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Abstract
We report here the results of two theoretical models to predict the inhibitory effect of inhibitors of sphingosine kinase 1 that 
stand on different computational basis. The active site of SphK1 is a complex system and the ligands under the study possess 
a significant conformational flexibility; therefore for our study we performed extended simulations and proper clusteriza-
tion process. The two theoretical approaches used here, hydrogen bond dynamics propensity analysis and Quantum Theory 
of Atoms in Molecules (QTAIM) calculations, exhibit excellent correlations with the experimental data. In the case of the 
hydrogen bond dynamics propensity analysis, it is remarkable that a rather simple methodology with low computational 
requirements yields results in excellent accord with experimental data. In turn QTAIM calculations are much more com-
putational demanding and are also more complex and tedious for data analysis than the hydrogen bond dynamic propensity 
analysis. However, this greater computational effort is justified because the QTAIM study, in addition to giving an excellent 
correlation with the experimental data, also gives us valuable information about which parts or functional groups of the 
different ligands are those that should be replaced in order to improve the interactions and thereby to increase the affinity 
for SphK1. Our results indicate that both approaches can be very useful in order to predict the inhibiting effect of new com-
pounds before they are synthesized.

Keywords  Sphingosine kinase inhibitors · QTAIM calculations · Hydrogen bond dynamic propensity analysis · Theoretical 
approaches

Introduction

Sphingosine-1-phosphate is a potent sphingolipid mediator 
[1–4], and the kinase that produces it, Sphingosine Kinase 1 
(SphK1) has been implicated in cancer progression, inflam-
mation and cardiovascular diseases [5, 6].

The first crystal structure of SphK1 was reported in 2013 
[7], such report presents the atomic structure of SphK1 in 
complexes that expanded the mechanistic understanding of 
this important pharmacological target. This information has 
provided a crucial baseline from which to generate predic-
tions and targeted modifications that further probe the many 
nuances of functional elements in SphK1 activity and regu-
lation. More recently two SphK1 co-crystal structures (4L02 
and 4V24) with potent inhibitory compounds have also been 
published [8, 9]. These structures provide useful structural 
information on the interaction of ligands at the active site 
of SphK1. The structure of SphK1 provides a structural 
framework to understand how many unrelated residues 
are involved. Within the cavity, sphingosine is proposed to 
be guided into position by a tunneling mechanism that is 
driven by energetically favorable interactions between non-
polar cavity residues and aliphatic carbons long the sphin-
gosine tail group [10]. The pocket itself is revealed not as a 
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simple tunnel but is rather J-shaped, allowing bulky groups 
like those possessed by the inhibitors SKI-II [11], 1v2 [8] 
and PF-543 [12] nestle within the cavity and competitively 
occlude substrate binding [10].

Although the crystal structure of SphK1 is a stepping key 
to new perspectives in our quest to resolve the cellular func-
tion and regulation of this key enzyme, however, as is often 
the case, from this information new questions and doubts are 
arising. Further structural studies might explain the seem-
ingly contradictory observation that some SphK1 inhibitors 
[13, 14] markedly affect cell growth and survival, whereas 
a potent and selective inhibitor did not [12].

To further improve SphK inhibitors, particularly regard-
ing potency and selectivity, it is necessary to continue to 
probe the binding pockets of SphK1 with structurally diverse 
sets of molecules. In this line we have recently reported two 
new series of compounds possessing different structural 
scaffolds [15]. Such compounds were obtained from a vir-
tual screening and among these new compounds; molecules 
1–3 (Fig. 1) displayed the strongest inhibitory effects in this 
series. Although the inhibitory activity of these compounds 
is only moderated in comparison to PF-543, it should be 
noted that such compounds were obtained from a primary 
virtual screening and therefore the activity obtained is more 
than acceptable. It is clear that one of our main objectives 
is to increase the potency of these new compounds through 
the introduction of structural changes. However the ques-
tion that arises is: what are the changes that must be made 

on these structures, and how we can know before their syn-
thesis if these compounds are going to be as active as we 
expect. This task demands the availability of accurate theo-
retical approaches to assess the inhibitory activity of poten-
tial inhibitors. A first step in this regard would be to test 
the efficiency of some existing techniques we have already 
applied in other contexts in the evaluation of the inhibitory 
activity of our new compounds on SphK1 along with other 
already existing inhibitors. If we are successful in correlat-
ing their theoretical predictions on SphK1 with experimen-
tal data, these techniques might be useful for selecting new 
compounds generated from such scaffolds with potentially 
improved inhibitory effect prior to their synthesis. Moreover, 
we also expect that the knowledge gained from the applica-
tion of such techniques might provide us with additional 
clues to re-engineer this new family of compounds.

Computational methods

Receptor preparation

The X-ray crystal structure of SphK1 was taken from the 
Protein Data Bank with the accession code 3VZD. The C 
chain was used. The SKI-II inhibitor and the water mol-
ecules were removed; only the ADP, Mg2+ and a water mol-
ecule (that makes hydrogen-bond interactions with Asp178 
and Ser168) is left since it is considered structural part of the 

Fig. 1   Structural features of the compounds studied here. The polar head of each molecule has been marked in blue and their respective hydro-
phobic tails are shown in orange color (online version to see the colors)
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protein [7]. Ionizable groups were assumed as its ionization 
state at pH 7.0.

Docking procedure

The docking simulations were carried out using of Auto-
Dock 4.2 [16]. In all experiments the following parameters 
were used: the initial population of trial ligands was consti-
tuted by 200 individuals; the maximum number of genera-
tions was set to 270,000. The maximum number of energy 
evaluations was 10.0 × 106. All other run parameters were 
maintained at their default setting. The 3D affinity map was 
a cube with 46 × 46 × 48 points separated by 0.375 Å and 
centered at the active site of SphK1. The resulting docked 
conformations were clustered into families by the backbone 
Root-Mean-Square Deviation (RMSD). The lowest docking-
energy conformation of each family was considered the most 
favorable orientation.

Refinement of the anchoring

After the docking calculations, leading lowest energy struc-
tures were refined by performing molecular dynamics simu-
lations, using the Amber14 packages [17]. The molecular 
dynamics simulations (MD) were performing using the all-
atom force field ff99SB [18] to describe the receptor whereas 
the general Amber force field (GAFF) [19] was used to han-
dle small organic molecules and the force field parameters 
of the inhibitors were produced by the antechamber program 
in Amber. Each model was soaked in a truncated octahedral 
periodic box of TIP3P water molecules [20]. The distance 
between the edges of the water box and the closest atom of 
the solutes was at least 10 Å. Sodium ions were added to 
neutralize the charge of the system. The entire system was 
subjected to energy minimization.

To remove possible bumps, the geometry of the system 
went through an energy minimization process with 10,000 
steps of a conjugate gradient method: (i) In the first 5000 
steps, only the backbone atoms of the complex were con-
strained with 10 kcal/(mol Å2) force constants. (ii) In the 
last 5000 steps, the solute and solvent atoms were allowed to 
move without any constraint. The relaxed geometry resulted 
in a backbone RMSD < 0.5 Å from the reference crystal 
structure.

In the next place each system was then heated in the NVT 
ensemble from 0 to 300 K in 500 ps and equilibrated at 
an isothermal isobaric (NPT) ensemble for another 2 ns. A 
Langevin thermostat [21] was used for temperature coupling 
with a collision frequency of 1.0 ps−1. The particle mesh 
Ewald (PME) method was employed to treat the long-range 
electrostatic interactions in a periodic boundary condition 
[22]. The SHAKE method was used to constrain hydrogen 
atoms. The time step for all MD is 2 fs, with a direct-space, 

non-bonded cutoff of 8 Å. Three MD simulations of 50 ns 
were conducted for each system under different starting 
velocity distribution functions; thus, in total 150 ns were 
simulated for each complex.

It should be noted that compounds 2, 3, 5 and 6 pos-
sess one chiral center, and are therefore enantiomeric with 
the possibility of two isomers (R and S). However, we did 
not perform an enantiomeric resolution for the previously 
reported biological assays [15]; thus, the racemic mix was 
used in each case. For the molecular modeling study, only 
one isomer of each compound was evaluated in our MD 
simulations and later computations. To choose the isomeric 
forms of each compound, we considered preliminary and 
specially performed exploratory simulations determining 
the spatially preferred form for these compounds. Our pre-
liminary and exploratory docking and short MD simulations 
(three runs of 5 ns each) indicate that the spatial ordering 
adopted by the R-forms gives a more adequate orientation of 
the molecules to interact in the active site of SphK1. Thus, 
on the basis of such results the R-forms were chosen for the 
simulations.

Binding energy calculations

The MM-PBSA and MM-GBSA protocol was applied to 
each MD trajectory in order to calculate the relative bind-
ing energies of the SphK1–INH complexes. The MM-PBSA 
and MM-GBSA method was used in a hierarchical strategy, 
and the details of this method have been presented else-
where [23]. This protocol was applied to 27,000 equidistant 
snapshots extracted from the last 45.0 ns of the dynamics in 
triplicate and was used within the one-trajectory approxima-
tion. Briefly, the binding free energy (ΔGbind) resulting from 
the formation of a RL complex between a ligand (L) and a 
receptor (R) is calculated as:

where ΔEMM, ΔGsol, and − TΔS are the changes in the gas-
phase MM energy, the solvation free energy, and the confor-
mational entropy upon binding, respectively. ΔEMM includes 
ΔEinternal (bond, angle, and dihedral energies), ΔEelectrostatic 
(electrostatic), and ΔEvdw (van der Waals) energies. ΔGsolv 
is the sum of electrostatic solvation energy (polar contribu-
tion), ΔGPB, and the non-electrostatic solvation component 
(nonpolar contribution), ΔGSA. Polar contribution is cal-
culated using the PB model, while the nonpolar energy is 
estimated by solvent accessible surface area. The conforma-
tional entropy change − TΔS is usually computed by normal-
mode analysis, but in this study the entropy contributions 
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were not calculated due to the computational cost involved 
in such calculations.

Cluster

To perform clustering we used the Cpptraj program, part 
of the AmberTools package. 135 ns was analyzed for each 
complex, discarding the initial 5 ns of each dynamic. A total 
of 27,000 frames was evaluated. Ten representative pdb 
structures was obtained for each complex from a separation 
by using RMSD, which was ordered from highest to lowest 
population. For each complex, several representative pdb 
structures were analyzed from QTAIM methods; thus, we 
calculate the necessary number of structures to reach 50% 
of the population.

Atoms in molecules theory

The wave functions of the inhibitors bound to the bind-
ing site residues residues that have at least one heavy atom 
within 5 Å from the ligand molecule (first shell residues), 
generated at the M062X/6-31G(d) level of theory, were sub-
jected to a Quantum Theory Atoms In Molecules (QTAIM) 
analysis [24] using Multiwfn software [25]. This type of cal-
culations have been used in recent works because it ensures 
a reasonable compromise between the wave function quality 
required to obtain reliable values of the derivatives of Σρ(r) 
and the computer power available, due to the extension of 
the systems in study [26–29].

For each complex, several pdb structures corresponding 
to 50% of the population were analyzed. The Σρ(r) obtained 
for each interaction between Receptor and Ligand (R–L) was 
averaged and then all the interactions were added to obtain 
a final value of Σρ(r).

Hydrogen bond dynamic propensity analysis

Dynamic propensities (fraction of time formed) of BHBs 
belonging to the binding site of SphK1 were calculated 
over a total of 27,000 MD configurations (three replicas of 

45 ns), in all complexes studied. At each evaluation time 
(configuration), if a pair of residues i and j of a certain BHBs 
satisfy a hydrogen bonding criterion (N–O cutoff distance, 
r < 3.5° Å; N–H–O cutoff angle, θ > 140°), the correspond-
ing interaction becomes 1, while it is 0 otherwise. Then, we 
averaged the results for all configurations evaluated and so 
we obtained the fractions of time that each BHBs remain 
formed in each case. Finally, for each BHB we calculated 
D-values how the difference between dynamic formation 
propensity and its corresponding state-value (formed or 
not formed according to the same criterion of distance and 
angle) in the PDB structure (in absolute value). For more 
details see “Results and discussion” section.

Results and discussion

Nine compounds were selected for this study: three well-
known inhibitors (PF-543, 1v2 and SKI-II) for which exper-
imental structural data are available (Protein Data Bank 
(PDB) code 4V24 [9], 4L02 [8] and 3VZD [7], respectively) 
and six compounds recently reported by us [15]. Among 
these, three active compounds (1–3) as positive controls and 
three inactive compounds (4–6) were selected to provide 
negative controls (Fig. 1).

We have previously performed molecular dynamics 
simulations in different biological systems with different 
degrees of structural complexity like for example D2 dopa-
mine receptor (D2DR) [30–34], dihydrofolate reductase 
(DHFR) [35, 36], Acetylcholinesterase (AchE) [37, 38], 
beta secretase (BACE 1) [39, 40]. In the case of simula-
tions at the D2 dopamine receptor, three simulations of 10 ns 
each have been shown to be sufficient to obtain satisfactory 
results [30–34]. However, the degree of structural complex-
ity and other factors that have a direct influence on this type 
of simulations are different for the active site of Sphingosine 
Kinase 1 with respect to the active site of D2DR. A com-
parative study between the active sites of these two recep-
tors is summarized in Table 1; such study was carried out 
analyzing the following aspects: (a) size and depth of the 

Table 1   Parameters considered analyzing both the active sites of the molecular targets as well the R–L complexes

D2 SphK1

Solvent accessible surface area (SASA) (Å2) 489 721
Buried area (Å2) 428 675
Number of mainly interactions stabilizing or destabilizing 

the complexes
From 3 to 6 More than 10

Flexibility of the active site Markedly reduced (Tight) Large
Flexibility of the ligand Partially restricted (two rotations) Very flexible (more than 10 rotations)
Types of interactions involved in the complex formation Ionic, hydrogen bonds and hydrophobic Ionic, pi stacking and hydrophobic
Structural variations on the ligands From scarce to significant High variability
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active site; (b) number of the main interactions stabilizing or 
destabilizing the complexes; (c) flexibility of the active site; 
(d) flexibility of the ligand; (e) types of interactions involved 
in the complex formation and (f) structural variability of the 
different ligands.

A numerical study on the Solvent Access Surface Area 
(SASA) [41] was used to evaluate the size and depth (buried) 
of the active site. As can be seen in Table 1, the SASA and 
buried obtained for Sphingosine Kinase 1 is almost twice 
to those obtained for D2DR. This information by itself is 
significant to see that the complexity of the active site of 
Sphingosine Kinase 1 is much greater than that of D2DR. 
However, all the aspects analyzed here show that the Recep-
tor–Ligand (R–L) complexes in Sphingosine Kinase are 
more intricate and complicated to study than those R–L 
complexes of D2DR. Those that show greater differences 
are the number of interactions involved as well as the flex-
ibility and structural variability of the ligands (see Table 1). 
On the basis of this information, we decided to extend the 
simulations for this system performing three simulations of 
50 ns each (150 ns for the three full simulations).

Our first attempt was try to find a correlation between 
the binding energies obtained through the Generalized 

Born surface area (GBSA) and Poisson–Boltzmann surface 
area (PBSA) calculations with the experimental data (IC50) 
(Fig. 2). Unfortunately the results by using GBSA were very 
poor. Not only because the value of r is very low (r = 0.53), 
but also because these results do not allow to clearly dif-
ferentiate between the most active compounds with respect 
to those less active. Note, for example, that the SKI-II com-
pound that is very active has a very high energy value. In 
turn PBSA calculations give a better result with respect to 
GBSA giving an r value of 0.69; however such result is still 
insufficient. It should be noted that the bad fitting when 
using GBSA and PBSA methods might partly due to the lack 
of inclusion of entropy. As previously indicated, the active 
site of SphK1 is large and has some flexibility; furthermore, 
the ligands by themselves are also quite flexible and can be 
moved sufficiently before to fit into the binding pocket. Thus, 
the entropy contribution could be significant for this par-
ticular enzyme and therefore at least in part the unsatisfying 
performance of these calculations might because entropy is 
turned off and not because of the method itself. However it 
is clear that these theoretical techniques without considera-
tion of entropy fail to show a good performance in predict-
ing the activity of new compounds (not yet synthesized) for 

Fig. 2   Correlation obtained 
for the different compounds 
between the experimental data 
(IC50) and the binding energy 
obtained from a MM-GBSA 
and b MM-PBSA calculations
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this molecular target. Thus, we decided to try two different 
techniques that have given satisfactory results in other bio-
logical systems. Thus, we used Quantum Theory of Atoms 
In Molecules (QTAIM) [24] calculations and also performed 
a study of the dynamic propensity of backbone hydrogen 
bonds [42, 43].

QTAIM calculations

Studies using QTAIM calculations have been carried out by 
our research group with great success in various biological 
systems [31–36, 39, 40]. In fact QTAIM calculations have 
already been used previously in complexes of Sphingosine 
Kinase 1, but in that case they were used for another purpose 
[15]. In reference 15 the QTAIM calculations were used only 
to analyze the different interactions that stabilized the com-
plexes of the most representative compounds of the series 
and compare them with the interactions of the complex 
SphK1/PF-543.

It is important to note that QTAIM calculations are per-
formed on a determinate geometry, while the R–L bind-
ing come from an ensemble of conformations. Therefore, 
to understand the activity of these compounds it would be 
convenient to analyze several conformations of each R–L 
complex. Thus, the first doubt that arose was how many 
different structures for each complex would be necessary 
consider. To solve this problem, we performed a clusteriza-
tion process on the trajectories of MD. As preliminary and 
exploratory analysis, we made different tests with the three 
complexes of which we had crystallographic data (SKI-II, 
1v2 and PF-543). The results obtained for these exploratory 
calculations are shown in Table 2.

Although all the correlations obtained between the exper-
imental data and the QTAIM analysis for these three com-
pounds were acceptable, significant differences were found 
depending on how many structures were considered. If we 
only consider the three structures reported experimentally, 
the result obtained is just acceptable (r = 0.74). This result 
improves if we take into account the more populated file 
of the cluster (r = 0.86). In turn, the correlation improves 

significantly if we consider 50% of the files of the clusteri-
zation process, obtaining an r value of 0.95. It is interesting 
to note that this correlation is good enough to consider that 
it would have good predictive power. If we consider 100% 
of the cluster, the value improves even more (r = 0.98). It 
should be noted, however, that performing these calculations 
considering 100% of the cluster represents highly demand-
ing task in terms of calculation time and the analysis of 
results. Therefore we consider that using 50% of the cluster 
is a good compromise between calculation accuracy degree 
and computational demand. Based on the above results, the 
QTAIM study was carried out considering 50% of the clus-
tering process (for more details see methods section).

Figure 3 shows that an excellent correlation was obtained 
(r = − 0.95) for the complete series by using QTAIM calcu-
lations. This study allows to differentiate perfectly between 
the most active compounds (SKI-II, 1v2 and PF-543), com-
pounds with moderate activity (1, 2 and 3) and the inactive 
compounds (4, 5 and 6). On the other hand, the obtained 
correlation is good enough to expect good predictive power 
for this type of ligands. It is important to note that the 
QTAIM study also allows us to determine which portions 
of the molecules should be modified to increase their affinity 
for SphK1. This can be observed from Fig. 4. In this figure 
the interactions produced by the polar part of the molecules 

Table 2   Different correlations 
between experimental data 
(IC50) and Σρ(r)(a.u.) values 
(QTAIM calculations) obtained 
for compounds SKI-II, 1v2 and 
PF-543

a More populated corresponds to the structure of the leader of the most populated cluster
b 50% cluster corresponds to the leading structures that represent 50% of the population
c 100% cluster corresponds to the 10 structures obtained through the clustering process

Ligand IC50 (nM) log IC50 Crystal-
lographic 
structure

More populateda 50% CLUSTERb 100% CLUSTERc

SKI-II 500 2.699 0.227 0.178 0.425 1.146
1v2 20 1.301 0.495 0.478 0.716 1.567
PF-543 2 0.301 0.413 0.441 1.412 2.123
r − 0.743 − 0.858 − 0.947 − 0.985

Fig. 3   Correlation obtained by using QTAIM calculations for the 
whole series
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(blue color) have been differentiated from those produced 
by the hydrophobic tail of the compounds (orange color). 
Observing this figure it is evident that the active compounds 
have stronger interactions than the less active compounds. 
It is interesting to note that the compound PF-543 has very 
strong interactions both in the area of the cationic head and 
in the hydrophobic tail. This clearly explains its high affin-
ity for the active site of Sphingosine Kinase 1 and therefore 
its inhibitory activity (it is the strongest inhibitor reported 
to date). Comparing the Σρ(r) values obtained for 1v2 and 
PF-543 it can be seen that the interactions in the zones of 
the cationic heads of these compounds are comparable; how-
ever there is a noticeable difference in the interactions of 
the hydrophobic tail. In this case, the interactions observed 
for PF-543 are significantly stronger than those of 1v2 and 
therefore they are explaining the stronger activity of PF-543.

If we compare the Σρ(r) values obtained for SKI-II and 
PF-543, it is evident that both the cationic head zone and 
the hydrophobic tail of PF-543 establish more interactions 
and stronger ones than those obtained for SKI-II, which is 
in total agreement with the experimental data. On the other 
hand, the compounds previously reported by us (1–3) pre-
sent significantly weaker interactions in both portions of the 
receptor, indicating that it is necessary to introduce struc-
tural changes in both parts of the ligand in order to obtain 
a greater inhibitory activity. Once again these results are 
supported by the experimental data.

Considering the most active compound reported by our 
group (compound 1) it can be seen that the interactions in 
the hydrophobic tail of this compound are more than accept-
able. In fact, these interactions are greater than those found 
for 1v2 and SKI-II. However, the interactions obtained for 
the polar head of compound 1 are markedly weaker than 
those found for 1v2 and SKI-II and this would explain the 

lower inhibitory effect of compound 1 with respect to 1v2 
and SKI-II. In contrast, the results obtained for compounds 
2 and 3 suggest that the interactions that should be increased 
are those of the hydrophobic portion (orange zone) (Figs. 4, 
5).

Regarding the results obtained for the inactive com-
pounds (4–6), it is possible to observe that, in general, the 
interactions of these compounds are the weakest. The case of 
compound 4 is very particular, because it adopts a different 
spatial arrangement from the rest of the compounds and can 
only establish interactions with the hydrophobic zone of the 
active site (orange zone in Fig. 5). This different behavior 
could explain its lack of activity.

If we compare the interactions obtained for compounds 
5 and 6 with the more active compounds (SKI-II, 1v2 and 
PF-543), the differences are very marked. However, this dif-
ference is only subtle when the interactions are compared 
with those of compound 3. In fact, although the interactions 
of compound 3 are slightly larger, this difference is very 
small. There are at least two possible explanations for this 
situation: (a) it should be noted that although compound 3 
is considered active, its activity could be considered almost 
marginal (IC50 = 60 µM) (b) these compounds are chiral. 
Whereas racemic mixtures were used for the bioassays, 
only the R enantiomer, which is the preferred form (see 
methods section), was used for the simulations. This situ-
ation could introduce some “noise” that is not possible to 
evaluate so satisfactorily through these simulations. Despite 
this, it is evident that the QTAIM analysis gives an excellent 
correlation with the experimental data. This information is 
extremely useful, since it indicates which part of the mol-
ecule should be modified in order to increase its inhibitory 
activity against SphK1.

Dynamic propensity study of backbone hydrogen 
bonds

As a supplementary approach, we now study the dynamic 
propensity of the backbone hydrogen bonds of the protein 
SphK1 in order to determine its binding properties. This 
approach has been fostered by the observation that certain 
backbone hydrogen bonds (BHB), mainly those belonging 
to binding sites in several apo proteins, exhibit a dynami-
cal propensity in simulations that differs markedly form 
their state-value (that is, formed/not formed) in the reported 
PDB structure. This fact makes them appealing as targets 
for protein local stabilization upon ligand binding [42, 43]. 
The dynamic propensity study of BHBs represents a simple 
method that has been accounted for in detail in previous 
works [42, 43], but for the sake of completeness we briefly 
describe it in what follows: Specifically, for each BHB of the 
apo protein we calculate the difference (D value) between 
its dynamics formation propensity (fraction of time formed 

Fig. 4   Charge density values for the total interactions of the polar 
head (blue stacked bars) and the hydrophobic portion (orange stacked 
bars) for SKI-II, 1v2, PF-543 (more active compounds), compounds 
1–3 (less active molecules) and compounds 4–6 (inactive molecules). 
The repulsive short C–H•••H–C contacts were not included (Online 
version to see the colors)
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during a molecular dynamics trajectory) and its correspond-
ing PDB-structure state-value. By analyzing the D values 
it is usually found that most BHBs of the PDB are stable 
during the dynamics (low distance value, D). However, cer-
tain BHBs do exhibit large D-values, corresponding either 
to interactions that are present in the PDB and tend to be 
disrupted during (part of) the dynamics or, less frequently, 
to interactions that while absent in the PDB are nonethe-
less persistently formed during the dynamics. Then, if the 
absolute value of D for a given BHB is above ½, we call it a 
C-HB reflecting the fact that such BHB tends to “change it 
state” from formed to mostly disrupted or from not formed 
to mostly formed between the PDB structure and the dynam-
ics [42, 43]. Additionally, studies on the location of such 
C-HBs for a series of proteins have detected a clear enrich-
ment of them in binding sites. In turn, previous studies on 

a series of protein–protein or protein–ligand complexes 
showed that most C-HBs are strongly stabilized in the com-
plex form compared to the apo form, thus pointing to the fact 
that stabilization of C-HBs provides a driving force for bind-
ing [42]. In this sense, C-HBs embody motifs or regions of 
the protein whose stabilization depends on the establishment 
of a proper local context (usually involving water removal) 
provided by the ligand upon binding. Indeed, C-HBs stabi-
lization has been proven in a quantitative way for a series 
of protein–protein and protein-drug complexes, obtaining 
good correlations with biding affinity experimental values 
[42]. It is interesting to point out that this method provides 
a complementary approach since it does not make emphasis 
on direct protein–ligand interactions, but rather on the local 
stabilization of the target protein binding site upon ligand 
binding.

Fig. 5   Spatial view of the different ligands bonded in the binding 
pocket of SphK1. The blue and orange zones represent the cationic 
and hydrophobic portions of the active site, respectively. a PF-543 (in 
green), 1v2 (in yellow) and SKI-II (in purple) superimposed. b Com-
pound 1 (in cyan). c Compound 2 (magenta) and 3 (white) superim-

posed. d Compound 4 (dark green). Some of the main amino acids 
involved in the formation of the complexes receptor-ligand are also 
shown in this figure. The structures were taken from a clustering pro-
cess in which the last 45 ns of each of the three simulations were con-
sidered. (online version to see the colors)
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We should note that in the present study it has not been 
possible to determine C-HBs exactly in the same way as in 
previous ones [42, 43] since we lack a comparable SphK1 
apo structure. Indeed, there exist no experimentally obtained 
(NMR or X-ray) structure of apo SphK1 at exactly the same 
conditions as that for the different complexes reported 
and used in the present study (crystallized with ADP and 
Mg2+). Thus, we generated an apo structure by removing 
the inhibitor SKI-II from the complex and we determine 
BHBs belonging to the binding site as that whose distance 
(measured form the N amide or the carbonyl O) to any heavy 
atom of the SKI-II in the complex (PDB: 3VZD) is less 
than 6 Å. Thereby, dynamic propensities of such BHBs were 
calculated over a total of 27,000 MD configurations (three 
replicas of 45 ns). Then all those BHBs that are found to be 
formed in less than half of the configurations analyzed (that 
is, D-value > 0.5) will be C-HBs. Table 3 shows the C-HBs 
considered, together with their corresponding D-values. It 
is important to mention that the BHB 303–299 was included 
although it does not meet strictly the established cut-off 
value since in two of the replicas its dynamic propensity is 
less than 0.5, while in the other one it is higher.

Subsequently, dynamic propensities for C-HBs in the 
complexes between SphK1 and the most active compounds 
were evaluated: SK-II, 1v2 and PF-543. Table 4 shows DM 
values (average values of D), that is for each C-HBs we cal-
culate the D-values and, then by averaging such quantities, 
we provide the DM-value. This table displays an excellent 
correlation between the experimental binding affinity data 
and DM-values for these three compounds. Dynamic pro-
pensities were evaluated in the same period of time that 
QTAIM calculations.

The Fig. 6 show also an excellent correlation for the 
complete series of compounds. This study, like the QTAIM 
study, enables us to differentiate the most active compounds 
(SKI-II, 1v2 and PF-543) from compounds with moderate 
activity (1, 2 and 3) and inactive compounds (4, 5 and 6). 
However it is important to remark that the times demanded 
for the computer calculations as well as for the analysis of 
the results are significantly inferior in comparison to those 
required for the QTAIM analysis and therefore this technique 

could be very adequate for an exploratory analysis in this 
type of compounds.

Conclusions

Being able to predict the inhibitory activity of new com-
pounds before being synthesized is certainly a highly desir-
able goal. For the specific case of SphK1 complexes, we 
here present two theoretical methods that stand on different 
computational basis that, in both cases yield excellent cor-
relations with the experimental data. From these results, it 
is reasonable to expect that such methods might also present 
predictive ability for other structurally related compounds 
that have not been synthesized yet. In the case of the hydro-
gen bond dynamics propensity analysis, it is remarkable 
that a rather simple methodology with low computational 
requirements yields results in excellent accord with experi-
mental data. In this respect, the excellent performance of 
QTAIM would be a priori more expected in terms of its 
more accurate description of the molecular interactions.

Comparing the two techniques used here, it is evident 
that QTAIM calculations are much more computational 
demanding (time consuming). With regard to CPU time, 
the relationship between the hydrogen bond dynamic pro-
pensity analysis and QTAIM calculations is 1 h versus 
10 hs. But also QTAIM analysis requires a longer time 
in the preparation of the model system to study (prior to 

Table 3   D-values for C-HBs belonging to binding site of SphK1

C-HBs SphK1: APO form

nRES nRES D-values

178 174 0.841
181 177 0.561
272 269 0.762
303 299 0.391
302 298 0.546

Table 4   Correlation between experimental data (IC50) and DM values 
obtained for compounds SKI-II, 1v2 and PF-543

Compound IC50 (nM) log (IC50) DM (5–50 ns)

SKI-II 500 2.69897 0.532
1v2 20 1.30103 0.470
PF-543 2 0.30103 0.370
r 0.9736

Fig. 6   Correlation between DM-value and experimental data (IC50) 
for the whole series
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the calculation) and especially in the final analysis of the 
interactions (after the calculation). Both processes are 
much more complex and tedious than those required for 
the hydrogen bond dynamic propensity analysis. However, 
this greater computational effort is justified because the 
QTAIM study, in addition to giving an excellent correla-
tion with the experimental data, also gives us valuable 
information about which parts or functional groups of the 
different ligands are those that should be replaced in order 
to improve the interactions and thereby to increase the 
affinity for SphK1. Possibly, the main limitation in the 
use of QTAIM calculations for the analysis of interactions 
R–L, is that it is necessary to have the correct geometries 
for these complexes. It is good to keep in mind that the 
QTAIM study involves static calculations that are used 
to evaluate a dynamic process. Therefore, having many 
geometries (or at least the most representative) of each 
complex is fundamental, in order to obtain satisfactory 
results. In our study in order to guarantee this information, 
extensive DM simulations were carried out and a clusteri-
zation process was performed for the different complexes 
studied. It should be noted that the active site of SphK1 
can be considered a relatively complex system; in turn the 
conformational flexibility of the ligands and the structural 
variety of the compounds impose a high degree of diffi-
culty for molecular modeling of the systems under study. 
This requires performing extended simulations and proper 
clusterizations if we pretend to obtain satisfactory results.

In short, we report here two different theoretical 
approaches that exhibit excellent correlations with the exper-
imental data and that we believe can be very useful in order 
to predict the inhibiting effect of new compounds before 
they are synthesized. At this moment we are analyzing and 
synthesizing new structurally related compounds by using 
the theoretical approaches reported here.
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