
November 9, 2018 11:14 WSPC/S0218-1274 1830041

International Journal of Bifurcation and Chaos, Vol. 28, No. 12 (2018) 1830041 (17 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218127418300410

Analysis of Different Management Strategies
for Annual Ryegrass (Lolium rigidum) Based

on a Population Dynamic Model
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Weed species present high competitive capacity, rapid adaptability and herbicide resistance,
hindering their effective control across worldwide cropping regions. Since field-conducted exper-
iments are very time-consuming and usually expensive, mathematical population-based models
are valuable tools to test and develop long-term weed management programs. Within this con-
text, the objective of this paper is to formalize analytically the possible seed bank dynamics
of the Lolium rigidum, subjected to different control strategies. The first focus is on study-
ing in detail the effects of integrating constant actions, promoting more environmentally and
economically sustainable scenarios. From the same perspective, an alternative to applying time-
variant programs is introduced. The proposed control guarantees that the weed population is
sufficiently small or, alternatively, is kept below a given economic threshold level in a ten-year
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planning horizon. Furthermore, an optimization criterion is adopted for distributing necessary
efficiency into diverse integrated options. Numerical simulations are included to illustrate the
analytical findings.

Keywords : Mathematical model; weed management; control; stability; bifurcation theory.

1. Introduction

Lolium rigidum (or, commonly called, annual rye-
grass) is one of the most conspicuous weed species
around the world [Heap, 1997]. Its highly compet-
itive nature, fecundity capacity, genetic variabil-
ity and hybrization potential (within the Lolium
and Festuca genera) favor its rapid geographical
expansion as well as the increasingly problematic
infestation of winter cereal fields [Castellanos-Frias
et al., 2016; Goggin et al., 2012]. The ryegrass
management becomes even more complicated due
to the occurrence of multiple resistance episodes
caused by the repeated applications of herbicides
with the same mode of action (such as glyphosate
or ACCase inhibitors) [Heap, 2017; Loureiro et al.,
2010; Owen & Powles, 2010]. Besides the hun-
dreds of millions of dollars invested annually for
controlling L. rigidum [Panell et al., 2004], the
environmental impact of herbicides makes non-
chemical management necessary. Some of the prac-
tical alternatives are catching and removal of weed
seeds during crop harvest, delay of the crop seeding,
selection of more competitive crops, etc.

Field-conducted experiments to study the long-
term effects of applying different integrated weed
management (IWM) strategies present many diffi-
culties since they are time-consuming and usually
expensive. Mathematical models providing infor-
mation about the dynamics of weed species have
proven to be useful not only to predict its emergence
[Chantre et al., 2012; Haj Seyed Hadi & González-
Andujar, 2009; Panell et al., 2004] and spatial dis-
tribution [Basak et al., 2013; González-D́ıaz et al.,
2015; Somerville et al., 2017; Wang et al., 2008] but
also to test different control strategies [González-
Andujar & Fernández-Quintanilla, 2004; Izquierdo
et al., 2003; Parsons et al., 2009]. In particular,
population-based models of annual weed species can
predict the actual seed bank density based on its
value in the previous year and the progress dur-
ing different life-cycle stages (e.g. seedlings, mature
individuals, reproduction, etc.). Relatively simple

but nonlinear models, including factors such as
the intra- and the inter-specific competitions due
to limited available resources (i.e. water, nutrients
and light), biotic (predators) and abiotic (climatic
factors) agents as well as management decisions,
can be found in the literature [Holst et al., 2007;
Sakai, 2001]. Except for the population density-
dependence, the rest of the phenomena are, in gen-
eral, represented as proportional rates of reduction
in seedlings or seed production.

The comprehensive work developed in
[González-Andujar & Fernández-Quintanilla, 2004]
gives valuable knowledge on the dynamics of L.
rigidum. The proposed population-based model
takes into account fecundity density-dependence,
seedling emergence and survival, seed losses by
predators before entering the seed bank as well
as anthropic actions such as crop competition, crop
delayed seeding, catching and removal of weed seeds
at crop harvest, and herbicide applications. Despite
its simplicity, the model describes the behavior
of the population appropriately according to the
reported data, which were collected from various
field studies [Fernández-Quintanilla et al., 2000].
Simulations show that, although the use of her-
bicides seems to be very effective, there always
exist residual weed populations if the management
only consists of this chemical control action. Long-
term effects of some integrated agronomic practices
are numerically described in [González-Andujar &
Fernández-Quintanilla, 2004]. In all cases, control
tactics are kept constant throughout the ten-year
planning horizon.

The objective of this paper is to study ana-
lytically the performance of different strategies for
managing the population dynamics of L. rigidum
in a crop field. In contrast to [González-Andujar &
Fernández-Quintanilla, 2004], possible dynamical
scenarios are formalized explicitly based on the
variability of demographic parameters and the effi-
ciencies of the control actions. For that purpose,
general expressions of the two possible equilibria
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and sufficient conditions for their local stability are
deduced. The first development focuses on char-
acterizing in detail the effects of constant (indi-
vidual or integrated) management strategies. The
occurrence of a transcritical bifurcation is observed,
which explains that the L. rigidum eradication is
impossible to achieve in the fields by applying
an individual control action. This nonlinear phe-
nomenon also shows that such a situation could be
well handled if an IWM strategy is planned care-
fully. Furthermore, the obtained results permit to
specify adequate IWM programs to maintain the
ryegrass at very low densities by implementing con-
trol tactics at average efficiencies.

The application of time-variant management
programs is also examined. In this case, tradi-
tional linear control theory is inadequate since the
model is uncontrollable around the origin [Vac-
caro, 1995]. Different bifurcation control techniques
based on the use of time delays, polynomial func-
tions, washout filters, etc., could be used to stabi-
lize the trivial equilibrium [D’Amico et al., 2009;
D’Amico & Calandrini, 2015; Franco & Liz, 2013;
Huang et al., 2017; Wang et al., 2014]. The pro-
posed strategy arises from the idea of dynamic can-
cellation, prioritizing fundamentally its simple and
intuitive agronomic implementation. Basically, the
efficiency required for controlling L. rigidum is cal-
culated every year according to the actual seed bank
density. In the first control option, the seed bank

tends to zero asymptomatically in an infinite time
horizon. This traduces into a dynamical response
where density achieves a sufficiently small level in
a ten-year planning horizon. In the second one, the
control is adapted to keep the population below a
given economic threshold level. An optimization cri-
terion is finally introduced to distribute the neces-
sary total efficiency into diverse integrated options.
The combination of different strategies aims to pro-
mote a more sustainable agroecosystem less depen-
dent on herbicide applications.

The remaining part of the paper is organized
as follows. Section 2 describes the mathematical
model with its basic properties and the behavior
of the ryegrass in the absence of control. Analyti-
cal results concerning constant control actions are
given in Sec. 3. A detailed analysis of the proposed
time-variant control is presented in Sec. 4. Finally,
conclusions are drawn in Sec. 5.

2. Mathematical Model and Its
Properties

2.1. The life-cycle and control
actions of L. rigidum

Lolium rigidum is an annual plant whose life-cycle
can be divided into various stages, as outlined
in Fig. 1. Each stage can be modeled indepen-
dently, including specific characteristics and control

Fig. 1. Scheme of life-cycle of an annual plant.
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Table 1. Life-cycle-based model for L. rigidum developed in [González-Andujar & Fernández-Quintanilla, 2004].

Seedling emergence Zt = e(1 − c1)SB t Zt: Number of seedlings/m2 in year t,

SB t: Density of the seed bank (seeds/m2) in year t,

e: Proportional emergence of seed bank (0 ≤ e ≤ 1),

c1: Reduction by delaying crop seeding (0 ≤ c1 < 1),

Seedling survivorship Mt = sZt Mt: Number of mature plants/m2 in year t,

s: Rate of seedling survival (0 ≤ s ≤ 1),

Fecundity Ft =
f

1 + aMt
Ft: Seeds per mature plant in year t,

f : Number of seeds produced by an isolated individual,

a: Area required to produce f ,

Seed production St = Ft(1 − c2)(1 − c3)Mt St: Seed production/m2 in year t,
c2: Reduction by herbicide application (0 ≤ c2 < 1),

c3: Reduction by competitive crops (0 ≤ c3 < 1),

Seed losses Rt = (1 − l1)(1 − c4)St Rt: Seed production/m2 entering the seed bank in year t,

l1: Reduction by biotic factors (0 ≤ l1 ≤ 1),

c4: Reduction by seed catching and removal at harvest,

(0 ≤ c4 < 1)

Seed bank SBt+1 = (1 − e)(1 − m)SBt + Rt m: Proportional mortality (0 ≤ m ≤ 1).

actions. The mathematical expressions proposed in
[González-Andujar & Fernández-Quintanilla, 2004]
are summarized in Table 1. Basically, to quan-
tify the seed bank density for the next year, it is
necessary to take into account the seedling emer-
gence Zt, the seedling survival Mt, the seed pro-
duction St of mature plants, considering density-
dependence in the reproduction, and the seed losses
before entering the seed bank. So, the soil will
store the resulting quantity Rt together with the
proportion of SB t that do not germinate but are
still viable. This model structure is similar to the
one given, for example, in [González-Andujar &
Fernández-Quintanilla, 1991] for the weed species
Avena sterilis.

Control actions are represented by proportional
rates of reductions during different stages of the life-
cycle [González-Andujar & Fernández-Quintanilla,
2004]. To date, the control of L. rigidum is based
fundamentally on the use of herbicides (c2). How-
ever, this tactic is threatened by the development
of herbicide resistance and the negative environ-
mental impact on the agroecosystem biota. Other
agronomic practices suggested for the management
of ryegrass, which help reduce the resistance levels,
include delayed seeding (c1), competitive crops (c3),
and catching and removal at harvest (c4). The first
tactic implies that crop seeding is delayed until the
onset of L. rigidum emergence so as to facilitate

weed seedling suppression by using mechanical or
nonselective herbicides. The other two are nonchem-
ical control options, which consist in the selection of
crops with different weed suppression capacities and
the weed seed catching and destruction at harvest
(by using, for instance, a Harrington seed destruc-
tor). In all cases, maximum efficiency levels could
go around 90–95%.

2.2. The difference equation and its
general characteristics

Replacing successively the mathematical expres-
sions of the variables presented in Table 1 into the
seed bank equation, it is possible to find an explicit
map that predicts the size of SB in the year t+1 as
a function of its state value in t. This map is given
by

SB t+1 = γSB t + α(1 − c1)(1 − c2)(1 − c3)

× (1 − c4)
SB t

1 + β(1 − c1)SB t
, (1)

where constants α = fse(1 − l1), β = ase and
γ = (1 − e)(1 − m) are composed of parameters
and biologic factors unrelated to anthropic con-
trol and the ci with i = 1–4 recast the possible
control actions, i.e. delay seeding, herbicide, crop
competition, and catching and removal at harvest,
respectively.
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Solving (1) under the steady-state condition of
SB t+1 = SBt = SB , two equilibrium points are
identified. The trivial one is SB1 = 0, which repre-
sents the weed eradication, and the nontrivial one
is

SB2 =
γ − 1 + α(1 − c1)(1 − c2)(1 − c3)(1 − c4)

(1 − γ)β(1 − c1)
,

(2)

which gives the infestation level of the seed bank.
The local stability of the equilibrium points is deter-
mined using the Jacobian function of (1), i.e.

J(SB) =
dSB t+1

dSB t

∣∣∣∣
SBt=SB

= γ +
α(1 − c1)(1 − c2)(1 − c3)(1 − c4)

[1 + β(1 − c1)SB ]2
.

The eigenvalue associated with SB1 is

λ1 = J(SB1)
= γ + α(1 − c1)(1 − c2)(1 − c3)(1 − c4), (3)

while that related to SB2 is

λ2 = J(SB2)

= γ +
(1 − γ)2

α(1 − c1)(1 − c2)(1 − c3)(1 − c4)
. (4)

2.3. L. rigidum parameter values

Lolium rigidum parameter values extracted from
[González-Andujar & Fernández-Quintanilla, 2004]
are summarized in Table 2. They represent, on aver-
age, the field observations carried out across dif-
ferent sites in Spain over several years [Fernández-
Quintanilla et al., 2000]. In practice, most of these
parameters can vary from year to year due to cli-
matic factors, or between localities and countries
around the world. According to the analysis given in
[González-Andujar & Fernández-Quintanilla, 2004],

the model manifests very low sensitivity to the
emergence rate e, the seedling survival s, and the
area a required for an individual to produce f seeds.
Therefore, average values were used for such param-
eters. Conversely, results present high sensitivity to
the fecundity capacity f as well as to the mortality
m in the seed bank and the seed losses l1 by biotic
factors. For completeness, the possible ranges of
these three parameters are also included in Table 2.
Developments of the following section show that
these parameter variations do not produce topologi-
cal changes in the dynamical behavior of the model.

2.4. Dynamics in the absence
of control

In the absence of control (c1 = c2 = c3 = c4 = 0),
considering the parameter values in Table 2, den-
sity SB1 is always unstable (2, 252 ≤ λ1 = γ +
α ≤ 547.34) while SB2 is stable. Thus, L. rigidum
achieves the maximum level of

SB2max =
γ − 1 + α

(1 − γ)β
(5)

in the long-term with a local growth rate given by
the eigenvalue λ2 = γ + (1 − γ)2/α. The dynam-
ical characteristics concerning this equilibrium as
a function of the reproductive capacity f (with
m = 0.84 and l1 = 0.19) are represented by the
solid lines in Figs. 2(a) and 2(b). Shaded zones indi-
cate the possible variations according to the mor-
tality and biotic factor ranges (Table 2). As can
be observed, there exists a linear relation between
the final seed bank size and f . Thus, for example,
the annual ryegrass achieves an infestation level of
SB2 max = 2357 seeds/m2 under normal conditions
[square symbol in Fig. 2(a)], while it could only
reach 250 seeds/m2 if f would decrease more than
ten times (circle symbol). The associate eigenvalue
λ2 manifests a kind of inverse variation with param-
eters. However, it can be seen that its magnitude
keeps below 0.2 for almost all the possible values.

Table 2. Parameter values used to represent L. rigidum dynamical behavior.

Parameter Brief Description Average Value Maximum Minimum

e Emergence rate 0.64 — —
s Survival rate 0.76 — —
f Fecundity capacity 935 1250 7
a Area 0.34 — —
l1 Biotic factor reduction 0.19 0.35 0.1
m Mortality 0.84 0.89 0.6
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(a)

(b)

(c)

(d)

(e)

Fig. 2. Lolium rigidum population dynamics in the absence of control actions. (a) Steady-state seed bank density as a function
of fecundity capacity, (b) eigenvalue λ2 representing the growth rate of the population, (c) seed bank dynamics for f = 935
seeds per plant [square symbol in (a)], (d) seed bank dynamics for f = 93.5 seeds per plant [circle symbol in (a)] and (e) seed
bank dynamics for f = 9.35 seeds per plant. Shaded regions represent maximum and minimum variations according to l1 and
m ranges.

This implies that SB t shows predominantly a fast
rise dynamics, reaching its steady-state value after
two to four years [Figs. 2(c) and 2(d)].

From an agronomic perspective, it would be
highly desirable to find, for example, that the popu-
lation density level were always below 20 seeds/m2,
at least within a ten-year planning horizon
[Fig. 2(e)]. In that ideal scenario, it would be unnec-
essary to adopt any anthropic control. Based on
the parameter ranges in Table 2, this situation is
within the possibilities but it rarely occurs in prac-
tice. Usually, infestation levels are sufficiently high
to provoke substantial losses in crops. Developments
of this work are mainly focused on considering the
average parameter values in Table 2, since they are
sufficiently representative for those field scenarios
[Fig. 2(c)], where it can become critical to control
the weed before reaching its higher levels.

3. Dynamics and Results
Responding to Constant Control

Actions for controlling a weed species are tradition-
ally planned to be constant over the whole time

horizon. Thus, they can be seen as parameters of the
dynamical system modeled by (1). Provided that
ci �= 0, for i = 1, 2, 3 or 4, the nontrivial point SB2

becomes lower than level SB2max, which is given
by (5). The eigenvalues associated with both equi-
libria is always kept greater than zero. So, it can
be affirmed that the model does not exhibit non-
linear phenomena such as period-doubling bifurca-
tions [Wiggins, 2003; Sakai, 2001]. However, there
exists a possibility that λ1 and λ2 are equal to 1
simultaneously (for which SB1 = SB2 = 0). As
proved below, this critical condition corresponds to
the existence of a transcritical bifurcation. Thus,
it is possible that λ1 > 1 and 0 < λ2 < 1 for a
certain combination of weed control options main-
taining the original condition of SB1 unstable while
SB2 holds stable. But, it could also be possible
that 0 < λ1 < 1 and λ2 > 1 if the control is
changed, leading to the situation where SB1 is sta-
ble and SB2 is unstable. This would be the ideal
control scenario since external actions are able to
stabilize SB1 = 0, causing the definitive species
eradication.
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Theorem 1. Assume ci = c �= 0 for i = 1, 2, 3 or
4. Then, model (1) undergoes a transcritical bifur-
cation around the origin, whenever c = co = 1 −
(1 − γ)/α′, where α′ = α

∏4
k=1(1 − ck) with k �= i.

Proof. Consider model (1) as the difference equa-
tion SB t+1 = g(SB t, c), where g(·) is a smooth

nonlinear function and ci = c (with i = 1, 2, 3 or
4) is the bifurcation parameter. The equilibrium
points are not hyperbolic at the origin since their
associate eigenvalues (3) and (4) satisfy λ1 = λ2 = 1
for c = co = 1−(1−γ)/α′ with α′ = α

∏4
k=1(1−ck)

(k �= i). Based on [Wiggins, 2003], this critical con-
dition corresponds to the occurrence of a transcrit-
ical bifurcation, provided that

(i) D1 =
dg(SB t, c)

dc

∣∣∣∣
SBt=0,c=co

= 0,

(ii) D2 =
d2g(SB t, c)

dSB2
t

∣∣∣∣
SBt=0,c=co

�= 0,

(iii) D3 =

(
d2g(SB t, c)

dSB tdc

∣∣∣∣
SBt=0,c=co

)2

− d2g(SB t, c)
dSB2

t

∣∣∣∣
SBt=0,c=co

d2g(SB t, c)
dc2

∣∣∣∣
SBt=0,c=co

�= 0.

According to the role of c in function g(·), the calcu-
lation of these expressions leads to two situations.
When bifurcation parameter c corresponds to any ci

with i �= 1, map (1) reduces to

SB t+1 = g(SB t, c)

= γSB t + α′(1 − c)
SB t

1 + (1 − c1)βSB t
.

So, by calculating the first- and second-order deriva-
tives with respect to SB t and c, one obtains D1 = 0,
D2 = −2(1− c1)β(1− γ) < 0 and D3 = α′2. On the
other hand, when parameter c corresponds to c1,
map (1) transforms into

SB t+1 = g(SB t, c)

= γSB t + α′(1 − c)
SB t

1 + β(1 − c)SB t
,

so that, by recalculating the derivatives, it results
in D1 = 0, D2 = −2β(1 − γ)2/α′ < 0 and D3 =
α′2. In both cases, conditions (i)–(iii) are verified,
demonstrating that the model presents a transcriti-
cal bifurcation regardless of which control action is
chosen as the parameter. �

Different control scenarios with special agro-
nomic interest are formalized in the following. Theo-
rem 1 explains why L. rigidum eradication is impos-
sible to achieve in practice if individual control
tactics are implemented. Conversely, this is possi-
ble if IWM strategies are planned carefully. In that
context, it will be shown that there exist very good
control alternatives to maintain very low densities

of L. rigidum at average field efficiency control
levels.

3.1. Individual control

As can be inferred from (1), control actions c2, c3

and c4 affect the system dynamics in the same way,
provided that they are implemented individually.
However, c1 associated with the delayed crop seed-
ing option acts differently. Thus, two generic cases
can be defined.

3.1.1. Case I. Individual control without
delayed crop seeding

Assuming that ci = c for i = 2, 3 or 4 and ck = 0
for all k �= i (with k = 1, 2, 3 or 4), model (1) main-
tains the trivial equilibrium and the nontrivial (2)
becomes

SB2 = − 1
β

+
α

(1 − γ)β
(1 − c).

As can be seen, the relation between SB2 and c
is linear. The higher the c value, the smaller the
seed bank. The eigenvalues associated with the equi-
libria reduce to λ1 = γ + α(1 − c) and λ2 =
γ + (1 − γ)2/[α(1 − c)]. Thus, SB2 is stable and
SB1 is unstable if c < c0 = 1− (1− γ)/α, while the
opposite occurs if c ≥ c0. The following corollary of
Theorem 1 can be easily established.

Corollary 3.1. Model (1), with ci = c for i = 2, 3
or 4 and ck = 0 for all k �= i (with k = 1, 2, 3
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(a)

(b)

(c)

(d)

Fig. 3. Lolium rigidum population dynamics with a constant and individual control (without delay crop seeding). (a) Equi-
libria of the seed bank as a function of c, (b) associated eigenvalues. Solid line: stable point; dash line: unstable point and (c)
and (d) population dynamics for different c values considering initial conditions SB0 = 10 and SB0 = 2357 seeds/m2,
respectively.

or 4), undergoes a transcritical bifurcation around
the origin when c = co = 1 − (1 − γ)/α.

Figure 3(a) presents the size and stability of the
equilibrium points SB1 and SB2 as a function of c,
considering average parameter values. The control
value c0 for which equilibria shift their stabilities is
practically equal to 1 (c0 = 0.9974), as depicted in
Fig. 3(b). Such control efficacy is almost impossible
to be reached in practice, however. Notice that even
the fecundity capacity f could decrease, for example
ten times, leading naturally the seed bank to safer
levels, the amount of control needed to eradicate the
species should be excessively high (c0 = 0.9744).

Remark 3.1. In practice, the implementation of an
individual tactic such as c2, c3 or c4 would only
result in size reduction of the population.

Figures 3(c) and 3(d) show the dynamics of
map (1) simulated over a ten-year planning horizon
using different c values. In Fig. 3(c), the seed bank
initially contains 10 seeds/m2, while in Fig. 3(d)

it initiates with the maximum density SB2max =
2357 seeds/m2. In both cases, the size of the infes-
tation achieves levels below 250 seeds/m2, whenever
the efficacy of the control is greater than 90%.

3.1.2. Case II. Individual control via
delayed crop seeding

If only c1 �= 0, the nontrivial equilibrium point of (1)
is transformed to

SB2 =
α

(1 − γ)β
− 1

β(1 − c1)
,

showing that the density level and c1 are hyperbol-
ically related. This implies that it is necessary to
consider very high c1 values to achieve a consider-
able reduction of the seed bank. As illustrated in
Fig. 4(a), density can manifest appreciable changes
for delayed seeding efficiencies superior to 90%.
From a stability viewpoint, c1 acts like any of the
other individual tactics [Fig. 4(b)]. In fact, SB2 is
stable and SB1 is unstable if c1 < c0 = 1−(1−γ)/α

1830041-8

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

8.
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
11

/2
0/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 9, 2018 11:14 WSPC/S0218-1274 1830041

Analysis of Different Management Strategies for Annual Ryegrass

(a)

(b)

(c)

(d)

Fig. 4. Lolium rigidum population dynamics implementing delay seeding under nominal parameters. (a) Equilibria of the
seed bank as a function of c, (b) associated eigenvalues. Solid line: stable point; dash line: unstable point and (c) and (d)
temporal evolutions for different c values considering initial conditions SB0 = 10 and SB0 = 2357 seeds/m2, respectively.

and the opposite occurs if c1 ≥ c0. So, a new corol-
lary of Theorem 1 can be presented.

Corollary 3.2. Model (1) with c2 = c3 = c4 = 0
undergoes a transcritical bifurcation around the ori-
gin when c1 = co = 1 − (1 − γ)/α.

Figures 4(c) and 4(d) show the population
dynamics of L. rigidum for average parameter val-
ues with two possible initial conditions. Unlike the
individual control case in Sec. 3.1.1, the growth
of the seed bank becomes slower as c1 approaches
the critical value c0. Even though the eigenval-
ues manifest the same dependence with c or c1,
the neighborhoods around the equilibria, for which
they represent the growth rate of the map, can
change. For sufficiently high c1 values, nonlineari-
ties become more significant and that neighborhood
reduces considerably.

According to experimental results [Borger
et al., 2013; Monaghan, 1980], the delayed crop

seeding strategy would generate better responses
than those predicted by the model. Indeed, such
cultural control practice is strongly related to weed-
crop interactions. Intuitively, it is expected that the
reduction of weed seedlings facilitates crop estab-
lishment, thus generating greater competition on
the surviving ryegrass individuals. Model (1) is not
able to represent this indirect effect as c1 and c3 are
considered independent. In order to achieve more
realistic results, the implementation of c1 should be
combined, at least, with an increase of the c3 value
(representing more competitive crops). Related sim-
ulations can be found in the following case as a part
of the integrated control strategies.

3.2. Integrated control

The combinations of different control strategies are
analyzed in this section, since they can promote a
more sustainable agroecosystem less dependent on
herbicide applications.
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3.2.1. Case III. Integrated control without
delayed crop seeding

As the three controls c2, c3 and c4 play the same
role in model (1), their values could be alternated
to yield the same results. The different infestation
levels obtained by combining strategies c2, c3 and
c4 (with c1 = 0) are resumed in Fig. 5. In all cases,
the region delimited by the critical condition of
Theorem 1 (characterized by SB2 = 0) and lines
c2 = c3 = 1 corresponds to the control values for
which SB2 is unstable and SB1 is stable. This zone
tends to be larger as c4 increases. As α′ diminishes
with the contribution of the control actions, the crit-
ical value c0 also decreases. However, the involved
efficiencies are still high to achieve the eradication
of the ryegrass in practice. On the other hand, the
steady-state levels reached by equilibrium (2) tend
to diminish significantly as c4 increases. These simu-
lations show that it is possible to define appropriate
IWM programs to maintain, at least, very low weed
densities at average efficiency levels.

Remark 3.2. Fixing c4 and SB2 at desired values,
the admissible c2 and c3 ranges are defined by means

of the vertex (c, c) of an hyperbola (Fig. 5), i.e.

c = 1 −
√

(1 − γ)(1 + βSB2)
α(1 − c4)

and the maximum control value

cmax = 1 − (1 − γ)(1 + βSB2)
α(1 − c4)

,

to be adopted when one of them is equal to zero.
Thus, if c2 belongs to [0, c], then c3 will belong
inevitably to [c, cmax] via the function

c3 = 1 − (1 − γ)(1 + βSB2)
α(1 − c2)(1 − c4)

,

or vice versa.

Thus, for example, if it is expected that c4 =
0 and density SB2 reaches 250 seeds/m2, control
actions c2 and c3 will be limited by the intervals
[0.67, 0.891] and [0, 0.67], respectively [Fig. 5(a)].
But, these bounds diminish if the efficiency of c4

is increased. In fact, it results in c2 ∈ [0.399, 0.639]
and c3 ∈ [0, 0.399] if c4 = 0.7 [Fig. 5(d)].
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(a) (b)

(c) (d)

Fig. 5. Levels of the seed bank SB2 combining the three control strategies c2, c3 and c4 with c1 = 0. Region delimited by
the blue curve (SB2 = 0) and lines c2 = c3 = 1 correspond to the control values for which SB2 is unstable and SB1 is stable.
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3.2.2. Case IV. Integrated control with
delayed crop seeding

This last case corresponds to those integrated
strategies where the control action c1 is necessarily
different from 0. Results do not change significantly
with respect to Fig. 5 if the delayed crop seeding is
included in the IWM program but keeping it at low
efficiency levels. In coincidence with the analysis in
Sec. 3.1.2, effects are appreciable when c1 is larger
than 0.9, as presented in Fig. 6. Compared to Fig. 5,
differences are minor for c2, c3 and c4 combinations
resulting in SB2 > 1000 seeds/m2. The most visi-
ble benefits occur for SB2 < 1000 seeds/m2. Very
low infestation levels can be reached by implement-
ing standard control rates. Furthermore, the region
where SB1 = 0 becomes stable is clearly enlarged.
This implies, for example, that it would be plausi-
ble to have a seed bank tending to zero by means
of standard control actions with c1 = 0.9, c2 = 0.6,
c3 = 0.8 and c4 = 0.7.

Remark 3.3. From the analysis of Cases III and IV,
it can be inferred that several control combinations
could lead the seed bank to the same steady-state
density.

Different options are proposed in Table 3,
considering three possible infestation scenarios.
The second target, for example, is near the eco-
nomic threshold of 23 seeds/m2 (or, equivalently,
15 seedlings/m2) established by Spain. Control val-
ues are chosen with the aim of reducing the applica-
tion of herbicides. This can be reached by defining
an adequate program of both cultural and mechan-
ical tactics. As previously mentioned, the delayed
seeding option could be implemented by weed
seedlings suppression using cover crops or mechan-
ical control instead of chemical fallows. Thus, c1

could contribute to reduce the negative impact of
herbicide-based control programs. The simulated
responses of map (1) over a ten-year planning hori-
zon under the proposed programs are presented in
Fig. 7. As could be expected, differences in the set-
tling time appear when c1 is included in the weed
management program. In all cases, the transient
response becomes slower when c1 = 0.9. For pro-
grams P3–P4 in Fig. 7(a) and P7–P8 in Fig. 7(b),
this effect is beneficial since the bank reaches the
targets of 250 seeds/m2 or 25 seeds/m2 in the long
run more gradually. If the initial condition is above
the admissible final value, as in Fig. 7(c), the
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0 0.25 0.5 0.750.9 1
0

0.25

0.5

0.75

1

0

500

1000

1500

2000

2500

c2

c3

c4 = 0.3

0 0.25 0.5 0.750.9 1
0

0.25

0.5

0.75

1

0

500

1000

1500

2000

2500

c2

c3

c4 = 0.5

0 0.25 0.5 0.750.9 1
0

0.25

0.5

0.75

1

0

500

1000

1500

2000

2500

c2

c3

c4 = 0.7

0 0.25 0.5 0.750.9 1
0

0.25

0.5

0.75

1

0

500

1000

1500

2000

2500

Fig. 6. Levels of the bank SB2, considering c1 = 0.9 and combining the control actions c2, c3 and c4. Region delimited by
the blue curve (SB2 = 0) and line c2 = c3 = 1 corresponds to the control values for which SB2 is unstable and SB1 is stable.
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Table 3. Different IWM control options for reducing L. rigidum seed bank density. Target stands for the final
seed bank density.

Delayed Seeding Herbicide Crop Competition Catching and Removal
Target Program c1 c2 c3 c4

250 seeds/m2 P1 — 0.458 0.8 —
P2 — 0.278 0.5 0.7
P3 0.9 0.124 0.5 0.7
P4 0.9 0.061 0.8 0.3

25 seeds/m2 P5 — 0.934 0.8 —
P6 — 0.671 0.8 0.8
P7 0.9 0.397 0.8 0.7
P8 0.9 0.096 0.8 0.8

5 seeds/m2 P9 — 0.953 0.9 —
P10 — 0.88 0.8 0.8
P11 0.9 0.538 0.8 0.7
P12 0.9 0.307 0.8 0.8

Fig. 7. Lolium rigidum population dynamics reaching three
different targets according to the integrated control programs
described in Table 3. P1 to P4: SB2 = 250 seeds/m2; P5 to
P8: SB2 = 25 seeds/m2; P9 to P12: SB2 = 5 seeds/m2.

delay of P11–P12 in reaching the steady-state of
5 seeds/m2 could be inadequate. On the other hand,
the application of c1 causes the efficiency of herbi-
cides (c2) to be almost halved.

4. Dynamics and Results Applying
Time-Variant Control

In this section, necessary control actions are cal-
culated each year according to the seed bank

dynamics. The aim is to reduce the application of
herbicides or even the efficiency of the cultural tac-
tics, but achieving the same steady-state results as
those obtained by constant actions.

Model (1) is rewritten here as

SB t+1 = γSB t + α
SB t

1 + βSB t
Ut, (6)

where the three actions c2, c3 and c4 transform into
the unique variant control Ut. Moreover, constants
α and β are redefined as α = fse(1 − l1)(1 − c1),
β = ase(1− c1), respectively. As shown below, once
the Ut function is found, this could be implemented
by means of individual or integrated tactics.

Remark 4.1. The temporal variation of c1 has no
practical meaning since the efficiency of this con-
trol has to be maintained at high levels (supe-
rior to 90%) in order to have impact on the weed
population.

In principle, it might seem that the expression
of the control law Ut could be obtained by using
classical linear control theory [Phillips & Nagle,
1995; Vaccaro, 1995]. With the objective of weed
eradication in mind, this traditional approach can-
not be applied since the map is uncontrollable
around the origin. As can be noticed, Ut multi-
plies the state SB t so that the linearization of (6)
around SB1 = 0 results in the elimination of the
control action. Based on the idea of a simple and
practical agronomic application, the control design
is carried out by means of the cancellation strategy,
i.e. an appropriate law Ut is obtained by canceling
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the undesired dynamics of map (6) and, at the
same time, forcing it to have an specific desirable
behavior.

4.1. Control without uncertainties

Addressing the issue of L. rigidum eradication, the
following result is useful.

Theorem 2. Let Ut = τ(1+βSB t)/α, where τ is the
constant gain of the controller. Then, (6) possesses
an unique equilibrium at the origin. The point is
stable and 0 ≤ Ut ≤ 1 whenever τ < 1 − γ.

Proof. Replacing the proposed law Ut into (6), the
resulting map is given by SB t+1 = (γ+τ)SB t. Solv-
ing the difference equation under steady-state con-
dition, it is easy to see that the unique equilibrium is
SB = 0. The associated eigenvalue is λ = γ +τ > 0,
so the trivial point is stable whenever τ < 1 − γ.
Moreover, since 0 ≤ SB t ≤ SB2max, the control law
satisfies that 0 ≤ Ut ≤ 1 if 0 < τ ≤ 1 − γ. �

Remark 4.2. If it is desired that SB t approaches the
origin with an error less than 1% of the initial condi-
tion in a ten-year planning horizon, it is necessary
that the growth rate of the controlled map satis-
fies λ < e−4.62/10. Considering that γ is sufficiently
small, this restriction defines a range for the possi-
ble gain τ , which should be 0 < τ < 0.6.

4.2. Control considering
uncertainties

Due to multiple factors, the estimation of α and
β as well as the measurement of density SBt can
naturally present uncertainties. Since deviations are
indeterminable quantities, it is convenient to find
a condition for the τ election that, even being
more conservative, ensures the objective of weed
eradication.

Corollary 4.1. Let Ut = τ(1 + β̂ŜB t)/α̂, with α̂ =
δαα and β̂ŜB t = δββSB t. Then, there exist δα and
δβ ranges on which the origin is a stable equilibrium
of (6) and 0 ≤ Ut ≤ 1 whenever 0 < τ < 0.6.

Proof. Substituting Ut into (6), we get

SB t+1 = γSB t +
τ

δα

1 + δββSB t

1 + βSB t
SB t. (7)

This difference equation possesses the desired equi-
librium at SB1 = 0. Since its associated eigenvalue

is λ1 = γ + τ/δα, this point is stable if τ <
(1−γ)δα. But, due to the existence of uncertainties,
(7) presents another equilibrium, at

SB2 =
τ − (1 − γ)δα

β[(1 − γ)δα − δβτ ]
.

The numerator of SB2 is less than zero when the
origin is stable. So, to ensure SB2 is bounded and
less than zero (becoming a nonexistent equilibrium
point in practice), it should be δβ < (1 − γ)δα/τ .

On the other hand, it is necessary to check if
the proposed control law is bounded, i.e. 0 ≤ Ut ≤ 1
for 0 ≤ ŜB t ≤ SB2max. Provided that α is a
sufficiently large positive number [even compar-
ing to (1 − γ)(1 − δβ)], this condition is also ver-
ified under the stability restriction of the origin,
since

0 ≤ τ ≤ (1 − γ)δα
α

(1 − γ)(1 − δβ) + α
≈ (1 − γ)δα.

Therefore, since 0 < τ < 0.6, it can be affirmed
that the origin is stable and 0 ≤ Ut ≤ 1 for δα >
0.6/(1 − γ) = 0.637 and δβ < 0.6/τ . �

The δα restriction can be easily fulfilled by
calculating α̂ with fecundity capacities around the
maximum value. As the parameter β normally does
not have large variations, the δβ margin mainly rep-
resents the admissible seed bank uncertainties. This
restriction could be critical for control gains near its
maximum limit. However, it is probable that mea-
surement errors tend to be defective as only seeds
located at superficial soil depths (0–5 cm) are nor-
mally quantified.

The population dynamics of L. rigidum under
control Ut of Corollary 4.1 is shown in Fig. 8. For
simplicity, Ut is implemented as an individual tac-
tic, ct = 1−Ut. As expected, the density bank goes
to a quantity near zero in the ten-year planning
horizon, considering different systematic uncertain-
ties. As the τ value increases, the growth rate for
which SB t reaches the steady-state level diminishes.
This phenomenon of making the seed bank change
more gradually compared to the case of constant
control implies that the involved efficiencies are less
demanding year by year.

Remark 4.3. In general, it is preferable that
the seed bank reaches certain density SP while
the control efficiency does not exceed a specific
economic threshold level. The expression of Ut in
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Fig. 8. Performance of the time-variant control for τ = 0.2
(blue) and τ = 0.6 (red). Solid lines: simulations without
considering uncertainties. Shaded regions: deviations due to
systematic uncertainties in the α estimation (δα = 1250/935)
and in the SB t measurements (0.8 ≤ δβ ≤ 1.6). For compari-
son, constant control with a 100% efficiency is included (black
line).

Corollary 4.1 can be modified in order to achieve
this objective, i.e.

Ut = max

{
τ
1 + β̂ŜB t

α̂
, U

}
, (8)

where U = (1−γ)(1+βSP )/α is the fixed quantity
that keeps the chosen equilibrium (and coincides
with the value of the constant control).

Figures 9(a) and 9(b) show the numerical
results, with ct = 1−Ut and a target of 25 seeds/m2

and 250 seeds/m2, respectively. Fixing the τ value,

the magnitude of saving control with respect to the
constant case decreases if the admissible infesta-
tion is less restrictive. The simulations of two more
realistic scenarios with a target of 250 seeds/m2 are
presented in Fig. 10. In the diagrams, the fecun-
dity f develops random variations (solid line) over
the years representing natural fluctuations due to
climatic factors. However, the estimation of this
parameter (used to calculate Ut) is kept at the fixed
value of 935 seeds per plant (red circle). The quan-
tification of the seed bank also manifests irregu-
lar errors which are inherent to the way the seeds
are measured or dispersed in the field (red circles
in the SB t plot). Both constant and time-variant
controls achieve similar results when densities are
below 500 seeds/m2. In the first four to six years,
the efficiency of ct (ct = 1 − Ut) is always less than
the constant value, implying a great amount of sav-
ing in the management program.

4.3. Algorithm for implementing Ut

The control law Ut can be implemented by individ-
ual or integrated tactics. If a unique control action
is selected then the value of the chosen c2, c3 or c4

is calculated year to year by ct = 1 − Ut, as con-
sidered in Figs. 8–10. In the case of applying more
than one simultaneous actions, the possibilities of
Ut assignation can be infinite. Thus, for example, a
simple option could be the adoption of three tactics
with the same efficiency, i.e. c2 = c3 = c4 = 1− 3

√
Ut.

A more adequate alternative is to distribute Ut

weighting the priority given to each control option

(a) (b)

Fig. 9. Performance of the time-variant control for τ = 0.6 (red) and a delay seeding of c1 = 0.9. (a) Minimum seed
bank of 25 seeds/m2 and (b) minimum seed bank of 250 seeds/m2. Solid lines: simulations without considering uncertainties.
Shaded region: deviations due to uncertainties in the α estimation (δα = 1250/935) and also in the measurements of SB t

(0.8 ≤ δβ ≤ 1.6). For comparison, constant control efficiency is also included (black line).
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Fig. 10. Performance of the time-variant control (τ = 0.6) when δα and δβ vary year to year. It is considered a minimum

seed bank of 250 seeds/m2 and a delay seeding of c1 = 0.9.

according to the necessity of reducing its partic-
ipation in the IWM program. That rank can be
established by taking into account multiple factors
such as economic costs, ecological and environmen-
tal impacts, available resources, etc. The distribu-
tion is achieved by defining the performance index

J = q2c
2
2 + q3c

2
3 + q4c

2
4,

which has to be minimized subject to the control
restriction Ut = (1 − c2)(1 − c3)(1 − c4). Notice
that the greater the weight qi, the higher the pri-
ority of reduction and, then, the smaller the ci effi-
ciency. Using the Lagrange multipliers technique,

the index and restriction can be combined to gen-
erate a unique function

L = J + Λ[Ut − (1 − c2)(1 − c3)(1 − c4)].

Then, the algorithm consists in finding all the real
ci and Λ values that satisfy

• ∂L
∂ci

= 0, for i = 2, 3, 4.

• ∂L
∂Λ = 0.

This set of critical solutions can be determined by
using any mathematical software. Finally, an appro-
priate c2, c3 and c4 combination (with 0 < ci < 1,

Table 4. Time-variant IWM controls for reducing the seed bank density from the initial state of 2357 seeds/m2 to
25 seeds/m2. Control law Ut is distributed according to the different priorities given to each control option in order to
reduce its participation in the IWM.

año 0 1 2 3 4 5 6 7 8 9 10

c1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Ut 0.597 0.368 0.230 0.146 0.094 0.063 0.044 0.036 0.036 0.036 0.036

PA (k �= i) c1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
ci 0.403 0.632 0.770 0.854 0.906 0.937 0.956 0.964 0.964 0.964 0.964
ck 0 0 0 0 0 0 0 0 0 0 0

PB c1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
c2 0.158 0.283 0.387 0.474 0.545 0.602 0.646 0.669 0.669 0.669 0.669
c3 0.158 0.283 0.387 0.474 0.545 0.602 0.646 0.669 0.669 0.669 0.669
c4 0.158 0.283 0.387 0.474 0.545 0.602 0.646 0.669 0.669 0.669 0.669

PC c1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
c2 0.085 0.131 0.146 0.087 0.052 0.034 0.023 0.019 0.019 0.019 0.019
c3 0.192 0.349 0.481 0.199 0.112 0.070 0.047 0.038 0.038 0.038 0.038
c4 0.192 0.349 0.481 0.801 0.888 0.930 0.952 0.962 0.962 0.962 0.962

PD c1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
c2 0.054 0.067 0.052 0.035 0.023 0.016 0.011 0.009 0.009 0.009 0.009
c3 0.116 0.145 0.112 0.074 0.048 0.032 0.022 0.018 0.018 0.018 0.018
c4 0.286 0.538 0.727 0.837 0.899 0.934 0.954 0.963 0.963 0.963 0.963
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i = 2, 3, 4) will be the one that corresponds to the
minimum J .

Table 4 illustrates some forms of implemen-
tation of control Ut when the initial state of the
seed bank is 2357 seeds/m2. Then, this density is
reduced to 25 seeds/m2 in ten years, with a tran-
sient response given by τ = 0.55. Program PA corre-
sponds to the use of a time-variant individual tactic,
considering, for example, catching and removal of
seeds at harvest (c4) and keeping c1 = 0.9, which is
precisely illustrated by Fig. 9(a). Program PB rep-
resents an integrated management where, except for
c1, the rest of the control is applied with the same
efficiency. Even though herbicides are used, the
required efficacy of the control is moderate (70%).
Such a level could be easily obtained at normal
recommended label dosages (without overdosage or
reiterated interventions per year). The other two
proposed programs, PC and PD, are derived from
the use of index J chosen with different priorities.
In PC, it is considered that q2 = 1, q3 = 0.5 and
q4 = 0.5, implying that it is important to reduce
the amount of herbicides. Since q2 = q3, the distri-
bution of c2 and c3 could be interchanged, yielding
the same index value. This program presents two
admissible forms of implementation. In PD, weights
are q2 = 1, q3 = 0.5 and q4 = 0.25, so that the
crop competition also presents certain relevance in
the reduction. On the other hand, the practice of
catching and removal has little weight on the mini-
mization since it is important to promote its use.

5. Conclusions

Different long-term IWM programs for control-
ling L. rigidum were analyzed through this paper.
Their potential effects on the steady-state value and
growth rate of the seed bank were evaluated by
analytical expressions obtained from nonlinear sys-
tems theory. Integrated weed control alternatives
are oriented to promote a sustainable intervention
of the agroecosystem, thus reducing the high cur-
rent dependency on herbicide usage. The obtained
results show that the integration of cultural and
mechanical control options are decisive for overcom-
ing the limitations of an individual strategy so as to
successfully manage L. rigidum. The idea of time-
variant control based on the calculation of the con-
trol efficiencies every year according to the weed
dynamics was also introduced. Evaluations were
carried out by considering common uncertainties

and parametric variations, validating the expected
performances.

Despite its simplicity, the population-based
model of L. rigidum turns out to be very useful
to provide analytical information for more precise
long-term decision making. Further work should
aim to increase the level of completeness of the
model, including some terms to represent more
precisely the weed-crop competition as well as to
characterize the phenomenon of herbicide resistance
at both temporal and spatial levels. These factors
could be pertinent for improving the proposed con-
trol strategies, leading to a more practical imple-
mentation within IWM scenarios.
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