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Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse bond
percolation of straight rigid rods on square lattices. In the case of standard percolation, the lattice is initially empty.
Then, linear bond k-mers (sets of k linear nearest-neighbor bonds) are randomly and sequentially deposited on the
lattice. Jamming coverage pj,k and percolation threshold pc,k are determined for a wide range of k (1 � k � 120).
pj,k and pc,k exhibit a decreasing behavior with increasing k, pj,k→∞ = 0.7476(1) and pc,k→∞ = 0.0033(9) being
the limit values for large k-mer sizes. pj,k is always greater than pc,k , and consequently, the percolation phase
transition occurs for all values of k. In the case of inverse percolation, the process starts with an initial configuration
where all lattice bonds are occupied and, given that periodic boundary conditions are used, the opposite sides of
the lattice are connected by nearest-neighbor occupied bonds. Then, the system is diluted by randomly removing
linear bond k-mers from the lattice. The central idea here is based on finding the maximum concentration of
occupied bonds (minimum concentration of empty bonds) for which connectivity disappears. This particular value
of concentration is called the inverse percolation threshold pi

c,k , and determines a geometrical phase transition
in the system. On the other hand, the inverse jamming coverage pi

j,k is the coverage of the limit state, in which
no more objects can be removed from the lattice due to the absence of linear clusters of nearest-neighbor bonds
of appropriate size. It is easy to understand that pi

j,k = 1 − pj,k . The obtained results for pi
c,k show that the

inverse percolation threshold is a decreasing function of k in the range 1 � k � 18. For k > 18, all jammed
configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the
lattice remains connected even when the highest allowed concentration of removed bonds pi

j,k is reached. In
terms of network attacks, this striking behavior indicates that random attacks on single nodes (k = 1) are much
more effective than correlated attacks on groups of close nodes (large k’s). Finally, the accurate determination
of critical exponents reveals that standard and inverse bond percolation models on square lattices belong to the
same universality class as the random percolation, regardless of the size k considered.
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I. INTRODUCTION

Percolation is currently a very active field of research in
statistical mechanics and has been attracting a great deal of
interest for a long time [1–4]. This is due in part to the fact that
this system is known to provide a useful model for studies of
second-order phase transitions.

In the standard lattice percolation model, a single site (or
a bond connecting two sites) is occupied with probability p.
For a precise value of p, a cluster of nearest-neighbor sites
(bonds) extends from one side to the opposite one of the
system. This particular value of concentration rate is named
percolation threshold pc, and determines a second-order phase
transition in the system, which is characterized by well-defined
critical exponents [2]. More general percolation problems can
be formulated by including deposition of elements occupying
more than one site (k-mers). Thus, percolation of k-mers on
different lattices in plane and multidimensional space has been
intensively studied [5–15].

Percolation theory can also be used to describe the response
of a network to the removal of sites or bonds, the phenomena
of primary interest in robustness [16,17]. The mathematical
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model of such a process can be thought of as an inverse perco-
lation problem [18]. Most developments in inverse percolation
have mainly dealt with the removal of singly nodes, much
less attention has been given to the removal of clusters of
nodes. In this line, two previous articles [19,20] referred to
as papers I and II, respectively, were devoted to the study of
inverse site percolation by removing straight rigid rods from
two-dimensional (2D) lattices.

In paper I, square surfaces were used. The process started
with an initial configuration, where all lattice sites were
occupied and, obviously, the opposite sides of the lattice
were connected by nearest-neighbor occupied sites. Then, the
system was diluted by randomly removing linear clusters of k

consecutive sites (k-mers) from the surface. The central idea
of paper I was based on finding the maximum concentration of
occupied sites for which connectivity disappears. This partic-
ular value of concentration was called the inverse percolation
threshold. A similar study for triangular lattices was carried out
in paper II. The results obtained in both papers indicate that,
from a certain value of k (k = 7 for square lattices and k = 11
for triangular lattices), the inverse percolation threshold is a
decreasing function with the k-mer size.

The problem of inverse percolation offers a simplified
representation of an irreversible reaction-annihilation process

2470-0045/2018/97(4)/042113(9) 042113-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.042113&domain=pdf&date_stamp=2018-04-10
https://doi.org/10.1103/PhysRevE.97.042113


RAMIREZ, CENTRES, AND RAMIREZ-PASTOR PHYSICAL REVIEW E 97, 042113 (2018)

[21,22]. In fact, we can think of a set of k nearest-neighbor
particles which react and desorb from the surface, leaving
behind k holes. As mentioned above, the inverse percolation
model can be also used to study robustness in networks. From
this point of view, we can think of a regular lattice as a network
whose nodes (sites or bonds) are occupied. Then, a fraction of
elements (sites or bonds) is removed, with the aim of finding
out how their absence impacts the integrity of the lattice. If
this fraction is small, the few missing nodes do little damage to
the network. As the fraction of removed elements is increased
above a certain critical value, the initial large cluster breaks into
tiny noncommunicating components and connectivity between
both sides of the lattice disappears.

The study of robustness as an inverse percolation problem
is important for many fields [18]. In communications and
information theory, it can be used to find out what fraction
of nodes must break down so that a network turns into
isolated clusters that are unable to communicate with each
other [23,24]. Recently, the vulnerability of networks during
the process of cascading failures has received great attention
in the literature [25,26]. In Refs. [25,26], the authors studied
the influence of the characteristics of the initial attack on the
vulnerability of the networks. The obtained results revealed
that random attacks on single nodes are much more effective
than correlated attacks on groups of close nodes.

The results in Refs. [25,26] are consistent with those from
papers I and II, where it was shown that the inverse percolation
threshold decreases as the k-mer size increases (k � 7 for
square lattices and k � 11 for triangular lattices). In other
words, papers I and II indicate that, for a same fraction of
removed sites (or attack, in the terminology of Refs. [25,26]),
the robustness of the network increases with the attack size
(k). These findings encourage us to continue our research on
inverse percolation as a simple model to study the robustness
(or vulnerability) of a network against failure of either nodes
or links.

As discussed in previous paragraphs, papers I and II treated
the problem of inverse percolation on a lattice of sites. This
situation has permitted us to extract general conclusions about
the connectivity properties of states generated by removing
linear clusters of sites from 2D lattices. The same has not
happened in the case of a lattice of bonds, where the prob-
lem of inverse percolation has not yet been addressed. The
objective of this paper is to provide a thorough study in this
direction. For this purpose, extensive numerical simulations,
supplemented by analysis using finite-size scaling theory, have
been carried out to study the problem of inverse percolation
by removing clusters of bonds from lattices with square
geometry. The standard percolation problem of linear bond
k-mers was also revisited and extended to longer objects:
1 � k � 120. In addition, the critical exponents for standard
and inverse problems are reported for the first time in the
literature.

The paper is organized as it follows. In Sec. II, standard
percolation of linear bond k-mers is studied. The problem
of inverse percolation by removing linear bond k-mers from
square lattices is addressed in Sec. III. The analysis of the
critical exponents obtained by using finite-size scaling theory
is discussed in Sec. IV. Finally, the conclusions are drawn in
Sec. V.

FIG. 1. (a) Schematic representation of a square lattice, initially
empty, in which some linear bond 3-mers have been deposited. Thick
(black) lines and thin (blue) lines represent 3-mer units (occupied
bonds) and empty (nonoccupied) bonds, respectively. (b) Schematic
representation of an initially fully occupied square lattice in which
some linear bond 3-mers have been removed. Thick (black) lines and
thin (red) lines represent occupied and removed bonds, respectively.

II. STANDARD PERCOLATION OF LINEAR BOND
K -MERS ON SQUARE LATTICES

We consider a periodic square lattice of linear size L (L-
lattice) on which straight rigid rods [or linear bond k-mers, see
Fig. 1(a)] are deposited at random. The procedure is as follows.
A set of k linear nearest-neighbor bonds (aligned along one
of two lattice axes) is randomly chosen; if it is vacant, the
bond k-mer is then deposited onto the lattice. Otherwise, the
attempt is rejected. In any case, the procedure is iterated until
N bond k-mers are deposited and the desired concentration
p = kN/2L2 is reached.

Figure 1(a) schematically illustrates the system described
in the paragraph above. A typical configuration of linear bond
3-mers is shown. Thick (black) lines and thin (blue) lines rep-
resent 3-mer units (occupied bonds) and empty (nonoccupied)
bonds, respectively.

Due to the blocking of the lattice by the already randomly
deposited elements, the limiting or “jamming coverage,” pj =
p(t = ∞), is less than that corresponding to the close packing
(pj < 1) [27]. Note that p(t) represents the total fraction of
bonds occupied at time t by the deposited objects. Conse-
quently, p ranges from 0 to pj for objects occupying more
than one bond.

To calculate the jamming limits for different values of k, we
use the probability WL(p) that a lattice composed of L × L

elements reaches a coverage p [28]. In the simulations, the
procedure to determine WL(p) consists of the following steps:
(a) the construction of the L × L lattice (initially empty) and
(b) the deposition of bonds on the lattice up to the jamming
limit pj . In the late step, the quantity mi(p) is calculated as

mi(p) =
{

1 for p � pj

0 for p > pj .
(1)

n runs of such two steps (a)-(b) are carried out for obtaining
the number m(p) of them for which a lattice reaches a bond
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FIG. 2. Curves of the jamming probability WL as a function of
the fraction of occupied bonds p for two values of k-mer size (k = 2,
curves on the left, and k = 5, curves on the right) and lattice sizes
ranging between L/k = 128 and L/k = 640. The statistical error
is smaller than the symbol size. Horizontal dashed line shows the
W ∗

L point. Vertical dashed lines denote the jamming thresholds in the
thermodynamic limit.

coverage p,

m(p) =
n∑

i=1

mi(p). (2)

Then, WL(p) = m(p)/n is defined and the procedure is re-
peated for different values of L. A set of n = 105 independent
samples is numerically prepared for several values of the
lattice size (L/k = 128,256,384,512,640). The L/k ratio is
kept constant to prevent spurious effects due to the size k in
comparison with the lattice linear size L.

As shown in previous papers [28–30], the jamming coverage
can be estimated from the curves of the probabilities WL plotted
versus p for several lattice sizes. In the vicinity of the limit
coverage, the probabilities show a strong dependence on the
system size. However, at the jamming point, the probabilities
adopt a nontrivial value W ∗

L, irrespective of system sizes in the
scaling limit. Thus, plotting WL(p) for different linear dimen-
sions L yields an intersection point W ∗

L, which gives an accu-
rate estimation of the jamming coverage in the infinite system.

In Fig. 2, the probabilities WL(p) are shown for different
values of L/k (as indicated) and two typical cases: k = 2 (left);
and k = 5 (right). From the inspection of Fig. 2 (and from
data do not shown here for a sake of clarity), it can be seen
that: (a) for each k, the curves cross each other in a unique
point W ∗

L; (b) those points do not modify their numerical value
for the different cases studied, being W ∗

L ≈ 0.5; and (c) those
points are located at very well-defined values in the p axes
determining the jamming threshold for each k, pj,k . In the case
of Fig. 2, pj,k=2 = 0.86467(4) and pj,k=5 = 0.79228(3).

The procedure of Fig. 3 was repeated for k between 2
and 120 (the case k = 1 is trivial, pj,k=1 = 1). The curves

FIG. 3. Jamming coveragepj,k as a function of k for linear bond k-
mers on square lattices with k between 2 and 120. Inset: As main figure
for 2 � k � 40. Solid squares represent simulation results obtained
in this work (the error in each measurement is smaller than the size
of the symbols), open triangles denote data from the literature [31],
and the solid line corresponds to the fitting function as discussed in
the text.

corresponding to k = 80, k = 100, and k = 120 were calcu-
lated for L/k = 60 and L/k = 80, with an effort reaching
almost the limits of our computational capabilities. The results
are shown in Fig. 3. In the range 2 � k � 40, the values
obtained of pj,k coincide, within the statistical errors, with
those reported in Ref. [31] (see inset of Fig. 3). These results
validate our program and calculation method.

For large values of k, the data follow a similar behavior
to that predicted by Bonnier et al. [9] for linear site k-mers
on square lattices, and Perino et al. for linear site k-mers on
triangular lattices [30]: pj,k = Aj + Bj/k + Cj/k2 (k � 1),
being Aj = pj,k→∞ = 0.7476(1) the result for the limit cov-
erage of a square lattice by infinitely long bond k-mers.
In addition, Bj = 0.2165(5) and Cj = 0.0360(5). The value
pj,k→∞ = 0.7476(1) improves the previously obtained in
Ref. [31], showing the advantages of having reached larger
sizes for the objects.

Once the limiting parameters pj,k are determined, the next
step is to calculate the percolation threshold pc,k . For this
purpose, the probability RX

L,k(p) that a lattice composed of
2L2 bonds percolates at the concentration p of occupied bonds
can be defined [2]. The subindex k indicates that the density
p was reached by depositing linear bond k-mers. Here, the
following definitions can be given according to the meaning
of X [32]:

(1) RR
L,k(p): the probability of finding a rightward perco-

lating cluster, along the x direction,
(2) RD

L,k(p): the probability of finding a downward perco-
lating cluster, along the y direction.

Other useful definitions for the finite-size analysis are:
(3) RU

L,k(p): the probability of finding a cluster which
percolates on any direction,

(4) RI
L,k(p): the probability of finding a cluster which

percolates in the two (mutually perpendicular) directions,
(5) RA

L,k(p)= 1
2 [RU

L,k(p) + RI
L,k(p)].
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Numerical simulations have been developed to determine
each of the previously mentioned quantities. Each simulation
run consists of the following two steps: (a) the construction
of the square lattice for the desired fraction p of bonds; and
(b) the cluster analysis by using the Hoshen and Kopelman
algorithm [33]. In the last step, the size of the largest cluster SL

is determined, as well as the existence of a percolating island. A
total of mL independent runs of such two steps procedure were
carried out for each lattice size L. From these runs a number
mX

L of them present a percolating cluster, this is done for the
desired criterion among X = {R,D,I,U,A}. Then, RX

L,k(p) =
mX

L/mL is defined and the procedure is repeated for different
values of L,p, and k-mer size.

Besides the different probabilities RX
L,k(p), the percolation

order parameter (P = 〈SL〉/M) [34,35] was measured, where
SL represents the size of the largest cluster and 〈...〉 means an
average over simulation runs.

The quantities related with the order parameter, such as
the susceptibility χ and the reduced fourth-order cumulant UL

introduced by Binder [36], were calculated as

χ = [〈
S2

L

〉 − 〈SL〉2]/M, (3)

and

UL = 1 −
〈
S4

L

〉
3
〈
S2

L

〉2 . (4)

In our percolation simulations, we used mL = 105 inde-
pendent random samples. In addition, for each value of k

and p, the effect of finite size was investigated by examining
square lattices with L/k = 128, 256, 384, 512, 640. As can
be appreciated, this represents extensive calculations from the
computational point of view. From this, finite-scaling theory
can be used to determine the percolation threshold and the
critical exponents with reasonable accuracy.

The standard theory of finite-size scaling [2,32,36] allows
for various efficient routes to estimate the percolation threshold
from simulation data. One of these methods, which will be used
in what follows, is from the maxima of the curves of RX

L,k(p).
In order to express these curves as a function of continuous

values of p, it is convenient to fit RX
L,k(p) with some approxi-

mating function through the least-squares method. The fitting
curve is the error function because dRX

L,k(p)/dp is expected
to behave like the Gaussian distribution [32,37,38],

dRX
L,k

dp
= 1√

2π�X
L,k

exp

⎧⎨
⎩−1

2

[
p − pX

c,k(L)

�X
L,k

]2
⎫⎬
⎭, (5)

wherepX
c,k(L) is the concentration at which the slope ofRX

L,k(p)
is the largest and �X

L,k is the standard deviation from pX
c,k(L).

Once obtained the values of pX
c,k(L) for different lattice

sizes, a scaling analysis can be done [2]. Thus, we have

pX
c,k(L) = pX

c,k(∞) + AXL−1/ν, (6)

where AX is a nonuniversal constant and ν is the critical
exponent of the correlation length which will be taken as 4/3
for the present analysis, since, as it will be shown below,
our model belongs to the same universality class as random
percolation [2].

FIG. 4. Extrapolation of the percolation threshold for an L-lattice
pX

c,k(L) (X = {I,U,A}) toward the thermodynamic limit according to
the theoretical prediction given by Eq. (6). Triangles, circles, and
squares denote the values of pX

c,k(L) obtained by using the criteria
I, A, and U , respectively. Two values of k are presented: (a) k = 2
and (b) k = 5. The bar error in each measurement is smaller than the
size of the symbols.

Figure 4 shows the plots toward the thermodynamic limit of
pX

c,k(L) according to Eq. (6) for (a) k = 2 and (b) k = 5. From
extrapolations it is possible to obtain pX

c,k(∞) for the criteria
I, A, and U . Combining the three estimates for each case,
the final values of pc,k(∞) can be obtained. Additionally, the
maximum of the differences between |pU

c,k(∞) − pA
c,k(∞)| and

|pI
c,k(∞) − pA

c,k(∞)| gives the error bar for each determination
of pc,k(∞). In this case, the values obtained were: pc,k=2(∞) =
0.4635(1) and pc,k=5(∞) = 0.3448(1). For the rest of the
paper, we will denote the percolation threshold for each size k

by pc,k [for simplicity we will drop the “(∞)”].
The procedure of Fig. 4 was repeated for k ranging between

2 and 120 (as it is well-known, pc,k=1 = 0.5 [2]). The points
corresponding to k = 50, k = 60, and k = 80 were calculated
for L/k = 128 and L/k = 256. In the case of k = 100 and k =
120, two relatively small values of L/k were used (L/k = 64
and L/k = 128), with an effort reaching almost the limits of
our computational capabilities. The results are shown in Fig. 5
(solid squares).

At the beginning, for small values of k, the curve rapidly
decreases. However, it flattens out for larger values of k and
finally asymptotically converges toward a definite value as
k → ∞. Figure 5 also includes the values of the percolation
threshold reported in Ref. [31] (open triangles). As it can be
observed, our results are consistent with the previous ones
obtained by M. Dolz et al. [31].

For all the range of studied sizes, the percolation threshold
decreases upon increasing k. This result contrasts with the
behavior obtained for site percolation of straight rigid rods
on square [13] and triangular [30] lattices. In Refs. [13,30],
a nonmonotonic k-mer size dependence was reported for
the percolation threshold. Namely, the percolation threshold
decreases for small particle sizes, goes through a minimum at
k ≈ 12–13, and finally increases as k increases. The nonmono-
tonic behavior has been explained accounting for the local
alignment effects occurring for large values of k. In the case of
bond percolation of linear bond k-mers on square lattices, these
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FIG. 5. Percolation threshold pc,k as a function of k for linear
bond k-mers on square lattices (solid squares). The behavior of the
fitting curve is described according to Eq. (7). The asymptotic limit
pc,k→∞ = 0.0033(9) is shown. The size of the points is larger than
the corresponding error bars. Open triangles denote previous data in
the literature [31].

effects are not detected in the range of values of k between 1
and 120.

Following a similar scheme to that proposed in Fig. 3, the
curve of pc,k versus k was fitted to a function

pc,k = Ac + Bc

k
+ Cc

k2
(k � 5), (7)

Ac = pc,k→∞ = 0.0033(9) being the limit percolation thresh-
old by infinitely long bond k-mers on square lattices, Bc =
2.84(3) and Cc = −5.7(2).

The value of pc,k→∞ = 0.0033(9) obtained in Fig. 5 cor-
rects the previously reported value of pc,k→∞ = 0.071(1) [31].
Due to the values of L and k studied in this contribution, our
estimate of pc,k→∞ is expected to be more accurate than that
reported previously.

III. INVERSE PERCOLATION BY REMOVING LINEAR
BOND K -MERS FROM SQUARE LATTICES

As mentioned in Sec. I, percolation theory can also be
used to describe the response of a network to the removal
of sites or bonds. The process, known as inverse percolation
[19,20], starts with a fully occupied lattice. Then, the system is
diluted by randomly removing elements (sites or bonds) from
the surface. The central idea of the inverse percolation model
is based on finding the minimum concentration of elements
for which connectivity disappears. The problem results quite
simple for the case of removing single sites or bonds, when
the inverse and standard problems are symmetrical. However,
if some sort of correlation exists, as in the case of removing
clusters of lattice elements, the statistical problem becomes
exceedingly difficult, and the percolation threshold has to be
estimated numerically by means of computer simulations.

In the present paper, we consider a periodic square lattice
of linear size L where, initially, every bond is occupied. Then,
the system is diluted by removing bond k-mers according to
the following procedure: (i) a set of k linear nearest-neighbor

bonds (aligned along one of the lattice axes) is randomly
chosen; (ii) if the selected bonds are occupied, the bond k-mer
is removed from the lattice. Otherwise, the attempt is rejected.
When N bond k-mers are removed, the concentration of absent
and present bonds is p∗ = kN/2L2 and p = (2L2 − kN )/2L2

(p = 1 − p∗), respectively.
The first step to calculate the inverse percolation properties

of the system is to determine the space of allowed p values
(pi

j,k � p � 1). pi
j,k is the coverage of the limit state, in

which no more objects can be removed from the lattice due
to the absence of linear clusters of nearest-neighbor bonds of
appropriate size. It is easy to understand that pi

j,k = 1 − pj,k ,
where pj,k represents the jamming coverage in Eq. (7). Thus,

pi
j,k = 1 − pj,k = 0.2524 − 0.2165

k
− 0.0360

k2
(k � 1).

(8)

Interested readers are referred to paper I for a more complete
description of Eq. (8).

Once the jamming limit is determined, the inverse per-
colation threshold pi

c,k can be calculated. As in previous
section, pi

c,k is obtained from the probabilities RX
L,k(p) (X =

{R,D,I,U,A}). In this case, the subindex k indicates that
the density p was reached by removing sets of k bonds
(bond k-mers). Each simulation run consists of the following
two steps: (a) the construction of the lattice for the desired
fraction p of occupied bonds. For this purpose, a fraction of
p∗ = 1 − p bonds are removed according to the procedure
described above, and (b) the cluster analysis using the Hoshen
and Kopelman algorithm [33]. As in the case of standard
percolation (Sec. II), we used mL = 105 independent random
samples. In addition, for each value of k and p, the effect of
finite size was investigated by examining square lattices with
L/k = 128, 256, 384, 512, 640.

The inverse percolation threshold can be obtained from
the extrapolation toward the thermodynamic limit of p

i,X
c,k (L)

(X = {R,D,I,U,A}) according to Eq. (6). This procedure is
illustrated in Fig. 6 for k = 2 and k = 5. Combining the three
estimates for each case, the final values of pi

c,k(∞) is obtained.
In this case, pi

c,k=2 = 0.4499(2) and pi
c,k=5 = 0.3668(1). As in

the previous section, we will drop the “(∞).”
The study in Fig. 6 was repeated for k in the range 2–120.

The results are shown in Fig. 7 (open circles). Figure 7 also
includes pi

j,k as a function of k [Eq. (8), solid circles]. The
region above the curve of pi

j,k represents the space of all the
allowed values of p (values of p which can be reached by
removing straight rigid bond k-mers from the surface). On the
other hand, the region below to the curve of pi

j,k corresponds
to a forbidden region of the p space.

The inverse percolation threshold is a monotonically de-
creasing function of k in the interval [1, 18]. The inset in
Fig. 7 shows a zoom of the main figure around k = 18.
For k > 18, all jammed configurations are percolating states,
and consequently, there is no nonpercolating phase. This
phenomenon can be better understood by examining Fig. 8,
where the functions RX

L,k(p) (X = I,U,A) have been plotted
for k = 17 (a), k = 18 (b), k = 19 (c). For clarity, simulation
results from only three lattice sizes are shown (L/k = 64,
squares; L/k = 128, circles; and L/k = 256, triangles).
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FIG. 6. Extrapolation of the inverse percolation threshold for an
L-lattice p

i,X
c,k (L) (X = {I,U,A}) toward the thermodynamic limit

according to the theoretical prediction given by Eq. (6). Triangles,
circles, and squares denote the values of p

i,X
c,k (L) obtained by using

the criteria I, A, and U , respectively. Two values of k are presented:
(a) k = 2; and (b) k = 5. The bar error in each measurement is smaller
than the size of the symbols.

In the case of k = 17 and k = 18, the curves for different
lattice sizes cross each other in a unique point, which depends
on the criterion X used. Those points are located at very
well-defined values in the p axes (see vertical dashed lines)
determining the inverse percolation threshold for each k:
pi

c,k=17 = 0.2469(1) and pi
c,k=18 = 0.2405(2). Vertical solid

line in Fig. 8(b) indicates the corresponding jamming coverage,
pi

j,k=18 = 0.24033(7).
The situation is different for k = 19, where the curves of

RX
L,k(p) remain constant and equal to 1 up to the jamming

coverage pi
j,k=19 = 0.24096(3) (vertical solid line in the fig-

ure). This finding is a clear indication that (i) the percolation

FIG. 7. Inverse percolation threshold pi
c,k (open circles) and limit

coverage pj,k (solid circles) as a function of k for linear bond
k-mers on square lattices. The size of the points is larger than
the corresponding error bars. Inset: Zoom of the main figure for
17 � k � 19.

FIG. 8. Fraction of percolating lattices RX
L,k [X = I (blue

curves), U (red curves), A (black curves)] as a function of the
concentration θ for k = 17 (a), k = 18 (b), and k = 19 (c), and three
different lattice sizes: L/k = 64, squares; L/k = 128, circles; and
L/k = 256, triangles. The statistical error is smaller than the symbol
size.

phase transition disappeared, and (ii) there is only one phase
(the percolating phase) in the whole range of allowed values
of p.

Returning to Fig. 7, the percolation behavior of the system
can be summarized as follows: (1) for 1 � k � 18, the curve of
pi

c,k divides the space of allowed values of p in a percolating
region (p > pi

c,k) and a nonpercolating region (pi
j,k < p <

pi
c,k); and (2) for k > 18, the entire space of allowed values of

p (p > pi
j,k) is a percolating region.

The interplay between the percolation and the jamming
effects is responsible for the existence of a maximum value
of k (in this case, k = 18) from which the percolation phase
transition no longer occurs. This behavior had not been ob-
served previously. In fact, in the case of inverse percolation of
linear site k-mers on square and triangular lattices, percolating
and nonpercolating phases extend to infinity in the space of the
parameter k [19,20].

In terms of vulnerability and network attacks, the decreasing
behavior of pi

c,k as a function of k indicates that the robustness
of the network increases with the attack size (k). As an
illustrative example, it is necessary to remove almost 3/4 of
the links to disconnect a network by removing sets of 16 linear
nearest-neighbor bonds (pi

c,k=16 ≈ 0.25). The same effect can
be achieved by removing only 1/2 of isolated links (pi

c,k=1 =
0.5). Moreover, for large k-mers (k > 18), the lattice remains
connected even when the highest allowed concentration of
removed bonds pi

j,k is reached. These results are consistent
with those in Refs. [25,26], where it was shown that random
attacks on single nodes are much more effective than correlated
attacks on groups of close nodes.
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FIG. 9. (a) Maximum of the derivative of the A percolation
probability (dRA

L,k/dp)
max

as a function of L/k (in a log-log scale)
for four different cases: standard percolation, k = 2 (solid triangles);
standard percolation, k = 5 (solid squares); inverse percolation, k = 2
(open triangles); and inverse percolation, k = 5 (open squares). The
bar error in each measurement is smaller than the size of the symbols.
According to Eq. (9) the slope of each line corresponds to 1/ν = 3/4.
(b) Natural logarithm of the standard deviation in Eq. (5) ln (�A

L,k) as
a function of L/k (in a log-log scale) for the same cases shown in
part (a). According to Eq. (10), the slope of each line corresponds to
−1/ν = −3/4.

IV. CRITICAL EXPONENTS AND UNIVERSALITY

A complete analysis of the studied phenomena requires
establishing the universality class of the phase transition which
the system undergoes. This universality is determined by the
value of the critical exponents ν, β, and γ . In the case of site
percolation of linear k-mers on square lattices, the obtained
results for both standard [7] and inverse [19] problems revealed
that, in all the cases, the phase transition occurring in the system
belongs to the random percolation universality class. Since
there is no similar report for the case of bond percolation, the
main purpose of this section is to carry out a thorough study of
critical exponents in order to determine the universality class
of the standard and inverse bond percolation of straight rigid
rods on square lattices.

The critical exponent ν can be calculated from the maximum
of the function in Eq. (5) [2]:(

dRX
L,k

dp

)
max

∝ L1/ν . (9)

If (dRX
L,k/dp)max is plotted as a function of L/k in log-log

scale, the slope of the line will correspond to 1/ν.
Figure 9(a) shows ln [(dRA

L,k/dp)
max

] as a function of
ln (L) (log-log functional dependence) for four different cases:
standard percolation, k = 2 (solid triangles); standard per-
colation, k = 5 (solid squares); inverse percolation, k = 2
(open triangles); and inverse percolation, k = 5 (open squares).
The slope of the lines corresponds to 1/ν and, as can be
observed, remain constant (and close to 3/4) for all studied
cases. Thus, ν = 1.33(1) for k = 2 (standard percolation) and
ν = 1.35(2) for k = 5 (standard percolation); ν = 1.33(1) for
k = 2 (inverse percolation) and ν = 1.34(2) for k = 5 (inverse
percolation).

Another alternative way to obtain ν is from the divergence
of the root mean square deviation of the threshold observed

from their average values, �X
L,k [2],

�X
L,k ∝ L−1/ν . (10)

In this case, the slope of the lines �X
L,k versus L/k (log-log

scale) will correspond to −1/ν.
Figure 9(b) shows ln (�A

L,k) as a function of ln(L) (log-log
functional dependence) for the same cases studied in the main
figure. According to Eq. (10), the slope of each line corresponds
to −1/ν. Again, the slopes of the lines remain constant and
close to −3/4. Through this method, ν = 1.33(1) for k = 2
(standard percolation) and ν = 1.33(3) for k = 5 (standard
percolation); ν = 1.33(1) for k = 2 (inverse percolation) and
ν = 1.33(1) for k = 5 (inverse percolation).

The study in Fig. 9 was repeated for different values of
k and I, U , and A criteria (not shown here for the sake of
space). In all cases, the results obtained for ν coincide, within
numerical errors, with the exact value of the critical exponent
of the ordinary percolation, namely, ν = 4/3 [2].

Once we know ν, the exponents γ and β can be determined
by the analysis of the susceptibility and the percolation order
parameter, respectively. According to the finite-size scaling
theory [2], the behavior of χ and P at criticality [2] is

χ = Lγ/νχ (u), (11)

P = L−β/νP (u′), (12)

with u = (p − pc,k)L1/ν, u′ = |p − pc,k|L1/ν , and χ and P

are the corresponding scaling functions.
At the point that each function is maximal, u = const.,

χmax ∝ Lγ/ν, (13)(
dP

dp

)
max

= L(−β/ν+1/ν)P (u′) ∝ L(1−β)/ν . (14)

When Eqs. (13) and (14) are illustrated in a log-log scale,
the slopes of the corresponding lines are γ /ν and (1 − β)/ν,
respectively. As an illustrative example, the procedure detailed
above is shown in Fig. 10 for the same cases studied in Fig. 9.
The values obtained in the figure are γ = 2.40(1) and β =
0.143(8) for k = 2 (standard percolation); γ = 2.40(2) and
β = 0.144(7) for k = 5 (standard percolation); γ = 2.40(3)
and β = 0.144(9) for k = 2 (inverse percolation); and γ =
2.39(1) and β = 0.144(8) for k = 5 (inverse percolation).
Simulation data are consistent with the exact values of the
critical exponents of the ordinary percolation, γ = 43/18 and
β = 5/36.

The protocol described in Figs. 9 and 10 was repeated for
values of k between 2 and 120 (these data are not shown here
for brevity). In all cases, the values obtained for ν [Fig. 9],
γ [Fig. 10(a)], and β [Fig. 10(b)] clearly indicate that, for
finite values of k, the problems of standard and inverse bond
percolation on square lattices belong to the same universality
class as the random percolation, regardless of the size k

considered.
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FIG. 10. (a) Maximum of the susceptibility χmax as a function of
L/k (in a log-log scale) for the following cases: standard percolation,
k = 2 (solid triangles); standard percolation, k = 5 (solid squares);
inverse percolation, k = 2 (open triangles); and inverse percolation,
k = 5 (open squares). The bar error in each measurement is smaller
than the size of the symbols. The slope of each line corresponds to
γ /ν = 43/24. (b) Maximum of the derivative of the percolation order
parameter (dP/dp)max as a function of L/k (in a log-log scale) for
the same cases reported in part (a). According to Eq. (14), the slope
of each line corresponds to (1 − β)/ν = 31/48.

V. CONCLUSIONS

Jamming and percolation properties of linear bond k-mers
on square lattices have been studied by numerical simulations
and finite-size scaling analysis. Two models have been ad-
dressed: standard and inverse percolation.

In the case of standard percolation, linear bond k-mers
(with k ranging between 1 and 120) were randomly and
sequentially deposited on an initially empty lattice. In a first
stage, the jamming properties were determined. A decreasing
behavior was observed for the jamming coverage pj,k , with
a finite value of saturation in the limit of infinitely long k-
mers: pj,k = Aj + Bj/k + Cj/k2 (k � 1), Aj = pj,k→∞ =
0.7476(1) being the jamming coverage for infinitely long bond
k-mers, Bj = 0.2165(5) and Cj = 0.0360(5).

Once the limiting parameters pj,k were determined, the
percolation properties of the system were studied. A monotonic
decreasing dependence on k was found for the percolation
threshold pc,k , which decreases rapidly for small particles sizes
(up to k ≈ 40), and finally asymptotically converges toward a
definite value for large segments. Following a similar scheme
to that proposed for jamming properties, the curve of pc,k ver-
sus k was fitted as pc,k = Ac + Bc/k + Cc/k2 (k � 5), Ac =
pc,k→∞ = 0.0033(9) being the limit percolation threshold by
infinitely long bond k-mers, Bc = 2.84(3) and Cc = −5.7(2).

To conclude with the analysis of standard percolation, two
points deserve to be highlighted: (1) the curve of pj,k remains
above the curve of pc,k , indicating that the percolation phase
transition occurs for all values of k; and (2) the results obtained
in the present paper represent a substantial improvement with

respect to previous work [31], where jamming and percolation
properties of linear bond k-mers were studied for 1 � k � 40
and small lattice sizes (values of L/k up to 56).

With respect to inverse percolation, the process starts with
an initial configuration, where all lattice bonds are occupied
and, obviously, the opposite sides of the lattice are connected by
nearest-neighbor occupied bonds. Then, the system is diluted
by randomly removing linear bond k-mers from the lattice.
In this framework, the calculation of the inverse jamming
coverage pi

j,k is trivial: pi
j,k = 1 − pj,k . Note that pi

j,k is the
coverage of the limit state, in which no more objects can be
removed from the lattice due to the absence of linear clusters
of nearest-neighbor bonds of appropriate size.

On the other hand, the inverse percolation threshold pi
c,k

is a decreasing function of k in the range 1 � k � 18. For
k > 18, all jammed configurations are percolating states, and
consequently, there is no nonpercolating phase. The interplay
between the percolation and the jamming effects is responsible
for the existence of a maximum value of k (in this case, k = 18)
from which the percolation phase transition no longer occurs.
This behavior had not been observed previously. In fact, in
the case of inverse percolation of linear site k-mers on square
and triangular lattices, percolating and nonpercolating phases
extend to infinity in the space of the parameter k [19,20].

It is interesting to analyze the results obtained for inverse
percolation in terms of vulnerability and network attacks. In
this context, the decreasing behavior of pi

c,k as a function
of k clearly indicates that random attacks on single nodes
(k = 1) are much more effective than correlated attacks on
groups of close nodes. Moreover, for large k-mers (k > 18),
the lattice remains connected even when the highest allowed
concentration of removed bonds pi

j,k is reached. A similar
behavior has been informed in recent papers [25,26], where
the influence of the characteristics of the initial attack on the
vulnerability of the networks has been studied. In this line,
future studies will be carried out to investigate the effect of
the structure of the attack (shape of the removed object) on the
connectivity properties of the damaged lattice.

Finally, the accurate determination of critical exponents
revealed that standard and inverse bond percolation models
on square lattices belong to the same universality class as the
random percolation, regardless of the size k considered.
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