2 + 5

4

)(
v2 + 1

4

)1+s .

(5.38)

So,

ζ̃
′
O2+

(0) + ζ̃
′
O2−(0) = −1

6
+ γ. (5.39)

Similarly, for the operator O3±, we get

K̃O3+(t) + K̃O3−(t) = t

∫ ∞
0

dv

[(
v2 +

3

4

)
v tanh(πv) e−t

(
v2+ 1

4

)]
. (5.40)

Then,

ζ̃O3+(s) + ζ̃O3−(s) =

∫ ∞
0

dv sv

(
v2 + 3

4

)(
v2 + 1

4

)1+s − 2 s

∫ ∞
0

dv
v

e2πv + 1

(
v2 + 3

4

)(
v2 + 1

4

)1+s , (5.41)

which gives

ζ̃
′
O3+

(0) + ζ̃
′
O3−(0) = −1

6
+
γ

2
, (5.42)

where γ is the Euler-Mascheroni constant.

The total contribution for bosonic operators is simply given by

Γ̃
(1)
B = −2

2
ζ̃
′
O1

(0)− 1

2
ζ̃
′
O2+

(0)− 1

2
ζ̃
′
O2−(0)− 2

2
ζ̃
′
O3+

(0)− 2

2
ζ̃
′
O3−(0)

=
5

6
− γ.

(5.43)

Fermions: an important computational ingredient in case of fermions is

{Ōα,β,γ , Õα,β,γ} = {Ō, Õ} =
1

(1 + cosh ρ)2
/∇2
ρ,τ −

m (1− 3βγ)

2(1 + cosh ρ)2

+
ιX(ρ)

sinh2 ρ(1 + cosh ρ)2
∂τ ,

(5.44)
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where

X(ρ) =
α (1− cosh ρ)2

2
− β + γ

4
sinh2 ρ. (5.45)

One can derive formal expressions which can be evaluated for the cases of interest, we skip

some intermediate steps that involve Mellin transform from the heat kernel to the zeta

function. In particular, we obtain

δζF (s) =
1

Γ(s)

∫ ∞
0

dtts−1δK(t) =

∫ ∞
0

dv
sv
(
v2 + 2m2 +mα(β+γ)

2

)
(v2 +m2)s+1

cothπv (5.46)

=

∫ ∞
0

dv
sv(v2 + 2m2)

(v2 +m2)s+1
+ 2

∫ ∞
0

dv
sv(v2 + 2m2 +mα(β+γ)

2 )

(v2 +m2)s+1(e2πv − 1)
(5.47)

=
m1−2s

(
m(−1 + 2s) + α(β+γ)

2 (s− 1)
)

2(s− 1)
+ 2

∫ ∞
0

dv
sv(v2 + 2m2)

(v2 +m2)s+1(e2πv − 1)
,

(5.48)

thus giving

δζ ′F (0) = −1

2
m(m+

(
m+

α(β + γ)

2
) lnm2

)
+ 2

∫ ∞
0

dv
v
(
v2 + 2m2 +mα(β+γ)

2

)
(v2 +m2)(e2πv − 1)

(5.49)

= −1

2
m(m+

(
m+

α(β + γ)

2
) lnm2

)
+ 2

∫ ∞
0

dv
v

(e2πv − 1)
(5.50)

+ 2m

(
m+

α(β + γ)

2

)∫ ∞
0

dv
v

(v2 +m2)(e2πv − 1)
(5.51)

= −1

2
m(m+

(
m+

α(β + γ)

2
) lnm2

)
+

1

12
+m

(
m+

α(β + γ)

2

)(
1

2
lnm2 − 1

2|m|
− ψ(|m|)

)
, (5.52)

where ψ(x) = d
dxΓ(x) is the digamma function.

In particular, for O6,α operators, which have m = 0, we obtain

δζ ′F (0) = − 5

12
. (5.53)

While operators O4,α having m = 1 lead to

δζ ′F (0) = −11

12
+ γ . (5.54)

Finally O5,α operators have m = −1 and give

δζ ′F (0) = − 5

12
. (5.55)

Adding the fermionic contributions leads to

δζtot
F (s) =

1

2

[
2×

(
− 5

12

)
+ 4×

(
−11

12
+ γ

)
+ 2×

(
− 5

12

)]
= −8

3
+ 2γ. (5.56)
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Since the total bosonic contribution (5.43) follows from

δζtot
B (s) = −5

3
+ 2γ, (5.57)

the total one-loop perturbative contribution results

δζtot
B (0)− δζtot

F (0) =

(
− 5

3
+ 2γ

)
−
(
− 8

3
+ 2γ

)
= 1. (5.58)

Finally,

∆Γ1-loop
effective(θ0) =

1

2
θ2

0, (5.59)

which agrees, at the given order, with the field theory prediction (cf. (2.6)).

6 One-loop effective action: zeta function regularization

In this section we follow our previous work [34, 35] where we developed a regularization

in the case of radial determinants that coincides with ζ-function regularization in various

cases. There are various reasons to tackle the problem using these methods. First, one

would obviously like to go beyond the small θ0 limit and obtain and expression that is

valid in the whole range of θ0. Second, by construction, our regularization is diffeomorphic

invariant and works directly on the disk; other approaches [8, 9, 11] rely on mapping the

problem from the disk to the cylinder. Although these latter methods have proven to be

quite effective it is conceptually satisfying to deal with the problem directly on the disk.

The main outcome of [34] is a prescription for computing ζ-function regularized deter-

minants of radial operators in asymptotically AdS2 spacetimes. The result for bosons is

ln
detO

detOfree
= ln

detO0

detOfree
0

+
∞∑
l=1

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l
ζ̂O(0)

)
− 2
(
γ + ln

µ

2

)
ζ̂O(0)

+

∫ ∞
0

dρ sinh ρ ln(sinh ρ) V − q2

∫ ∞
0

dρ
A2

sinh ρ
, (6.1)

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ V, (6.2)

whereas for fermions, it reads

ln
detO

detOfree
=

∞∑
l= 1

2

(
ln

detOl
detOfree

l

+ ln
detO−l
detOfree

−l
+

2

l + 1
2

ζ̂O(0)

)
− 2

(
γ + ln

µ

2

)
ζ̂O(0)

+

∫ ∞
0

dρ sinh ρ ln(sinh ρ)
(
(m+ V )2 −W 2 −m2

)
−q2

∫ ∞
0

dρ
A2

sinh ρ
−
∫ ∞

0
dρ sinh ρ W 2, (6.3)

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ
(
(m+ V )2 −W 2 −m2

)
, (6.4)
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6.1 Bosons

We now proceed to apply the prescription above to the different bosonic operators.

6.1.1 O1(θ0)

The action for these fluctuations is

O1(θ0) = M−1
(
− gµν ∇µ∇ν + 2

)
(6.5)

We see that the rescaled operator does not depend on θ0, meaning that these fluctuations

contribute only with an anomaly [35],

ln

(
detO1(θ0)

detO1(0)

)
= θ0 sin θ0 +

1

2
sin2 θ0

2
+

(
7

3
+ 2 cos θ0

)
ln cos

θ0

2

=
7

12
θ2

0 +O
(
θ4

0

) (6.6)

6.1.2 O2±(θ0)

For these charged fluctuations, we have,

ln

(
detOAdS2(θ0)

detOAdS2(0)

)
= ln

ψ0(θ0)

ψ0(0)
+

∞∑
l=1

(
ln
ψl(θ0)

ψl(0)
+ ln

ψ−l(θ0)

ψ−l(0)
− D

l

)
+ F +Dγ , (6.7)

where

D ≡
∫ ∞

0
dρ sinh ρ VAdS2(ρ) (6.8)

F ≡
∫ ∞

0
dρ

(
sinh ρ VAdS2(ρ) ln

(
sinh ρ

2

)
− A(ρ)2

sinh ρ

)
, (6.9)

Explicitly, the relevant operator in AdS2 is

OAdS2 = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l −A(ρ))2

sinh2 ρ
+ VAdS2 , (6.10)

where the gauge field and the potential read

A(ρ) = − (cosh ρ− 1)2 (1− cos θ0)

cosh2 ρ+ 2 cosh ρ cos θ0 + 1
, VAdS2(ρ) =

∂ρA(ρ)

sinh ρ
. (6.11)

Notice that we can write this as

A(ρ) = sinh ρ ∂ρW (ρ) , W (ρ) =
1

2
ln

(
(cosh ρ+ 1)2

cosh2 ρ+ 2 cosh ρ cos θ0 + 1

)
. (6.12)

This fact allows us to write the solution to the equation of motion as

fl(ρ) = tanh−l
(ρ

2

)
eW (ρ)

(
A+B

∫
dρ

tanh2l
(ρ

2

)
e−2W (ρ)

sinh ρ

)
. (6.13)
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For the case at hand, the regular solution at ρ = 0 is

fl(ρ) =


2−(l+ 1

2 )
√

1 + cos θ0 tanh−l
(ρ

2

) cosh ρ+ 1√
cosh2 ρ+ 2 cosh ρ cos θ0 + 1

l < 0

2l+
1
2 tanhl

(
ρ
2

)
(l+2)

√
1+cos θ0

√
cosh2 ρ+2 cosh ρ cos θ0+1

cosh ρ+1

(
l+

(cosh ρ+ 1)
2
(1+cos θ0)

cosh2 ρ+2 cosh ρ cos θ0 + 1

)
l > 0

.

We then find

ψl(θ0) =



(
1 + cos θ0

2

) 1
2

l ≤ 0

(
1 + cos θ0

2

)− 1
2
(
l + 1 + cos θ0

l + 2

)
l ≥ 0

. (6.14)

Next, we compute the integrals

D ≡
∫ ∞

0
dρ sinh ρ VAdS2(ρ)

= −2 sin2 θ0

2
,

F ≡
∫ ∞

0
dρ

(
sinh ρ VAdS2(ρ) ln

(
sinh ρ

2

)
− A(ρ)2

sinh ρ

)
,

= −θ0

2
sin θ0 + (2 + cos θ0) ln cos

θ0

2
+ sin2 θ0

2
,

(6.15)

The anomaly contribution is given by

I ≡ 1

4π

∫
d2σ
√
g lnM

[
m2 + VAdS2 −

1

6
R+

1

12
∇2 lnM

]
=

1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2

∫
dρ sinh ρ lnM VAdS2

= −1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2
θ0 sin θ0 + 2 cos2 θ0

2
ln cos

θ0

2
.

(6.16)

Putting everything together we get

ln

(
detO2±(θ0)

detO2±(0)

)
= ln

ψ0(θ0)

ψ0(0)
+
∞∑
l=1

(
ln
ψl(θ0)

ψl(0)
+ ln

ψ−l(θ0)

ψ−l(0)
− D

l

)
+ F +Dγ + I

= ln cos
θ0

2
− ln Γ

(
2 cos2 θ0

2

)
− 2 ln cos

θ0

2
+ 2γ sin2 θ0

2

− θ0

2
sin θ0 + (2 + cos θ0) ln cos

θ0

2
+ sin2 θ0

2
− 2γ sin2 θ0

2

− 1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2
θ0 sin θ0 + 2 cos2 θ0

2
ln cos

θ0

2

= − ln Γ (cos θ0)− ln cos θ0 +

(
7

3
+ 2 cos θ0

)
ln cos

θ0

2
+

1

2
sin2 θ0

2
.

(6.17)

As before, the small θ0 expansion coincides with the results of [10] and (5.39)

ln

(
detO2±(θ0)

detO2±(0)

)
=

1

2

(
1

6
− γ
)
θ2

0 +O
(
θ4

0

)
. (6.18)
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6.1.3 O3±(θ0)

The relevant operator in AdS2 is now

OAdS2 = − 1

sinh ρ
∂ρ (sinh ρ ∂ρ) +

(l − B(ρ))2

sinh2 ρ
+ VAdS2 , (6.19)

where the gauge field and the potential read

B(ρ) =
1

2

(cosh ρ− 1) (1− cos θ0)

cosh ρ+ cos θ0
, VAdS2(ρ) = −∂ρB(ρ)

sinh ρ
. (6.20)

Notice that we can write this as

B(ρ) = sinh ρ ∂ρW (ρ) , W (ρ) =
1

2
ln

(
(cosh ρ− 1) (cosh ρ+ cos θ0)

sinh2 ρ

)
. (6.21)

This fact allows us to write the solution to the equation of motion as

fl(ρ) = tanhl
(ρ

2

)
e−W (ρ)

(
A+B

∫
dρ

tanh−2l
(ρ

2

)
e2W (ρ)

sinh ρ

)
. (6.22)

For the case at hand, the regular solution at ρ = 0 is

fl(ρ) =


2l cos

θ0

2
tanhl−

1
2

(ρ
2

)√ sinh ρ

cosh ρ+ cos θ0
l > 0

tanh−l+
1
2

(ρ
2

)
2l+1 (l − 1) cos θ02

√
cosh ρ+ cos θ0

sinh ρ

(
2l − (cosh ρ− 1) (1 + cos θ0)

cosh ρ+ cos θ0

)
l < 0

.

(6.23)

We then find

ψl(θ0) =



(
1 + cos θ0

2

) 1
2

l ≤ 0

(
1 + cos θ0

2

)− 1
2

(
l − 1+cos θ0

2

l − 1

)
l ≤ 0

. (6.24)

Next, we compute the integrals

D ≡
∫ ∞

0
dρ sinh ρ VAdS2(ρ) = − sin2 θ0

2
,

F ≡
∫ ∞

0
dρ

(
sinh ρ VAdS2(ρ) ln

(
sinh ρ

2

)
− A(ρ)2

sinh ρ

)
= 2 cos2 θ0

2
ln cos

θ0

2
+

1

2
sin2 θ0

2
,

I ≡ 1

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
+

1

2

∫
dρ sinh ρ lnM VAdS2

=
3

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
− 1

4
θ0 sin θ0 + sin2 θ0

2
ln cos

θ0

2
.

(6.25)
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Putting everything together we get

ln

(
detO3±(θ0)

detO3±(0)

)
= ln

ψ0(θ0)

ψ0(0)
+

∞∑
l=1

(
ln
ψl(θ0)

ψl(0)
+ ln

ψ−l(θ0)

ψ−l(0)
− D

l

)
+ F +Dγ + I

= ln cos
θ0

2
− ln Γ

(
cos2 θ0

2

)
− 2 ln cos

θ0

2
+ γ sin2 θ0

2

+ 2 cos2 θ0

2
ln cos

θ0

2
+

1

2
sin2 θ0

2
− γ sin2 θ0

2

+
3

2
sin2 θ0

2
+

1

3
ln cos

θ0

2
− 1

4
θ0 sin θ0 + sin2 θ0

2
ln cos

θ0

2

= − ln Γ

(
cos2 θ0

2

)
+

1

2

(
5

3
+ cos θ0

)
ln cos

θ0

2
− 1

4
θ0 sin θ0 + 2 sin2 θ0

2
.

(6.26)

The small θ0 expansion is

ln

(
detO3±(θ0)

detO3±(0)

)
=

1

2

(
1

6
− γ

2

)
θ2

0 +O
(
θ4

0

)
, (6.27)

which coincides with the perturbative heat kernel approach (5.42).

Summary: the total bosonic contribution is,

1

2

[
2 ln

(
detO1(θ0)

detO1(0)

)
+ 2 ln

(
detO2±(θ0)

detO2±(0)

)
+ 4 ln

(
detO3±(θ0)

detO3±(0)

)]
=

=
θ0

2
sin θ0 + 5 sin2 θ0

2
+

(
19

3
+ 5 cos θ0

)
ln cos

θ0

2

− 2 ln Γ

(
cos2 θ0

2

)
− ln

(
Γ(cos θ0)

)
− ln

(
cos θ0

)
=

(
5

6
− γ
)
θ2

0 +O(θ4
0)

(6.28)

which matches the perturbative heat kernel calculation (5.43).

6.2 Fermions

The effective 2d fermions operators (4.31) involve gauge couplings to the normal bundle

(see (4.33)). Three different operators (4.32) appear in the computation of the 1-loop

effective action.

6.2.1 O4±(θ0)

This case corresponds to vanishing coupling to the Bµ gauge field. Then, the following

quantities simplifies to:

Dµ = ∇µ + ι
α

2
Aµ, V (ρ) =

1√
M(ρ)

− 1, W (ρ) =
sin2 θ(ρ)√
M(ρ) sinh2 ρ

. (6.29)
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Take Γ0 = σ1, Γ1 = σ2, and consider operators of the form,

Oα(θ0) = −ι /D + V1 (6.30)

where

V1 = −∂ρM
4M

ισ1 +
1√
M

(
σ3 + α

sin2 θ(ρ)

sinh2 ρ

)
. (6.31)

Using circular symmetry, we expand into Fourier components. Explicitly,

ιOl =

 ι√
M

(
1 + α sin2 θ(ρ)

sinh2 ρ

)
∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

αA
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + αA
2 sinh ρ

ι√
M

(
− 1 + α sin2 θ(ρ)

sinh2 ρ

)  (6.32)

The relevant integrals in (6.3)–(6.4) give

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ
(
(m+ V )2 −m2 −W 2

)
= sin2 θ0

2
(6.33)∫ ∞

0
dρ sinh ρ ln

(
sinh ρ

2

)(
(m+ V )2 −m2 −W 2

)
= v2 cos θ0 ln cos

θ0

2
(6.34)∫ ∞

0
dρ sinh ρ W 2 = −1

2
θ0 sin θ0 + 2 sin2 θ0

2
(6.35)∫ ∞

0
dρ
A2

sinh ρ
= − sin2 θ0

2
− 2 log cos

θ0

2
(6.36)∫ ∞

0
dρ
B2

sinh ρ
= −1

2
sin2 θ0

2
− log cos

θ0

2
(6.37)

The Weyl anomaly contribution results,

1

4π

∫
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

1

4π

∫
d2σ
√
g lnM

[
2−M +

1

12
R− 1

24
∇2 lnM

]
=

7

4
sin2 θ0

2
+

11

6
ln cos

θ0

2

(6.38)

For α = 1 we obtain

ln

(
detO4+(θ0)

detO4+(0)

)
=
θ0

2
sin θ0 +

(
7

3
+ 2 cos θ0

)
ln cos

θ0

2
− ln Γ(cos θ0)− ln cos θ0 (6.39)

6.2.2 O5±(θ0)

In this case,

Dµ = ∇µ+ια

(
Aµ
2

+Bµ
)
, V (ρ) = − 1

2
√
M
−1

2

√
M+1, W (ρ) = −1

2

sin2 θ(ρ)√
M sinh2 ρ

. (6.40)

Using circular symmetry, we can expand the operator into Fourier components. Let

ψl(ρ) =

[
ul(ρ)

vl(ρ)

]
(6.41)
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with l ∈ Z + 1
2 . The radial problem becomes, Olψl = 0, where

Ol = −ισ1

(
∂ρ +

1

2
coth ρ+

1

4
∂ρ lnM

)
− 1

sinh ρ
σ2

(
l +

α

2
A+ αB

)
+ σ3(−1 + V ) + αW.

(6.42)

Explicitly,

ιOαl =

 ι
2
√
M

(
− 1−M − α sin2 θ(ρ)

sinh2 ρ

)
∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

α (A+2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + α (A+2 B)
2 sinh ρ

ι
2
√
M

(
1 +M − α sin2 θ(ρ)

sinh2 ρ

)
.


(6.43)

For α = 1, the operator reduces to

ιOl =

(
−ι
√
M ∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

(A+2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + (A+2 B)
2 sinh ρ

ι√
M

)
(6.44)

and the system of equations become,(
∂ρ +

coth ρ

2
+
∂ρM

4M
− l

sinh ρ
− (A+ 2 B)

2 sinh ρ

)
vl(ρ)− ι

√
M ul(ρ) = 0, (6.45)(

∂ρ +
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A+ 2 B)

2 sinh ρ

)
ul(ρ) + ι

1√
M

vl(ρ) = 0. (6.46)

Introducing

D± ≡ ∂ρ +
coth ρ

2
+
∂ρM

4M
±
(

l

sinh ρ
+

(A+ 2 B)

2 sinh ρ

)
, (6.47)

we start solving the second order equation for vl(ρ). It takes the form,

√
M D+

(
1√
M

D−vl

)
− vl = 0, (6.48)

which we rewrite as,

− 1

sinh ρ
∂ρ
(

sinh ρ ∂ρ vl(ρ)
)

+
(l + X )2

sinh2 ρ
vl(ρ)− ∂ρX

sinh ρ
vl(ρ) = 0, (6.49)

with

X = sinh ρ

(
− coth ρ

2
− ∂ρM

4M

)
+
A+ 2B

2
. (6.50)

The solution is

vl(ρ) =

(
tanh

ρ

2

)−l+ 1
2

e−W(ρ)

(
C1 + C2

∫
dρ

(
tanh

ρ

2

)2l−1 e2W(ρ)

sinh ρ

)
,

∂ρW(ρ) =
X (ρ) + 1

2

sinh ρ
.

(6.51)

As before, we fix constants C1 and C2 by demanding regularity at the origin (ρ = 0). For

l ≥ 1/2, we find

v+
l (ρ) = C2

(2l + cosh ρ)

(4l2 − 1) sinh ρ
2

(
tanh

ρ

2

)l+ 1
2

(6.52)
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which gives

u+
l (ρ) = −C2

2ι sinh ρ
2 (cos θ0 + cosh ρ)

(4l2 − 1)
√

1 + cosh2 ρ+ 2 cos θ0 cosh ρ

(
tanh

ρ

2

)l− 1
2

. (6.53)

For l ≤ −1/2,

v−l (ρ) = C1 cosh
ρ

2

(
tanh

ρ

2

)−l+ 1
2

(6.54)

and

u−l (ρ) = C1
ι (2l − cosh ρ) (cos θ0 + cosh ρ)

2 cosh ρ
2

√
1 + cosh2 ρ+ 2 cos θ0 cosh ρ

(
tanh

ρ

2

)−l− 1
2

(6.55)

The relevant formulas in this case, corresponding to m = −1, are(
(m+ V )2 −m2 −W 2

)
= 0 (6.56)

ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ
(
(m+ V )2 −m2 −W 2

)
= 0 (6.57)

and ∫ ∞
0

dρ sinh ρ ln

(
sinh ρ

2

) (
(m+ V )2 −m2 −W 2

)
= 0 (6.58)

together with ∫ ∞
0

dρ sinh ρ W 2 = −1

8
θ0 sin θ0 +

1

2
sin2 θ0

2
(6.59)

The Weyl anomaly contribution in this case results,

1

4π

∫
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

1

4π

∫
d2σ
√
g lnM

[
1 +

1

12
R− 1

24
∇2 lnM

]
=
θ0

2
sin θ0 + 2 cos2 θ

2
log cos

θ0

2
− 1

4
sin2 θ0

2
− 1

6
log cos

θ0

2

(6.60)

6.2.3 O6±(θ0)

In this case,

Dµ = ∇µ+ια

(
Aµ
2
−Bµ

)
, V (ρ) = − 1

2
√
M

+
1

2

√
M, W (ρ) = −1

2

sin2 θ(ρ)√
M sinh2 ρ

. (6.61)

Consider an operator of form,

Oα(θ0) = −ι /D + V, (6.62)

where

V = −∂ρM
4M

ισ1 +
1

2
√
M

((
− 1 +M

)
σ3 − α

sin2 θ(ρ)

sinh2 ρ

)
. (6.63)

Using circular symmetry, we can expand this into Fourier components. Explicitly,

ιOαl =

 ι
2
√
M

(
− 1 +M − α sin2 θ(ρ)

sinh2 ρ

)
∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

α (A−2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + α (A−2 B)
2 sinh ρ

ι
2
√
M

(
1−M − α sin2 θ(ρ)

sinh2 ρ

) 
(6.64)
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For α = 1, the system of equations decouples,

ιOl =

(
0 ∂ρ + coth ρ

2 +
∂ρM
4M −

l
sinh ρ −

(A−2 B)
2 sinh ρ

∂ρ + coth ρ
2 +

∂ρM
4M + l

sinh ρ + (A−2 B)
2 sinh ρ

ι (1−M)√
M

)
.

(6.65)

Taking

ψl(ρ) =

[
ul(ρ)

vl(ρ)

]
, (6.66)

the equation then becomes:(
∂ρ +

coth ρ

2
+
∂ρM

4M
− l

sinh ρ
− (A− 2 B)

2 sinh ρ

)
vl(ρ) = 0, (6.67)(

∂ρ +
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A− 2 B)

2 sinh ρ

)
ul(ρ) + ι

1−M√
M

vl(ρ) = 0. (6.68)

Solving for vl(ρ) gives,

vl(ρ) = C1

(
sinh

ρ

2

)l− 1
2
(

cosh
ρ

2

)−l− 5
2 (

cos θ0 + cosh ρ
)
, (6.69)

where C1 is a constant. Using this solution, we can now solve equation for ul(ρ),

u
′
l(ρ) +

(
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A− 2 B)

2 sinh ρ

)
ul(ρ) + ι

1−M√
M

vl(ρ) = 0. (6.70)

The integrating factor for this equation is,

I(ρ) = Exp

[ ∫
dρ

(
coth ρ

2
+
∂ρM

4M
+

l

sinh ρ
+

(A− 2 B)

2 sinh ρ

)]
=

(
− ι sinh

ρ

2

)l+ 1
2
(

cosh
ρ

2

)−l− 3
2 √

3 + 4 cos θ0 cosh ρ+ cosh(2ρ).

(6.71)

Then, full solution takes the form,

ul(ρ) =
1

I(ρ)

[ ∫
dρ I(ρ)

(
− ι 1−M√

M
vl(ρ)

)
+ C2

]

=

[
C1

2
3
2

+l ι (2 + 2l + cosh ρ)
(

sinh ρ
2

) 1
2

+2l
sin2 θ0

(3 + 8l + 4l2)
(

cosh ρ
2

) 3
2
(

sinh ρ
)l√

3 + 4 cos θ0 cosh ρ+ cosh(2ρ)

+ C2

(
cosh ρ

2

) 3
2

+l (− ι sinh ρ
2

)− 1
2
−l

√
3 + 4 cos θ0 cosh ρ+ cosh 2ρ

]
.

(6.72)

Demanding the solution to be regular at the origin fixes C2 = 0 for l ≥ 1/2 and C1 = 0 for

l ≤ −1/2. For l ≤ −1/2,

u−l (ρ) = C2

(
cosh ρ

2

) 3
2

+l (− ι sinh ρ
2

)− 1
2
−l

√
3 + 4 cos θ0 cosh ρ+ cosh 2ρ

, (6.73)
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and for l ≥ 1/2,

u+
l (ρ) = C1

2
3
2

+l ι (2 + 2l + cosh ρ)
(

sinh ρ
2

) 1
2

+2l
sin2 θ0

(3 + 8l + 4l2)
(

cosh ρ
2

) 3
2
(

sinh ρ
)l√

3 + 4 cos θ0 cosh ρ+ cosh(2ρ)
, (6.74)

v+
l (ρ) = C1

(
sinh

ρ

2

)l− 1
2
(

cosh
ρ

2

)−l− 5
2 (

cos θ0 + cosh ρ
)
. (6.75)

The relevant formulas in the present case m = 0 case are,(
(m+ V )2 −m2 −W 2

)
= 0 ⇒ ζ̂O(0) = −1

2

∫ ∞
0

dρ sinh ρ
(
(m+ V )2 −m2 −W 2

)
= 0

(6.76)

⇒
∫ ∞

0
dρ sinh ρ ln

(
sinh ρ

2

) (
(m+ V )2 −m2 −W 2

)
= 0

(6.77)

together with ∫ ∞
0

dρ sinh ρ W 2 = −1

8
θ0 sin θ0 +

1

2
sin2 θ0

2
(6.78)

The Weyl anomaly contribution in this case follows from,

1

4π

∫
d2σ
√
g lnM

[
(m+ V )2 −W 2 +

1

12
R− 1

24
∇2 lnM

]
=

1

4π

∫
d2σ
√
g lnM

[
1

12
R− 1

24
∇2 lnM

]
= − 1

4
sin2 θ0

2
− 1

6
log cos

θ0

2

(6.79)

The total contribution from the O5± and O6± cases is

ln

(
detO

detOfree

)
= − 2

(
1

2

)2 ∫ ∞
0

dρ
(A+ 2B)2

sinh ρ
− 2

(
− 1

2

)2 ∫ ∞
0

dρ
(A+ 2B)2

sinh ρ

− 2

(
1

2

)2 ∫ ∞
0

dρ
(A− 2B)2

sinh ρ
− 2

(
− 1

2

)2 ∫ ∞
0

dρ
(A− 2B)2

sinh ρ

− 4

∫ ∞
0

dρ sinh ρW 2

= −
∫ ∞

0
dρ
A2

sinh ρ
− 4

∫ ∞
0

dρ
B2

sinh ρ
− 4

∫ ∞
0

dρ sinh ρW 2

(6.80)

Thus,

ln

(
detO

detOfree

)
=

1

2
θ0 sin θ0 + sin2 θ0

2
+ 6 log

(
cos

θ0

2

)
(6.81)

6.3 One-loop effective action

The total zeta-function at the origin is

ζ̂tot(0) = 2 ζ̂O1(0)+ ζ̂O2+(0)+ ζ̂O2−(0)+2 ζ̂O3+(0)+2 ζ̂O3−(0)−2ζ̂O+(0)−2ζ̂O−(0) (6.82)
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where O± are fermionic contributions arising from the O4±(θ0) operators. Adding up the

pieces we find

4
(
(1 + V )2 −W 2 − 1

)
− 2 V2 − 4 V3 = ∇2 lnM (6.83)

which vanishes when integrated,∫ ∞
0

dρ sinh ρ∇2 lnM = sinh ρ ∂ρ lnM |∞0 = 0, ζ̂tot(0) = 0. (6.84)

The contributions from gauge field are seen to vanish,

1× (1)2A2 + 1× (−1)2A2 + 2× (1)2B2 + 2× (−1)2B2 − 2×
(

1

2

)2

A2 − 2×
(
−1

2

)2

A2

− 1×
(

1

2

)2

× (A+ 2B)2 − 1×
(
−1

2

)2

(A+ 2B)2

− 1×
(

1

2

)2

(A− 2B)2 − 1×
(
−1

2

)2

(A− 2B)2

= 0

(6.85)

The contribution from W 2 term in the fermionic potentital is non-trivial

W 2 : − 4×
∫ ∞

0
dρ sinh ρ

(
sin2 θ(ρ)√
M sinh2 ρ

)2

− 4×
∫ ∞

0
dρ sinh ρ

(
− sin2 θ(ρ)

2
√
M sinh2 ρ

)2

=
5

2
θ0 sin θ0 − 10 sin2 θ0

2
(6.86)

The Weyl anomaly has different contributions, they are:

• Potential and mass terms

4
(
(1 + V )2 −W 2

)
+ 2× 1− 2× 2− 2× V2 − 4× V3 = −R+∇2 lnM (6.87)

• Curvature and conformal terms(
8×
(

1

12

)
−8×

(
−1

6

)
R+∇2 lnM

(
8×
(
− 1

24

)
−8×

(
1

12

))
= 2R−∇2 lnM. (6.88)

The contribution from the conformal factor cancels and the total contribution from Weyl

anomaly results siimply from the curvature term,

anomaly :
1

4π

∫
d2σ
√
gR lnM = −

(
θ0 sin θ0 + 4 cos2 θ0

2
ln cos

θ0

2

)
(6.89)

The contribution from ln (sinh ρ) integrals involve the same combination of potentials

as ζ̂tot(0), which when added to the Weyl anomaly gives,

anomaly + ln sinh ρ :

∫ ∞
0

dρ sinh ρ

(
1

2
R lnM + ln

(
sinh ρ

2

)
∇2 lnM

)
= −2 ln cos

θ0

2
.

(6.90)
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The final result for the 1-loop effective action results

∆Γ1-loop
effective(θ0) =

5

4
θ0 sin θ0 − 5 sin2 θ0

2
+ 2 ln cos

θ0

2
+ 2 ln Γ

(
cos2 θ0

2

)
− ln

(
Γ(cos θ0)

)
− ln

(
cos θ0

)
=

1

4
θ2

0 +O
(
θ4

0

) (6.91)

This result does not agree with the field theory expectation. Although our regular-

ization is diffeomorphic invariant there might be ambiguities that need to be understood

better. At the moment we can track the discrepancy between the two methods to an am-

biguity in the treatment of the m = 0 fermionic modes, we will return to this question

elsewhere. It seems that a more expeditious way to get at the exact answer might follow

the approach of [11, 36] who mapped the spectral problems from the disk to the cylinder

with the incorporation of an explicit diffeomorphic invariant cutoff; we hope to report on

such explorations in an upcoming publication.

7 Conclusions

In this manuscript we have discussed in detail the construction of the quadratic fluctuations

for the string configuration dual to the general latitude Wilson loop in ABJM theory. We

have paid particular attention to the various symmetries of the configurations and shown

how they serve as a guiding avatar in the structure of fluctuations. At the semiclassical

level the computation of the one-loop effective action is equivalent to the computation of

determinants. We employed two methods for computing such determinants. The perturba-

tive heat kernel method has lead to agreement with the expected field theory answer in the

limit of small latitude angle. The ζ-function regularization method is non-perturbative but

does not seem to lead to the expected field theory answer as it stands. We have previously

developed the ζ-function approach in [34] and applied it to the N = 4 context in [35] moti-

vated by the goal of constructing a regularization that is explicitly diffeomorphic invariant.

The key new ingredient in this work that introduces extra ambiguities with respect to our

earlier efforts is the fact that some of the modes correspond to massless fermions. The

situation is not completely satisfactory but sheds light on deficiencies and advantages of

the various methods used to tackle questions of precision holography with Wilson loops.

For example, some of the puzzles we face were confronted in the realm of N = 4 SYM and

paved the way leading to perfect matching with the field theory answer in [11]. There the

computations of the determinants was mapped from the disk to the cylinder. We hope to

revisit our computations using a similar approach.

One interesting property of the duality pair we discuss is that it admits two very

natural limits. Here we focused on the ‘t Hooft limit where λ = N/k is kept fixed as

N is taken very large. It would be interesting to explore the M-theory limit, where k

is kept fixed, beyond the leading order as well; some preliminary results were reported

in [30]. Exploring quantum corrections in this context might ultimately shed light on

various intricate quantum properties of M2 branes.
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It would also be interesting to explore similar issues for Wilson loops in higher dimen-

sional representations. Classical results were presented in [15, 16]; at the quantum level

some preliminary results have been presented in [37] for the gravity configurations and a

sub-leading analysis of the matrix model was presented in [38]. The prospects for precision

holography in this case are improved due to the fact that the corresponding quadratic

fluctuations live in the odd-dimensional world-volumes of the corresponding D2 and D6

branes [37]. Heat kernel techniques are considerably simplified in odd-dimensional spaces

since the contributions arise exclusively from zero or boundary modes.

Recently, in the case of N = 4 SYM, the expectation value of the 1
2 -BPS Wilson

loop has been computed on the gravity side by taking the ratio of two of the limits of the

latitude string [36]. We hope that a similar analysis in the case of ABJM Wilson loops will

shed light on various aspects of precision holography in IIA, our work provides most of the

required ingredients.
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A Conventions

Ten-dimensional target-space indices are denoted by m,n, . . ., two-dimensional world-sheet

indices are a, b, . . ., while the directions orthogonal to the string are represented by i, j, . . ..

All corresponding tangent space indices are underlined.

In Euclidean signature the Dirac matrices satisfy

Γ†m = Γm , Γ2
m = 1 , (A.1)

and the chirality matrix is

Γ11 ≡ −iΓ0123456789 , Γ†11 = Γ11 , Γ2
11 = 1 . (A.2)

The charge conjugation intertwiners C± are such that

C±ΓmC
−1
± = ±ΓTm , C±Γ11C

−1
± = −ΓT11 , CT± = ±C± . (A.3)

Majorana spinors are defined as

ψTC± = ψ† ⇔ ψ∗ = ±C±ψ . (A.4)
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In Lorentzian signature we have

Γ†m = Γ0ΓmΓ0 , Γ2
0 = −1 , Γ2

m 6=0 = 1 . (A.5)

and the chirality matrix reads

Γ11 ≡ Γ0123456789 , Γ†11 = Γ11 , Γ2
11 = 1 . (A.6)

B Geometric data

In this appendix we collect all the geometric formulae necessary to compute the spectrum

of excitations of the 1/6-BPS string.

We start by writing the target space fields. The Euclidean AdS4 (EAdS4) metric is

written as an H2 × S1 foliation,

ds2
EAdS4

= cosh2 u
(
sinh2 ρ dψ2 + dρ2

)
+ sinh2 u dφ2 + du2 , (B.1)

with u ≥ 0, ρ ≥ 0, ψ ∼ ψ + 2π and φ ∼ φ+ 2π. The metric on CP3 is taken to be

ds2
CP3 =

1

4

[
dα2 + cos2 α

2

(
dϑ2

1 + sin2 ϑ1 dϕ
2
1

)
+ sin2 α

2

(
dϑ2

2 + sin2 ϑ2 dϕ
2
2

)
+ cos2 α

2
sin2 α

2
(dχ− (1− cosϑ1) dϕ1 + (1− cosϑ2) dϕ2)2

]
, (B.2)

where 0 ≤ α ≤ π, 0 ≤ ϑ1 ≤ π, 0 ≤ ϑ1 ≤ π, ϕ1 ∼ ϕ1 + 2π, ϕ2 ∼ ϕ2 + 2π and χ ∼ χ + 4π.

The full EAdS4 × CP3 metric with radius L is then

ds2 = L2
(
ds2

EAdS4
+ 4 ds2

CP3

)
. (B.3)

The other background fields read

eΦ =
2L

k
, F(4) = −3ikL2

2
vol (AdS4) , F(2) =

k

4
J , (B.4)

where

vol (AdS4) = cosh2 u sinhu sinh ρ dψ ∧ dρ ∧ du ∧ dφ , (B.5)

J = −2 cos
α

2
sin

α

2
dα ∧ (dχ− (1− cosϑ1) dϕ1 + (1− cosϑ2) dϕ2) (B.6)

− 2 cos2 α

2
sinϑ1 dϑ1 ∧ dϕ1 − 2 sin2 α

2
sinϑ2 dϑ1 ∧ dϕ2 .

The factor of i in F(4) is due to the Euclidean continuation. The 2-form is proportional to

the Kahler form in CP3.

Target space indices are labeled by m,n, ......, worldvolume indices are a, b, ...., direc-

tions orthogonal to the string are denoted by i, j, ..... The corresponding target space indices

are underlined.
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The choice of adapted EAdS4 × CP3 vielbein Em =
(
Ea, Ei

)
is

E0 = LA−
1
2

(
cosh2 u sinh2 ρ ψ̇ dψ + cos2 α

2
sin2 ϑ1 ϕ̇1 dϕ1

)
,

E1 = LB−
1
2

(
cosh2 u ρ′ dρ+ cos2 α

2
ϑ′1 dϑ1

)
,

E2 = Ldu ,

E3 = L sinhu dφ ,(
E4

E5

)
=

(
cos ∆ sin ∆

− sin ∆ cos ∆

)(
LB−

1
2 coshu cos α2 (ρ′ dϑ1 − ϑ′1 dρ)

LA−
1
2 coshu sinh ρ cos α2 sinϑ1

(
ψ̇ dϕ1 − ϕ̇1 dψ

)) ,

E6 = L sin
α

2
dϑ2 , (B.7)

E7 = L sin
α

2
sinϑ2 dϕ2 ,

E8 = Ldα ,

E9 = L cos
α

2
sin

α

2
(dχ− (1− cosϑ1) dϕ1 + (1− cosϑ2) dϕ2)

where

A(u, ρ, α, ϑ1) = cosh2 u sinh2 ρ ψ̇2 + cos2 α

2
sin2 ϑ1 ϕ̇1

2 ,

B(u, ρ, α, ϑ1) = cosh2 u ρ′2 + cos2 α

2
ϑ′21 . (B.8)

Here ψ̇ = dψ
dτ and ϕ̇1 = dϕ1

dτ are constant numbers while ρ′ = dρ
dσ and ϑ′1 = dϑ1

dσ are

understood as functions of ρ and ϑ1, respectively. Also, ∆ is an arbitrary function of ψ

and ϕ1 describing and SO(2) rotation of the canonical frames and it is to be chosen at

our convenience. The standard EAdS4 × CP3 vielbein is recovered for ρ′ = 1, ϑ′1 = 0,

ψ̇ = 1 and ϕ̇1 = 0, and ∆ = 0. For the 1/6-BPS solution, ρ′ = − sinh ρ, ϑ′1 = − sinϑ1

and ψ̇ = ϕ̇1 = 1. The standard and the adapted vielbein are related by the local Lorentz

transformation

S = e∆J45eaJ05ebJ14 ,

where

cos a =
coshu sinh ρ ψ̇√

A
, sin a =

cos α2 sinϑ1 ϕ̇1√
A

, (B.9)

cos b =
coshu ρ′√

B
, sin b =

cos α2 ϑ
′
1√

B
. (B.10)

Notice that for ρ′ = −ψ̇ sinh ρ and ϑ′1 = −ϕ̇1 sinϑ1 we have

b = a+ π . (B.11)

For reasons to be explained below, we shall set ∆ such that ∆ = τ on the worldsheet.

The adapted vielbein has the desired property that upon taking the pullback onto the

worldsheet

P [Ea] = ea , a = 0, 1 , (B.12)

P [Ei] = 0 , i = 2, . . . , 9 , (B.13)
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where

e0 =
√
Adτ , e1 =

√
Adσ , (B.14)

is a vielbein for the induced geometry

ds2
ind = A

(
dτ2 + dσ2

)
. (B.15)

The conformal factor reads

A(σ) = sinh2 ρ+ sin2 ϑ1 =
1

sinh2 σ
+

1

cosh2 (σ + σ0)
. (B.16)

The worldsheet spin connection, the extrinsic curvature and the normal bundle gauge

fields are given by, respectively,

wab = P [Ωab] , H
i
ab = P [Ω

i
a]ae

a
b , Aij = P [Ωij ] , (B.17)

where Ωmn is the target space spin connection. For the 1
6 -BPS string we find

w01 =
A′

2A
dτ ≡ w dτ , (B.18)

A45 =
cosh ρ cosϑ1 + 1

cosh ρ+ cosϑ1
dτ − P [d∆] =

(
tanh(2σ + σ0)− ∆̇

)
dτ , (B.19)

A67 =
1

2
(1− cosϑ1) dτ =

1

2
(1− tanh(σ + σ0)) dτ , (B.20)

A89 =
1

2
(1− cosϑ1) dτ =

1

2
(1− tanh(σ + σ0)) dτ , (B.21)

and

H
4 b
a =

m√
A

(
− cos ∆ sin ∆

sin ∆ cos ∆

)
, H

5 b
a =

m√
A

(
sin ∆ cos ∆

cos ∆ − sin ∆

)
, (B.22)

where

m =
sinh ρ sinϑ1

cosh ρ− cosϑ1
=

1

cosh (2σ + σ0)
. (B.23)

For the purpose of computing the spectrum of fluctuations we will chose ∆ such that

P [d∆] = dτ (e.g. ∆ = ψ) . (B.24)

The reason for this choice is that the gauge fields

A ≡ A45 = (tanh(2σ + σ0)− 1) dτ , (B.25)

B ≡ A67 = A89 =
1

2
(1− tanh(σ + σ0)) dτ , (B.26)

are then regular at the center of the disk σ →∞, where the 1-form dτ is not well defined.

Indeed3 A ∼ e−4σ and B ∼ e−2σ as σ → ∞ . They also vanish in the 1/2-BPS limit

σ0 →∞. Notice that

w −A = 1− cosh ρ− cosϑ1 , ∂σA = 2m2 , ∂σB = −1

2
sin2 ϑ1 . (B.27)

These relations prove to be useful when casting the equations of motion in a simple form.

3Near the center of the disk the metric becomes ds2 = dr2+r2dτ2, with r = 2e−σ
√

1 + e−2σ0 . Regularity

of the gauge fields requires that dτ be multiplied by rn, n ≥ 2, as r → 0.
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Finally, the contractions involving the Riemann tensor that we need are

δabRaibj =



−2 sinh2 ρ

A
i = j = 2, 3

sin2 ϑ1

2A
i = j = 6, 7, 8, 9

0 otherwise

. (B.28)

It is useful to invert the vielbein in order to write the RR fields that enter in the spinor

action and Killing equation. We will set ∆ = 0 in this computation and then argue that

some of the results do not depend on ∆. For generality we leave ρ′, ϑ′1, ψ̇ and ϕ̇1 arbitrary.

We have,

coshu sinh ρ dψ =
1

L
√
A

(
coshu sinh ρ ψ̇ E0 − cos

α

2
sinϑ1 ϕ̇1E

5
)
, (B.29)

cos
α

2
sinϑ1 dϕ1 =

1

L
√
A

(
cos

α

2
sinϑ1 ϕ̇1E

0 + coshu sinh ρ ψ̇ E5
)
, (B.30)

coshu dρ =
1

L
√
B

(
coshu ρ′E1 − cos

α

2
ϑ′1E

4
)
, (B.31)

cos
α

2
dϑ1 =

1

L
√
B

(
cos

α

2
ϑ′1E

1 + coshu ρ′E4
)
. (B.32)

These relations imply that

F(4) = − 3ik

2L2
√
AB

(
coshu sinh ρ ψ̇ E0 − cos

α

2
sinϑ1 ϕ̇1E

5
)
∧
(

coshu ρ′E1 − cos
α

2
ϑ′1E

4
)

(B.33)

∧ E2 ∧ E3 , (B.34)

F(2) = − k

2L2
√
AB

(
−
(

cos
α

2
sinϑ1ϕ̇1E

0 + coshu sinh ρψ̇E5
)
∧
(

cos
α

2
ϑ′1E

1 + coshuρ′E4
)

(B.35)

+
√
AB

(
E6 ∧ E7 + E8 ∧ E9

))
, (B.36)

which allows us to compute the following quantities needed for the fermionic fluctuations:

/F (4) = − 3ik

2L2
√
AB

(
coshu sinh ρ ψ̇ Γ0 − cos

α

2
sinϑ1 ϕ̇1 Γ5

)(
coshu ρ′ Γ1 − cos

α

2
ϑ′1 Γ4

)
Γ23

(B.37)

/F (2) = − k

2L2
√
AB

(
−
(

cos
α

2
sinϑ1 ϕ̇1 Γ0 + coshu sinh ρ ψ̇ Γ5

)(
cos

α

2
ϑ′1 Γ1 + coshu ρ′ Γ4

)
(B.38)

+
√
AB

(
Γ67 + Γ89

))
, (B.39)
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and

1

8
eΦΓa /F (4)Γa =

3i

4L
√
AB

(
cosh2 u sinh ρ ρ′ ψ̇ Γ01 + cos2 α

2
sinϑ1 ϑ

′
1 ϕ̇1Γ45

)
Γ23 , (B.40)

1

8
eΦΓa /F (2)Γ11Γa =

1

4L
√
AB

(
cos2 α

2
sinϑ1ϑ

′
1 ϕ̇1 Γ01 + cosh2 u sinh ρ ρ′ ψ̇ Γ45 (B.41)

+
√
AB

(
Γ67 + Γ89

))
Γ11 . (B.42)

On the 1
6 -BPS solution the fermionic mass term becomes

1

8
eΦΓa

(
/F (2)Γ11 + /F (4)

)
Γa =

1

4LA

(
sinh2 ρ

(
−3iΓ0123 +

(
−Γ45 + Γ67 + Γ89

)
Γ11

)
+ sin2 ϑ1

(
−3iΓ2345 +

(
−Γ01 + Γ67 + Γ89

)
Γ11

))
Notice that only quantities that are invariant under rotations in the 4− 5, 6− 7 and 8− 9

planes appear in the last two expressions. Therefore, these are also valid for arbitrary

choices of ∆. In particular, they hold in the rotated frame where the connections are

regular.

C Regular gauge fields and spinors

The discussion about the regularity of the gauge fields is important because it is coupled

to the periodicity of the fields. On general grounds, we expect regular bosonic/fermionic

fields to be periodic/anti-periodic. Since a gauge transformation can change the periodicity

of the fields, we must make sure that we are working in a regular gauge when we Fourier

expand.

Let us see how the analysis of regularity works out in the present case. The wordsheet

metric is

ds2 = A(σ)
(
dτ2 + dσ2

)
, A(σ) = sinh2 ρ(σ) + sin2 ϑ1(σ) , (C.1)

where the functions ρ(σ) and ϑ1(σ) are defined by

sinh ρ =
1

sinhσ
, sinϑ1 =

1

cosh (σ + σ0)
. (C.2)

The topology is that of a disk with 0 < σ and τ ∼ τ + 2π. The center of the disk is σ →∞
where the geometry is flat. To see this, expand near σ =∞ to get

ds2 ≈ 4e−2σ
(
1 + e−2σ0

) (
dτ2 + dσ2

)
. (C.3)

Now let

r = 2e−σ
√

1 + e−2σ0 . (C.4)

Then,

ds2 ≈ dr2 + r2dτ2 . (C.5)

This is flat space indeed.
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Switching to Cartesian coordinates we have

x = r cos τ , y = r sin τ . (C.6)

The 1-forms transform accordingly:

dr =
xdx+ ydy√
x2 + y2

, dτ =
−ydx+ xdy

x2 + y2
, (C.7)

The important fact to remember is that the coordinates (x, y), as well as the 1-forms dx

and dy are everywhere well defined. Notice then that neither dr nor dτ are well defined as

r → 0, but the combination dr2 + r2dτ2 is. Also, the 1-form rdr is well defined as r → 0

with rdr → 0. In contrast,

rdτ =
−ydx+ xdy√

x2 + y2
, (C.8)

is ill-defined as r → 0 since the value of the limit depends on the direction in which we

approach the origin. This means that only 1-forms involving the combinations

rndτ , n ≥ 2 , (C.9)

are well defind at r = 0, where they vanish.

Going back to the worldsheet, the above discussion means that the 1-form dτ must

appear as

e−nσdτ , n ≥ 2 , (C.10)

in the gauge fields. In our case we find that

A = tanh(2σ + σ0)dτ ≈
(
1− 2e−4σ−2σ0

)
dτ , (C.11)

B = −1

2
tanh(σ + σ0)dτ ≈

(
−1

2
+ e−2σ−2σ0

)
dτ , (C.12)

where we have expanded at large σ. We see that these gauge fields are not regular at the

center of the disk. However, after a gauge transformation we have

A = (tanh(2σ + σ0)− 1) dτ ≈ −2e−4σ−2σ0dτ , (C.13)

B = −1

2
(tanh(σ + σ0)− 1) dτ ≈ e−2σ−2σ0dτ . (C.14)

These gauge fields are then regular.

D Dimensional reduction of spinors

Given the symmetries of our problem, the natural way to decompose the ten-dimensional

rotations group is

SO(10) ⊃ SO(2)︸ ︷︷ ︸
γ

× SO(2)︸ ︷︷ ︸
ρ

× SO(2)︸ ︷︷ ︸
τ

× SO(2)︸ ︷︷ ︸
λ

× SO(2)︸ ︷︷ ︸
κ

, (D.1)
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corresponding to the (0, 1), (2, 3), (4, 5), (6, 7) and (8, 9) tangent directions, respectively.

Under this decomposition, a possible representation of the 10-dimensional gamma matri-

ces is

Γa = γa ⊗ 1⊗ 1⊗ 1⊗ 1 , a = 0, 1 ,

Γi =
(
−iγ01

)
⊗ ρi ⊗ 1⊗ 1⊗ 1 , i = 2, 3 ,

Γi =
(
−iγ01

)
⊗
(
−iρ23

)
⊗ τi ⊗ 1⊗ 1 , i = 4, 5 ,

Γi =
(
−iγ01

)
⊗
(
−iρ23

)
⊗
(
−iτ45

)
⊗ λi ⊗ 1 , i = 6, 7 ,

Γi =
(
−iγ01

)
⊗
(
−iρ23

)
⊗
(
−iτ45

)
⊗
(
−iλ67

)
⊗ κi , i = 8, 9 , (D.2)

where we named the Dirac matrices associated to each factor as displayed above. This

basis is tailored for the choice (σ1, σ2, σ3 are Pauli matrices)

γ0 = ρ2 = τ4 = λ6 = κ8 = σ1 , γ1 = ρ3 = τ5 = λ7 = κ9 = σ2 . (D.3)

The chirality operator is then

Γ11 ≡ −iΓ0123456789

= σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 , (D.4)

and the charge conjugation intertwiners C± become

C+ = Γ02468

= σ1 ⊗ (−iσ2)⊗ σ1 ⊗ (−iσ2)⊗ σ1

,
C− = Γ13579

= σ2 ⊗ (iσ1)⊗ σ2 ⊗ (iσ1)⊗ σ2

. (D.5)

A 10-dimensional spinor can be decomposed in terms of 2-dimensional ones as

ψ =
∑
si=±

ψs2s4s6s8 ⊗ ηs2 ⊗ ηs4 ⊗ ηs6 ⊗ ηs8 , (D.6)

where

η+ =

(
1

0

)
, η− =

(
0

1

)
. (D.7)

This provides and explicit projection onto Γ23, Γ45, Γ67 and Γ89 eigenspaces, with corre-

sponding eigenvalues −iαβγ, iα, iβ and iγ which we use in the main body of the text.4

The Majorana conjugate is

ψ
M

= ψTC+ (D.8)

=
∑
si=±

s2s6 ψ
M
s2s4s6s8 ⊗ η

T
−s2 ⊗ η

T
−s4 ⊗ η

T
−s6 ⊗ η

T
−s8 , (D.9)

with

ψ
M
s2s4s6s8 ≡ ψ

T
s2s4s6s8σ1 . (D.10)

Thus, Majorana spinors satisfy

ψ† = ψ
M ⇐⇒ s2s6 ψ

M
s2s4s6s8 = ψ†−s2−s4−s6−s8 . (D.11)

4The κ-symmetry fixing in Euclidean language is iΓ01Γ11θ = θ, where Γ11 = −iΓ0123456789. This

translates to Γ23θ = −iαβγθ.

– 38 –



J
H
E
P
0
8
(
2
0
1
8
)
0
4
4

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[2] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal

Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[3] N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS5 × S5:

Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].

[4] M. Sakaguchi and K. Yoshida, A Semiclassical string description of Wilson loop with local

operators, Nucl. Phys. B 798 (2008) 72 [arXiv:0709.4187] [INSPIRE].

[5] M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string

solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].

[6] C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring

in AdS5 × S5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].

[7] E.I. Buchbinder and A.A. Tseytlin, 1/N correction in the D3-brane description of a circular

Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952]

[INSPIRE].

[8] V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision

calculation of 1/4-BPS Wilson loops in AdS5 × S5, JHEP 02 (2016) 105

[arXiv:1512.00841] [INSPIRE].

[9] A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography

with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].

[10] V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop

corrections to Wilson loop minimal surfaces in AdS5× S5, JHEP 03 (2017) 003

[arXiv:1702.02164] [INSPIRE].

[11] A. Cagnazzo, D. Medina-Rincon and K. Zarembo, String corrections to circular Wilson loop

and anomalies, JHEP 02 (2018) 120 [arXiv:1712.07730] [INSPIRE].

[12] A. Klemm, M. Mariño, M. Schiereck and M. Soroush, Aharony-Bergman-Jafferis-Maldacena

Wilson loops in the Fermi gas approach, Z. Naturforsch. A 68 (2013) 178

[arXiv:1207.0611] [INSPIRE].

[13] M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati and D. Seminara, A matrix model for the

latitude Wilson loop in ABJM theory, arXiv:1802.07742 [INSPIRE].

[14] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[15] N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric

Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787]

[INSPIRE].

– 39 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1088/1126-6708/2000/04/021
https://arxiv.org/abs/hep-th/0001204
https://inspirehep.net/search?p=find+EPRINT+hep-th/0001204
https://doi.org/10.1016/j.nuclphysb.2008.01.032
https://arxiv.org/abs/0709.4187
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.4187
https://doi.org/10.1088/1126-6708/2008/05/064
https://arxiv.org/abs/0803.0315
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0315
https://doi.org/10.1007/JHEP09(2012)053
https://arxiv.org/abs/1206.5660
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5660
https://doi.org/10.1103/PhysRevD.89.126008
https://arxiv.org/abs/1404.4952
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4952
https://doi.org/10.1007/JHEP02(2016)105
https://arxiv.org/abs/1512.00841
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00841
https://doi.org/10.1007/JHEP04(2016)053
https://arxiv.org/abs/1601.04708
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.04708
https://doi.org/10.1007/JHEP03(2017)003
https://arxiv.org/abs/1702.02164
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.02164
https://doi.org/10.1007/JHEP02(2018)120
https://arxiv.org/abs/1712.07730
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07730
https://doi.org/10.5560/ZNA.2012-0118
https://arxiv.org/abs/1207.0611
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0611
https://arxiv.org/abs/1802.07742
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.07742
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
https://doi.org/10.1088/1126-6708/2008/11/019
https://arxiv.org/abs/0809.2787
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.2787


J
H
E
P
0
8
(
2
0
1
8
)
0
4
4

[16] S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal Chern-Simons

Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual, JHEP 03 (2009) 127

[arXiv:0809.3786] [INSPIRE].

[17] B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter

theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].

[18] M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP

06 (2010) 011 [arXiv:0912.3074] [INSPIRE].

[19] N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory,

Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

[20] N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter

theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].

[21] H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix

Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].

[22] M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001

[arXiv:1110.4066] [INSPIRE].

[23] V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops

in ABJ(M) theories, Phys. Lett. B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].

[24] M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati and D. Seminara, BPS Wilson loops and

Bremsstrahlung function in ABJ(M): a two loop analysis, JHEP 06 (2014) 123

[arXiv:1402.4128] [INSPIRE].

[25] M. Bonini, L. Griguolo, M. Preti and D. Seminara, Surprises from the resummation of

ladders in the ABJ(M) cusp anomalous dimension, JHEP 05 (2016) 180

[arXiv:1603.00541] [INSPIRE].

[26] M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati, M. Preti and D. Seminara, Towards the exact

Bremsstrahlung function of ABJM theory, JHEP 08 (2017) 022 [arXiv:1705.10780]

[INSPIRE].

[27] L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in

ABJM theory: a formula for the emitted radiation, JHEP 10 (2017) 050

[arXiv:1706.06590] [INSPIRE].

[28] L. Bianchi, M. Preti and E. Vescovi, Exact Bremsstrahlung functions in ABJM theory, JHEP

07 (2018) 060 [arXiv:1802.07726] [INSPIRE].

[29] D.H. Correa, J. Aguilera-Damia and G.A. Silva, Strings in AdS4 × CP3 Wilson loops in

N =6 super Chern-Simons-matter and bremsstrahlung functions, JHEP 06 (2014) 139

[arXiv:1405.1396] [INSPIRE].

[30] M. Sakaguchi, H. Shin and K. Yoshida, Semiclassical Analysis of M2-brane in AdS4 × S7/Zk,

JHEP 12 (2010) 012 [arXiv:1007.3354] [INSPIRE].

[31] H. Kim, N. Kim and J. Hun Lee, One-loop corrections to holographic Wilson loop in

AdS4 × CP3, J. Korean Phys. Soc. 61 (2012) 713 [arXiv:1203.6343] [INSPIRE].

[32] R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J.

Math. Phys. 35 (1994) 4217 [INSPIRE].

[33] R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and

real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].

– 40 –

https://doi.org/10.1088/1126-6708/2009/03/127
https://arxiv.org/abs/0809.3786
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3786
https://doi.org/10.1016/j.nuclphysb.2009.09.015
https://arxiv.org/abs/0809.2863
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.2863
https://doi.org/10.1007/JHEP06(2010)011
https://doi.org/10.1007/JHEP06(2010)011
https://arxiv.org/abs/0912.3074
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3074
https://doi.org/10.1007/s00220-011-1253-6
https://arxiv.org/abs/1007.3837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3837
https://doi.org/10.1007/JHEP02(2010)058
https://arxiv.org/abs/0912.3006
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3006
https://doi.org/10.1007/JHEP08(2011)001
https://arxiv.org/abs/1106.4631
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4631
https://doi.org/10.1088/1742-5468/2012/03/P03001
https://arxiv.org/abs/1110.4066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4066
https://doi.org/10.1016/j.physletb.2012.10.051
https://arxiv.org/abs/1209.4032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4032
https://doi.org/10.1007/JHEP06(2014)123
https://arxiv.org/abs/1402.4128
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4128
https://doi.org/10.1007/JHEP05(2016)180
https://arxiv.org/abs/1603.00541
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.00541
https://doi.org/10.1007/JHEP08(2017)022
https://arxiv.org/abs/1705.10780
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.10780
https://doi.org/10.1007/JHEP10(2017)050
https://arxiv.org/abs/1706.06590
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.06590
https://doi.org/10.1007/JHEP07(2018)060
https://doi.org/10.1007/JHEP07(2018)060
https://arxiv.org/abs/1802.07726
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.07726
https://doi.org/10.1007/JHEP06(2014)139
https://arxiv.org/abs/1405.1396
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1396
https://doi.org/10.1007/JHEP12(2010)012
https://arxiv.org/abs/1007.3354
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3354
https://doi.org/10.3938/jkps.61.713
https://arxiv.org/abs/1203.6343
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6343
https://doi.org/10.1063/1.530850
https://doi.org/10.1063/1.530850
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,35,4217%22
https://doi.org/10.1016/0393-0440(95)00042-9
https://arxiv.org/abs/gr-qc/9505009
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9505009


J
H
E
P
0
8
(
2
0
1
8
)
0
4
4

[34] J. Aguilera-Damia, A. Faraggi, L. Pando Zayas, V. Rathee and G.A. Silva, Functional

Determinants of Radial Operators in AdS2, JHEP 06 (2018) 007 [arXiv:1802.06789]

[INSPIRE].

[35] J. Aguilera-Damia, A. Faraggi, L.A. Pando Zayas, V. Rathee and G.A. Silva, Zeta-function

Regularization of Holographic Wilson Loops, arXiv:1802.03016 [INSPIRE].

[36] D. Medina-Rincon, A.A. Tseytlin and K. Zarembo, Precision matching of circular Wilson

loops and strings in AdS5 × S5, JHEP 05 (2018) 199 [arXiv:1804.08925] [INSPIRE].

[37] W. Mück, L.A. Pando Zayas and V. Rathee, Spectra of Certain Holographic ABJM Wilson

Loops in Higher Rank Representations, JHEP 11 (2016) 113 [arXiv:1609.06930] [INSPIRE].

[38] J. Cookmeyer, J.T. Liu and L.A. Pando Zayas, Higher Rank ABJM Wilson Loops from

Matrix Models, JHEP 11 (2016) 121 [arXiv:1609.08165] [INSPIRE].

– 41 –

https://doi.org/10.1007/JHEP06(2018)007
https://arxiv.org/abs/1802.06789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.06789
https://arxiv.org/abs/1802.03016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.03016
https://doi.org/10.1007/JHEP05(2018)199
https://arxiv.org/abs/1804.08925
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.08925
https://doi.org/10.1007/JHEP11(2016)113
https://arxiv.org/abs/1609.06930
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.06930
https://doi.org/10.1007/JHEP11(2016)121
https://arxiv.org/abs/1609.08165
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.08165

	Introduction
	The frac16-BPS latitude Wilson loop
	String configurations dual to supersymmetric Wilson loops
	The AdS(4) times CP**3 background
	Classical string solution
	Symmetries of the classical solution

	Quadratic fluctuations
	Type IIA strings on AdS(4) times CP**3
	Bosonic fluctuations
	Fermionic fluctuations
	One-loop effective action

	One-loop effective action: perturbative heat kernel
	Circular Wilson loop
	Difference of one-loop effective actions

	One-loop effective action: zeta function regularization
	Bosons
	O(1)(theta(0))
	O(2+-)(theta(0))
	O(3+-)(theta(0))

	Fermions
	O(4+-)(theta(0)) 
	O(5+-)(theta(0)) 
	O(6+-)(theta(0)) 

	One-loop effective action

	Conclusions
	Conventions
	Geometric data
	Regular gauge fields and spinors
	Dimensional reduction of spinors

