
FULL PAPER

1700054  (1 of 10) © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mre-journal.de

A Closed-Loop Control Strategy for Producing Nitrile 
Rubber of Uniform Chemical Composition in a  
Semibatch Reactor: A Simulation Study

Luis A. Clementi, Romina B. Suvire, Francisco G. Rossomando, and Jorge R. Vega*

Dr. L. A. Clementi, Prof. J. R. Vega
INTEC, CONICET and Universidad Nacional del Litoral  
Güemes 3450, S3000GLN Santa Fe, Argentina
E-mail: jvega@santafe-conicet.gov.ar
Dr. L. A. Clementi, Prof. J. R. Vega
Facultad Regional Santa Fe  
Universidad Tecnológica Nacional  
Lavaisse 610, S3004EWB Santa Fe, Argentina
R. B. Suvire
Instituto de Ingeniería Química  
Universidad Nacional de San Juan  
Av. Libertador San Martín Oeste 1109
5400 San Juan, Argentina
Dr. F. G. Rossomando
Instituto de Automática  
CONICET and Universidad Nacional de San Juan
Av. Libertador San Martín Oeste 1109
5400 San Juan, Argentina

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/mren.201700054.

DOI: 10.1002/mren.201700054

copolymerization of acrylonitrile (A) and 
butadiene (B), (ii) the recovery of the unre-
acted (or residual) monomers to then be 
used in other batches, (iii) the latex coagu-
lation and dewatering to form a crumb 
rubber, and (iv) a drying and compres-
sion stage to produce NBR bales. In the 
industry, the copolymerization is typically 
carried out in a batch reactor at a constant 
reaction temperature of around 10 °C (cold 
NBR process). Most quality properties of 
the NBR can be defined during the copo-
lymerization reaction. Also, according to 
specifications of commercial NBR grades 
and desired production levels, the copoly-
merization processes can either be carried 
out in a batch or semibatch reactor, or in a 
train of continuous stirred tank reactors.[1]

Industrial reactors for production of 
NBR are typically operated in batch. From 
a process control point of view, the batch 

operation is simple because only the reaction temperature is 
regulated to avoid deterioration in the copolymer quality. Alter-
natively, reagent profiles could be added along the polymeriza-
tion to improve the quality of the final product. To these effects, 
numerical simulations of mathematical models of the reaction 
are useful to evaluate the efficiency of different control policies 
before their practical implementations in the real plant.

Some variables typically used for the molecular charac-
terization of the A–B copolymer are: the average chemical 
composition (i.e., the average mass fraction of A bounded to 
the copolymer, Ap ), the (number- and weight-) average molar 
masses ( nM  and wM ), and the average number of (tri- or  
tetrafunctional) long-chain branches ( ,3BN  and ,4BN ). Main 
quality variables of commercial NBR grades are Ap  and the 
Mooney viscosity (MV), which is important variable from the 
point of view of the rubber processability.[2] The MV is related 
to the average molar masses, and can indirectly be affected by 
impurities in the recycled A that reduce the effective initiator 
amounts.[3]

Particularly, Ap  is an important quality variable that is some-
times used in commercial specifications of NBR because it 
strongly affects several final properties of the material, such 
as the glass-transition temperature (Tg), the resistance to fuels 
and abrasion, and the gas permeation.[1,4] Moreover, Ap  can also 
affects MV.

Some commercial grades of NBR are AJLT, BJLT, and CJLT, 
which are classified according to their values of Ap , Tg, and MV.  

Nitrile-Butadiene Rubber

To improve the quality of industrial nitrile rubbers, the copolymer chemical 
composition, pA(t), should ideally be kept constant along the reaction. This 
work proposes a closed-loop control strategy for the semibatch operation of 
the reactor with the aim of regulating pA(t) within a reduced range of varia-
bility. The proposed strategy is evaluated by simulating a mathematical model 
of the process. To this effect, a simplified mathematical model of the reaction 
is first derived and then utilized to obtain a suboptimal control law and a soft-
sensor that estimates the polymerization rates. The suboptimal control law is 
compensated by adding a term proportional to errors in pA(t). The simulated 
example considers the production of the low-composition AJLT grade, with 
the copolymerization reaction represented by a detailed mathematical model 
adjusted to an industrial plant. Due to the high performance of the soft-
sensor, the simulation results suggest that the proposed closed-loop strategy 
is efficient to adequately regulate pA(t) in spite of structural and parametric 
uncertainties, while other quality variables remained practically unaffected.

1. Introduction

Commercial grades of nitrile rubber—also known as nitrile-
butadiene rubber (NBR)—are typically obtained in industry 
through the following steps: (i) the production of a syn-
thetic latex of around 20–25% in solids through an emulsion 
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Typical nominal values are: Ap  ≈ 20%, Tg = −56 °C, and 
MV = 40–50, for the AJLT grade; Ap ≈ 35%, Tg = −37 °C, and 
MV = 40–50, for the BJLT grade; and Ap ≈ 38%, Tg = −27 °C, 
and MV = 20–30, for the CJLT grade. In general, the copolymer 
chemical composition computed as the (accumulated) mass 
fraction of A bounded to the copolymer until time t, pA(t), 
varies along the reaction. Consequently, the compositional drift 
could produce undesired heterogeneous materials that exhibit 
multiple glass transitions and phase separations.[5–7] Similarly, 
time evolutions of all quality variables are expected: Mn(t), 
Mw(t), BN,3(t), and BN,4(t). Note that the average global values 
of these variables coincide with their values at the final reaction 
time (tf), for example, Ap  = pA(tf).

The emulsion copolymerization of A and B is characterized 
by an azeotropic composition point that is close to 40%. Since 
grades BJLT and CJLT have nominal specifications of Ap  rela-
tively close to (but below) the azeotropic composition, then a 
low compositional drift is expected along the polymerization, 
and therefore almost uniform products can be obtained through 
batch processes.[8] By contrast, the grade AJLT ( Ap ≈ 20%) impor-
tantly differs from the azeotropic point; and therefore, a batch 
reaction process will produce a meaningful compositional drift 
characterized by a decreasing pA(t) profile. Consequently, a highly 
heterogeneous final material will be obtained through batch reac-
tions. To avoid a deteriorated polymer quality, the copolymeriza-
tion reaction is typically stopped at x < 75%. This fact positively 
contributes to limit the compositional drift that would be more 
important if higher conversion levels were reached.

Detailed mathematical models of the semibatch copolymeri-
zation of A and B have been originally published by Dubé et al.[9] 
and Vega et al.[10] Even though meaningful differences have 
been detected in a few parameters of both models,[11] the main 
simulated variables were checked to exhibit a low sensitivity to 
such parameters. The model parameters determined by Vega 
et al.[10] were adjusted to reproduce experimental data collected 
in an industrial plant. In general, the NBR copolymerization 
model can be thought as being composed by three modules 
partially coupled:[12] (1) the mass balance module (MBM), (2) 
the molar mass module (MMM), and (3) the energy balance 
module (EBM). At each time, the MBM allows the calculation 
of the main reaction variables, such as: pA(t); the accumulated 
mass conversion, x(t); the volume of each phase, Vj(t) (j = m: 
monomer, w: water, and p: polymer); the monomer concentra-
tion in phase j, [A]j(t) and [B]j(t); the chain transfer agent (or 
modifier) concentration in phase j, [X]j(t); and the A and B 
polymerization rates, RA(t) and RB(t); among other variables. 
The main MMM outputs are Mn(t), Mw(t), BN,3(t), and BN,4(t). 
The EBM predicts the reactor temperature, T(t), and the mass 
flow rate of evaporated refrigerant, GR(t).

In practice, some process variables of the EBM are easy to 
be measured online, as for example, T(t) and GR(t), although 
unfortunately industrial GR(t) measurements exhibit mean-
ingful noises.[12] By contrast, most polymerization variables 
that are included in the MBM and MMM cannot be measured 
online due to the lack of specific sensors. For the isothermal 
NBR process, the estimation of x(t) from measurements of 
GR(t) is relatively simple.[12] By contrast, the estimation of 
NBR quality variables is rather difficult. Based on calorimetric 
measurements, Gugliotta et al.[12] proposed an open-loop 

observer for the online estimation of several variables in an 
industrial NBR plant. Such observers were then used to calcu-
late optimal control laws that allowed the regulation along the 
polymerization of (a) pA(t), by manipulation of the A feed flow 
rate, and (b) Mn(t), Mw(t), BN,3(t), and BN,4(t), by manipulation 
of the X feed flow rate.[13,14] Regarding a practical implementa-
tion in industry, the efficiency of those observers could be lim-
ited by (i) the unavoidable structural and parametric errors of 
the mathematical models utilized for their derivations, (ii) the 
presence of frequent disturbances (e.g., impurities in the reac-
tants, measurement noises, etc.), and (iii) uncertainties in the 
initial charge recipe.

The production of NBR in a train of eight continuous stirred 
tank reactors (CSTR) has been investigated on the basis of a 
mathematical model.[15,16] Steady-state feed flows of A, B, and 
CTA added into intermediate reactors of the train were calcu-
lated to maximize the production of NBR with prespecified 
values of Ap  and wM .[16] Also, a practical procedure for mini-
mizing the off-spec generated during changes of grade (from 
AJLT to BJLT, and vice versa) was proposed and successfully 
evaluated through simulations.[17] Different operation scenarios 
of a train of eight reactors utilized for the NBR production 
were discussed by Madhuranthakam and Penlidis.[18] Wash-
ington et al.[11] presented a complete mathematical model that 
is useful to simulate the NBR polymerization in batch or con-
tinuous reactors, as well as in a train of CSTRs. Even though a 
train of CSTR can compensate the compositional drift through 
proper monomer feeds at intermediate reactors, the regulation 
of the chemical composition in a semibatch operation is still 
of interest for current NBR processes of low production scales.

In summary, although several strategies were proposed to 
produce NBR of predefined quality properties, all quality vari-
able estimators (soft-sensors) as well as the proposed control 
laws were first derived and then evaluated on the same math-
ematical model utilized for representing the copolymerization 
reaction. In general, it is accepted that the implementation of 
efficient closed-loop control strategies is an unsolved challenge 
yet due to (i) nonlinearities of the polymerization process, (ii) 
structural and parametric uncertainties in the utilized math-
ematical models, (iii) lack of sensors for online measuring 
the involved variables, (iv) noisy signals produced by the few 
available sensors, and (v) difficulties inherent to the online 
estimation of the quality variables to be controlled. As far as 
the authors are aware, closed-loop control strategies aimed at 
regulating quality variables of the A–B copolymer under pres-
ence of structural and parametric uncertainties have not been 
investigated yet.

In this work, a closed-loop control strategy for the semibatch 
operation of the isothermal NBR reactor is proposed with the 
aim of regulating pA(t) along the emulsion copolymerization, 
by manipulation of the inlet flow rate of monomer A. The 
proposed strategy is evaluated through several simulations. 
To these effects, the copolymerization reaction is represented 
through a detailed mathematical model adjusted to an indus-
trial NBR plant.[10] To turn realistic the closed-loop simulations, 
a simplified mathematical model of the reaction is first derived 
and then used to obtain: (i) a suboptimal control law that cal-
culates the inlet flow rate of A for regulating pA(t) at a given 
desired value; and (ii) a neural network-based soft-sensor for 
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estimating the state variables of the reaction that are involved 
in the calculation of the control law. The soft-sensor requires 
information on the ratio between the moles of A and B initially 
charged into the reactor, the mass flow rate of A, and the mass 
flow rate of the evaporated refrigerant; and from those meas-
urements, it estimates the monomer polymerization rates, 
RA(t) and RB(t). From such estimates, the chemical copolymer 
composition, pA(t), is calculated. The ultimate control law is 
obtained by compensating the errors of the suboptimal control 
law with a term proportional to the instantaneous error in pA(t). 
The proposed closed-loop strategy is evaluated by simulating 
the production of NBR grade AJLT with the copolymer chem-
ical composition regulated at its nominal value of 20%. Alterna-
tive scenarios are also considered for checking the robustness 
under uncertainties.

2. The Proposed Control Law

The basic idea is to find the inlet molar flow of monomer A, 
FA,in(t), to be fed into the reactor with the aim of regulating 
pA(t) at a constant desired value, A

dp . Appendix A presents a 
simplified mathematical model of the copolymerization useful 
for control purposes. It was derived from the detailed mathe-
matical model by Vega et al.[10] The optimal control law based 
on the simplified model was derived in Appendix B. This con-
trol law is suboptimal for the true process due to differences 
between both models.

The proposed control law is composed by two additive terms. 
The first term is selected as the suboptimal control law, ( )*

A,inF t ,  
given by Equation (B7). The second term should be chosen to 
compensate for the remaining instantaneous error, ( )A

d
A−p p t .  

Unfortunately, in practice the polymerization rates, RA(t) and 
RB(t), involved in Equation (B7), and the chemical composition, 

pA(t), cannot be measured online, and therefore their values 
must be estimated by means of an adequate soft-sensor (see 
next section). Then, the control law can be implemented as 
follows

( ) ˆ ( )
ˆ ( )

( ˆ ( ))A,in A
B

p A
d

Aβ
= −







+ −F t R t

R t
K p p t � (1)

where the symbol “^” represents the estimated value of a given 
variable. In Equation (1), Kp is a constant (a proportional gain), 

A
dp  is the desired value of pA (or the set-point), ˆ ( )AR t  and ˆ ( )BR t  

are the estimated polymerization rates, and ˆAp  can be calculated 
on the basis of ˆ ( )AR t  and ˆ ( )BR t , as follows (see Appendix A)

ˆ M ˆ ( )

M ˆ ( ) M ˆ ( )
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0

p
N t
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t

t t

∫
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=
+

=
+
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where ˆ
A,bN  and ˆ

B,bN  are the total moles of reacted A and B, and 
MA (= 53.06 g mol−1) and MB (= 54.09 g mol−1) are the molar 
masses of monomers A and B.

The second term of Equation (1) is proportional to the 
estimated instantaneous error, ˆ ( )A

d
A−p p t . In this case, a clas-

sical integral term in Equation (1) is not recommended to be 
included because: (i) pA(t) is an accumulated variable that is 
obtained by integration of the instantaneous polymerization 
rates (Equation (2)), and therefore an additional integral term 
might lead to instabilities, and (ii) typical restrictions on the 
manipulated variable, FA(t), such as saturations that avoid nega-
tive feed flows, could cause undesired windup effects.

Figure 1 presents a basic scheme of the proposed closed-loop 
system that also includes the soft-sensor. Additive noises ΔGA,in 
and ΔGR were added to turn more realistic the simulated meas-
urements that are then fed into the soft-sensor.

Macromol. React. Eng. 2018, 1700054

Figure 1.  Schematic representation of the closed-loop control strategy for regulating pA(t) at the desired value, A
dp .
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3. The Proposed Soft-Sensor

A soft-sensor is a model that is used to online estimate non-
measurable process variables from the knowledge of other 
measured process variables. Soft-sensors can be used for 
monitoring and/or control purposes in complex industrial 
processes. Artificial neural networks are often utilized to 
implement soft-sensors due to their ability to efficiently map 
the highly nonlinear dynamics that are typically present in 
many industrial processes. In a styrene–butadiene emul-
sion polymerization system, a neural network proved effi-
cient to estimate both production and quality variables.[19] 
For the current polymerization process, the soft-sensor of 
Figure 2 is proposed for estimating the polymerization rates 
RA(t) and RB(t) involved in Equation (1). For such purposes, a 
radial basis function neural network (RBF-NN) that includes 
a single hidden layer of K neurons,[20] is fed with four inputs: 
(1) the noisy measurements of the accumulated mass flow of 
the evaporated refrigerant, ( ) [ ( ) ( )] dR

Acc.
R R

0∫= + ∆G t G t G t t
t

, (2) the 
noisy measurements of the accumulated mass flow of A fed 
into the reactor, ( ) [M ( ) ( )]dA,in

Acc.
A A,in A,in

0∫= + ∆G t F t G t t
t

, (3) the ratio 
between the moles of A and B initially charged into the reactor, 
NA,0/NB,0, and (4) the reaction time, t.

The current choice of an RBF neural network is supported 
by its universal[20,21] and best approximation[22–24] proper-
ties. Besides, an RBF neural network can be used to perform 
a curve fitting operation in multidimensional spaces; and 
although it is highly nonlinear in its parameters, its learning 
procedure has no local minimum problem.[25] This last char-
acteristic represents an evident advantage on other neural 
network structures such as the multilayer Perceptron that typi-
cally exhibits a complex error surface with local minima or 
nearly flat regions.

At each time t, the RBF-NN receives the input vector I = 
[t, ( )R

Acc.G t , ( )A,in
Acc.G t , NA,0/NB,0]T ∈ ℜ4 × 1; and produces the output 

vector, O = [ ˆ ( )AR t , ˆ ( )BR t ]T ∈ ℜ2 × 1. The superscript T indicates 
transpose vector. The k-th neuron in the hidden layer produces 
a scalar output of amplitude hk, given by

( )
1

2
e ; 1, ,K2

2

2

ξ
π

( )= = …
−

−

s
kk

k

s
k

kII
II cc

� (3)

where I − ck is the Euclidean distance between the input 
vector I and the center ck (4 × 1) of the k-th neuron in the 
hidden layer; and sk (k = 1, …, K) is the smoothness parameter 
that corresponds to the k-th neuron. From ξk(I), the output of 
the RBF-NN is calculated as follows

( )[ ]1, 2,
T

1

K

∑ξ=
=

w wk k k

k

OO II � (4)

where w1,k, w2,k (k = 1, …, K) are the weight coefficient of the 
connection between the k-th hidden neuron and the two output 
neurons. The center of each hidden neuron, ck, and the two 
weights of its connections with the output layer, wk = [w1,k  w2,k], 
are chosen through the training procedure that is described in 
the following section.

3.1. Training of the RBF-NN

The training procedure of an RBF-NN is fast and simple.[26] In 
fact, the training patterns are built on the basis of a set of Kt pairs  
{ [ , , , / ]R

Acc.
A,in
Acc.

A,0 B,0
T 4 1= ∈ℜ ×t G G N Nk k k kk k

II , [ , ]A B
T 2 1= ∈ℜ ×R Rk k k

OO }  
(k = 1, …, Kt). These patterns are presented to the RBF-NN. 
A subset with K (< Kt) randomly chosen training patterns is 
utilized for determining the values of ck and wk (k = 1, …, K). 
Note that the number of hidden neurons, K, coincides with 
the number of chosen training patterns. The center of the k-th 
hidden neuron is chosen as ck = Ik (k = 1, …, K), and the weight 
coefficients of the connections with the output layer are chosen 
as wk = Ok (k = 1, …, K). Consequently, from Equation (4), the 
RBF-NN produces the following output

( )
1

K

∑ξ=
=

k k

k

OO II OO � (5a)

with

( )
1

2
e ; 1, ,K2

2

2

ξ
π

( )= = …
−

−

s
kk

k

s

k

kII
II II

� (5b)

According to Equations (5a) and (5b), the output of the 
RBF-NN is obtained as the linear combination of the training pat-
terns Ok = [RA RB]T weighted by the coefficients ξk(I) (k = 1, …, K).  
Such coefficients become larger when the centers ck = Ik  
are closer to the input I. Thus, the output of the RBF-NN is 
mostly defined by those training patterns Ok that exhibit small 
distances I − ck = I − Ik.

The smoothness parameters sk (k = 1, …, K) affect the selec-
tivity of the hidden neurons. Thus, small sk values typically 
increase the selectivity; i.e., only those neurons of small norm 
I − Ik will meaningfully contribute to the output. On the con-
trary, high sk values produce a less selective RBF-NN, and then 
neurons with larger distances I − Ik will also contribute to 
the output. Therefore, low values of sk can lead to rather oscil-
lating profiles for ˆ ( )AR t  and ˆ ( )BR t  around the true profiles. By 
contrast, high values of sk will produce smoother estimates but 
probably with erroneous tendencies. For simplicity, a common 
smoothness parameter, s*, is selected for all neurons, which 
can be chosen according to the Holdout method described by 
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Figure 2.  The proposed soft-sensor based on an RBF-NN.
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Park and Sandberg.[27] To this effect, the K* ( = Kt – K) patterns 
that were not used in the selection of ck and wk are utilized for 
determining the optimal s* by solving the following optimiza-
tion problem

min ˆ
*

1

K*

∑ −




=

s
k k

k

OO OO � (6)

where ˆ
kOO  is the estimation of Ok produced by the RBF-NN. 

Thus, s* is the value that best reproduces the K* selected 
patterns.

4. Simulation Results

The scheme of Figure 1 was implemented for evaluating the 
closed-loop regulation of pA(t) along the copolymerization 
reaction corresponding to the production of NBR grade AJLT, 
at 10 °C. Although only simulated results are here presented, 
it is important to highlight that the detailed mathematical 
model was originally adjusted (for the BJLT grade) to an indus-
trial plant with a stirred-tank reactor of 21 000 dm3 operated 
in batch. Currently, the industrial plant is property of Pampa 
Energía S.A. (San Lorenzo, Santa Fe, Argentina).

The recipe for the batch copolymerization was directly taken 
from Minari et al.,[15] and it was also used for the semibatch oper-
ation, except for a reduction of around 26% in the initial amount 
of monomer A (see Table 1). The true copolymerization reactions 
were simulated through the complete model by Vega et al.[10] 
In practice, a perfect mathematical model of the reaction is 
unavailable. Therefore, in order to better represent a practical 
case, the simplified mathematical model (see Appendix A)  
was used for deriving the control law (see Appendix B) and for 
synthesizing the soft-sensor (see Section 4.2).

4.1. Batch Simulations

For the batch process, Figure 3 compares the main output 
variables obtained from the detailed model by Vega et al.[10] and 
the simplified model of Appendix A. Simulations were stopped 
when the copolymer conversion reached x ≈ 72%, as a criterion 
typically used in industrial practice. Parameters of the simplified 
model were adjusted to reproduce the profiles obtained with the 
detailed model. Only two parameters of the MBM were adjusted: 
rB = 0.39 and KAmp = 2.00 (their values in the detailed model 
were 0.30 and 2.20, respectively). To compensate for the average 
molar masses between both models, the B-transfer propagation 
constant to CTA, kfBX, was reduced from 241 (in the detailed 
model) to 201 (in the simplified model). Due to the structural 
differences between both models, the chemical composition evo-
lutions could not be reproduced perfectly. In fact, some minor 
differences are observed along the trajectories of the (accumu-
lated) pA(t) and (instantaneous) pA,i(t) chemical compositions. 
For example, at the beginning of the reaction (t < 150 min),  

Macromol. React. Eng. 2018, 1700054

Table 1.  Recipes for the industrial production of NBR grade AJLT 
through the batch and semibatch processes.

Total moles  
[mol]

Total mass  
[kg]

Acrylonitrile Batch: 14 458 Batch: 767

S. Batch: 10 663 S. Batch: 566

Butadiene 80 366 4347

Water 156 680 8704

Initiator 1.21 0.24

Emulsifier 742.1 214.0

CTA 93.2 18.9

Figure 3.  The NBR batch process (AJLT grade): comparison of the detailed (–) and simplified models (- -). a) Mass conversions, b) accumulated and 
instantaneous chemical compositions, c) number- and weight-average molar masses, and d) tri- and tetrafunctional average long-chain branches. 
Symbol “∼” indicates variables predicted by the simplified model.
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differences of ≈0.6% are observed for pA(t) predicted through both 
models. At longer times (t > 400 min), differences of about 0.2% 
are observed. However, the other main output variables (x, nM ,  

wM , ,3BN , and ,4BN ) are almost overlapped. The estimated con-
version is almost accurate (Figure 3a) because the extent of the 
polymerization reaction can efficiently be estimated from the 
measured evaporated refrigerant.[12] Also, the estimated molar 
masses (Figure 3c) and long-chain branches (Figure 3d) are 
quite accurate, because highly similar MMM models were used 
for both the process and the soft-sensor.

Main mismatches between both models are particularly noto-
rious at the first minutes of the reaction. In fact, according to 
Figure 3b, the detailed model predicted pA ≈ 1 for t ≈ 0, while the 
simplified model predicted pA values close to 0.24. It is expected 
that predictions of the detailed model are more reliable. In fact, 
at low reaction times, the polymerization of A in aqueous phase 
leads to the production of poly(acrylonitrile), due to the relatively 
high solubility of A (and low solubility of B) in water. By con-
trast, the simplified model considers a negligible concentration 
of A in water phase (see Appendix A), thus producing lower pA 
values at the beginning of the reaction (Figure 3b).

It is important to note the unacceptable compositional drift 
suffered by pA(t), which approximately varies from 24% to 18% 
along the reaction. In practice, such compositional drift can 
cause an unacceptable heterogeneity in the produced rubber. 
This is the main reason to implement a control strategy that 
allows the regulation of the chemical composition along the 
polymerization reaction.

4.2. Synthesis of the Soft-Sensor

To synthesize the soft-sensor, an RBF-NN with K = 10 000 neu-
rons was selected. The training was carried out through a set 
of Kt = 10 395 patterns that were generated as follows: (1) the 
closed-loop of Figure 4 was implemented; (ii) the simulated 
copolymerization was carried out for different values of NA,0, 
NB,0, Kp, and T, in order to generate the Kt = 10 395 pairs  
{ [ / ]R A,in A,0 B,0

T= t G G N Nk k k k k k
II , [ ]A B

T= R Rk k k
OO }. For such pur-

pose, NA,0 was varied from 7500 to 12 500 mol, at regular inter-
vals of 2500 mol; NB,0 was varied from 75 000 to 85 000 mol, 
at regular intervals of 5000 mol; Kp was varied from 0 to 7500, 

at regular intervals of 750; and T was varied from 9 to 13 °C, at 
regular intervals of 1 °C. Values of GR, GA,in, RA, and RB were 
taken in the range 1–601 min, at regular intervals of 30 min. 
Then, K = 10 000 patterns were used for training the RBF-
NN, and the remaining K* = 395 patterns were utilized for the 
selection of the smoothness parameter s* through the Holdout 
method, yielding s* = 0.95.

It is worthwhile to mention that the input tk was proven to 
play a key role in the performance of the soft-sensor. Evalua-
tions of a soft-sensor synthesized without considering the 
input tk produced highly oscillatory and erratic predictions of 
both polymerization rates. This can be attributed to the rather 
constant values adopted by RA and RB along a period between 
100 and 400 min, which could in turn contribute to deteriorate 
the selectivity of the neural network.

4.3. Semibatch Operation: Closed-Loop Regulation  
of the Chemical Composition

The main objective of the semibatch operation consists in regu-
lating pA(t) at the prespecified desired value ( A

dp = 20%) through 
an appropriate addition of A. The new amount of moles of A 
to be initially charged into the reactor were calculated through 
NA,0 = NB,0/β (see Appendix B), with β = 7.537 (Equation (B4); 
while other recipe components were kept unchanged with 
respect to the batch operation. The proportional constant 
Kp = 2500 was selected by taken into account that smaller Kp 
values produced too small contributions of the second term of 
Equation (1), and consequently more deteriorated regulations 
of pA(t). By contrast, higher Kp values produced large oscilla-
tions in GA,in(t). Measurements GA,in(t) and GR(t) were obtained 
by adding Gaussian noises of zero-mean and standard devia-
tions of 2.5% of the maxima of their noise-free signals. All 
simulations were stopped when x ≈ 72% was reached, which 
corresponds to a total reaction time of 522 min.

Figure 5 shows the results corresponding to the proposed 
semibatch policy. The control strategy produced the A flow rate 
of Figure 5a, which was able to keep almost constant profiles 
of both pA(t) and pA,i(t) around A

dp = 20% (Figure 5b). Particu-
larly note the meaningful improvement with respect to the 
batch profiles of Figure 3b, and reproduced as pA,batch(t) and 

Macromol. React. Eng. 2018, 1700054

Figure 4.  Synthesis of the soft-sensor: closed-loop strategy implemented for generating the training patterns.
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pA,i,batch(t) in Figure 5b. In general, it was possible to keep pA(t) 
within ±0.5% of A

dp  along the reaction, except for the first reac-
tion minutes when the homopolymerization of A in the aqueous 
phase is dominant. However, the mass of poly(acrylonitrile)  
produced is almost negligible in comparison to the total 
copolymer mass. It is also interesting to note that the manipulated  
flow rate of A, GA,in(t), exhibits a profile almost proportional to 
the measured mass flow of refrigerant, GR(t). The total mass of 
A added along the reaction was 369 kg, as obtained by integra-
tion of GA,in(t) of Figure 5a. Then, in the semibatch process the 
total amount of A was 566 + 369 = 935 kg, which is greater than 
the 766 kg utilized in the batch process. However, this is an 
expected result because the final chemical composition (18.6%) 
reached in the batch process was smaller than the nominal 
value (20.0%) reached through the semibatch operation.

On the other hand, the mass conversion, x, and the remaining 
quality variables, nM , wM , ,3BN , and ,4BN , were almost unaffected 
by the semibatch policy with respect to the batch reaction 
(Figure 5d–f). Figure 5c suggests an acceptable performance 
of the soft-sensor, with estimated polymerization rates close to 
their true values. For this reason, the estimated chemical com-
position calculated through Equation (2), ˆ ( )Ap t , was close to the 
true composition, pA(t) (Figure 5b). In fact, the maximum error 
reached was 0.4% (except at the beginning of the reaction, due 
to the homopolymerization of A in aqueous phase).

Even though the calculation NA,0 = NB,0/β was derived 
from an approximated model, it was effective to regulate the 

chemical composition around its desired value. In order to 
analyze the robustness of the closed-loop strategy under errors 
in the initial charge of A, three simulations at different initial 
charges of A were implemented: (i) NA,0 = 0.90 × NB,0/β, (ii) 
NA,0 = NB,0/β, and (iii) NA,0 = 1.10 × NB,0/β. The results are pre-
sented in Figure 6. In each of the three analyzed cases, ˆ ( )Ap t  
was close to pA(t), thus confirming an acceptable performance 
of the implemented soft-sensor. Note that in case (iii), pA(t) is 
quite larger than A

dp  along the first minutes of the reaction. 
Unfortunately, this error cannot be corrected because the con-
trol system is incapable of withdrawing A from the reactor. In 
this sense, the current simulations show that too low initial 
charges of A into the reactor can adequately be compensated by 
the added A flow rate; while excessive amounts of A should be 
avoided in the initial charge.

A simulation was carried out at T = 12 °C, in order to investi-
gate the robustness of the closed-loop strategy under uncertain-
ties in the reaction temperature. Figure 7 shows some variables 
of interest. At the selected higher temperature, the propagation 
constants increased, and therefore the mass conversion reached 
72% in a reaction time shorter than in the case of T = 10 °C 
(Figure 7a). Even though the soft-sensor did not include the 
temperature as an input, the estimated chemical composition 
profile was acceptably close to the true one. This is an impor-
tant result because it suggests that pA(t) can be efficiently con-
trolled through the proposed strategy even under presence of 
undesired changes or errors in the reaction temperature.

Macromol. React. Eng. 2018, 1700054

Figure 5.  The NBR semibatch process (AJLT grade) and comparison with the batch process. a) Mass feed flow of added A (GA,in), and measured 
mass flow of evaporated refrigerant (GR), b) accumulated (pA), instantaneous (pA,i), and estimated (ˆ Ap ) chemical compositions, c) true (RA, RB) and 
estimated ( ˆ

AR , ˆBR ) polymerization rates, d) mass conversion (x), e) average molar masses ( nM , wM ), and f) average degrees of branching ( ,3BN , ,4BN ).
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Other simulations aimed at evaluating the limiting case of 
Equation (1) when only the suboptimal control law is maintained 
(i.e., when Kp = 0). In this case, reasonable regulations of pA(t) 

are obtained provided that accurate NA,0 are selected. However, 
errors in NA,0 produced unacceptable off-sets with respect to the 
desired chemical composition. On the other hand, when only 
the proportional control law is considered, then the dynamic 
response of pA(t) can be poor (for relatively low Kp), or highly 
oscillatory feed flows of A are obtained even with excessively 
large peaks. In summary, the combination of both components 
proposed by Equation (1) seems to be a reasonable solution.

5. Conclusions

A closed-loop control strategy was proposed and implemented 
for regulating the chemical composition of the copolymer cor-
responding to the NBR grade AJLT. A simplified mathematical 
model of the process was derived, and then used for synthe-
sizing a soft-sensor and for obtaining the control law. The imple-
mented methodology allows for checking the robustness of the 
proposal, in the sense that the simplified model includes mean-
ingful structural and parametric uncertainties while the real 
plant was simulated through a detailed mathematical model. 
Simulation results indicated that the chemical composition 
can acceptably be regulated along the reaction. With the imple-
mented control scheme, a total compositional drift smaller than 
0.5% was obtained, thus importantly reducing the composi-
tional drift of 6% observed in the batch process, and therefore 
contributing to improve the quality of the final rubber.

Two relevant aspects provide additional reliability to the cur-
rent closed-loop control strategy: (a) its ability for acceptably 
compensating errors in the initial charge of A; and (b) its rela-
tive insensitivity to errors in the reaction temperature.

Effectiveness of the proposed control law mainly relies on 
the ability of the soft-sensor for adequately estimating the two 
reaction rates, RA and RB. These estimates have two important 
roles: (1) they are directly involved in the suboptimal control 
law; and (2) they are used to estimate the copolymer chemical 
composition that is then used to compensate for the off-set 
through the proportional control term. In this context, and 
regarding to a practical implementation, the correct calibration 
of the soft-sensor seems to be a crucial stage to obtain an effi-
cient closed-loop strategy.

A negligible sensitivity of the soft-sensor performance was 
observed when zero-mean random Gaussian noises were added 
to the variables GR(t) and GA,in(t). This is due to the filtering 
effect of the integrations utilized for obtaining the accumulated 
flows, ( )R

Acc.G t  and ( )A,in
Acc.G t . Even though not shown, random 

Gaussian noises with average values larger than 5% with 
respect to the maximum of GR(t) and GA,in(t) may deteriorate 
the soft-sensor performance. These results alert on the impor-
tance of a reliable calibration of the corresponding flow meters.

Even though this article only presents simulation results, the 
industrial implementation of the proposed closed-loop strategy 
would be simple. Only online measurements of the refrigerant 
flow are required. The remaining information that is needed 
as input to the controller (initial monomer loads and reaction 
time) does not represent major difficulties; while the informa-
tion on the A feed flow is directly available since it is calcu-
lated by the same controller. On the other hand, the training 
of the neural network (here developed only on the basis of 
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Figure 6.  Semibatch NBR operation: sensitivity of the chemical compo-
sition to errors in the initial charge of A (NA,0). a) NA,0 = 0.90 × NB,0/β,  
b) NA,0 = NB,0/β, and c) NA,0 = 1.10 × NB,0/β.

Figure 7.  Semibatch NBR operation: sensitivity of the chemical composi-
tion to errors in the reaction temperature (T = 12 °C). a) Mass conversion, 
and b) chemical composition profiles.
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simulations) could be reinforced by incorporating true meas-
urements taken along the semibatch operations.

Appendix

A. Semibatch Emulsion Copolymerization of A and B: Simplified 
Mathematical Model of the Mass Balance Module

In this appendix, a simplified mathematical model of the semi-
batch emulsion copolymerization of A and B is derived on the 
basis of the detailed mathematical model developed by Vega 
et al.[10] Most simplifications are introduced in the MBM, and 
more precisely in the mass balances of the (free and bounded) 
number of moles of A and B. By contrast, both EBM and MMM 
are kept unchanged with respect to the original detailed math-
ematical model.

From Vega et al.,[10] the simplified model is obtained by 
assuming the following additional hypothesis: (i) the concentra-
tions of A and B in the aqueous phase are negligible in compar-
ison with their concentrations in the polymer phase; and (ii) the 
partition coefficients of A and B between the monomer and the 
polymer phases, KAmp and KBmp, are identical, i.e., KAmp = KBmp =  
Kmp. From hypothesis (i), one can neglect the polymerization 
rates of A and B in the aqueous phase, i.e., RA,w = RB,w = 0. On 
the other hand, hypothesis (ii) leads to: [A]p/[B]p = NA/NB; i.e., 
the emulsion copolymerization behaves as a solution copoly
merization system. Therefore, under these hypotheses, the mass 
balance of the free and bounded number of moles of A and B are

d

d
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where FA,in and FB,in are the inlet molar feed flows of A and B, 
respectively; NA and NB are the free (or unreacted) moles of A 
and B; NA,b and NB,b are the moles of A and B bounded to the 
copolymer; RA and RB are the polymerization rates of A and B in 
the polymer phase; [A]p and [B]p are the concentration of A and 
B in the polymer phase; n  is the average number of free radi-
cals per polymer particle; Np is the number of polymer particles; 
NAV is the Avogadro’s constant; kpAA and kpBB are homopropaga-
tion rate constants for A and B in the polymer phase; rA and rB 
are the reactivity ratios of A and B; Kmp is the (assumed equal) 
partition coefficient of A and B between the monomer and the 
polymer phases; Vm and Vp are the volumes of the monomer and 
polymer phases, respectively; ρA, ρB, and ρp are the densities of 
the A, B, and the polymer, respectively; and Φp is the polymer 
volume fraction in the polymer phase. From hypothesis (ii), it is 
also possible to derive the following relationship: Φp = 1–1/Kmp. 
For the calculation of n  and Np, see, e.g., Vega et al.[10]

After solving the simplified mathematical model of 
Equations (A1)–(A10), then the main output variables cor-
responding to the MBM, i.e., the mass conversion, x, and the 
instantaneous and accumulated mass fractions of A bounded 
to the copolymer (or instantaneous and accumulated copolymer 
chemical compositions), pA,i and pA, can be calculated as follows

( )
M ( ) M ( )

M [ ( ) ( )] M [ ( ) ( )]
A A,b B B,b

A A A,b B B B,b

=
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+ + +
x t
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N t N t
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Note that Equations (A11)–(A13) are strictly valid for the 
simplified model. In the case of the detailed model, NA,b not 
only includes the moles of A bounded to the copolymer but 
also the moles of A that homopolymerize in water. Similarly, in 
the detailed model, RA also includes the contribution of the A 
polymerization rate in the water phase.

B. Derivation of the Suboptimal Control Law

Consider the mathematical model of Appendix A. If the instan-
taneous chemical composition is kept constant along the 
process, i.e., pA,i (t) = A

dp  (= constant), then Equation (A12) yields
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And solving for RB(t)/RA(t), it results
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where γ is a constant that depends on the chosen A
dp  value. For 

example, for the AJLT grade ( A
dp = 0.20): γ = 3.92. Since [A]p/[B]p =  

NA/NB (see Appendix A), then after replacing Equations (A5) 
and (A6) into Equation (B2), one obtains

( )
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R t

R t

r N t N t N t

r N t N t N t
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Then,

( 1) 0B
2

Aβ γ β γ− − − =r r � (B4)

where β = NB(t)/NA(t). Since rA and γ are constants, then β must 
be a constant. Therefore, dβ/dt = 0, and one can write
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t
N t

N t

t � (B5)

From Equations (A1),(A2), and (B5), it is obtained

[ ( ) ( )] ( ) ( ) [ ( ) ( )] 0A,in A B A B,in B− − − =F t R t N t N t F t R t � (B6)

By assuming FB,in = 0, the final expression of the control law 
is given by

( ) ( )
( )*

A,in A
B

β
= −F t R t

R t
� (B7)

where β is the (positive) solution of Equation (B4) for given 
values of rA, rB, and γ. Equation (B7) is a suboptimal control law 
in the sense that it was derived from a simplified mathemat-
ical model. Additionally, the implementation of Equation (B7)
requires the online values of RA(t) and RB(t), which cannot be 
directly measured. In practice, a soft-sensor must be developed 
to estimate both variables.

Note that the expression β = NB(t)/NA(t) can also be utilized 
for the selection of the initial charge of each monomer in the 
reactor. For example, given an initial amount of B, NB,0, then 
the initial amount of A is NA,0 = NB,0/β.
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