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A B S T R A C T

This paper presents a novel methodology to simultaneously determine the optimal ply-order, ply-number and
ply-drop configuration of laminate wind turbine blades using simulation-based optimization, considering the
shape that the laminates are expected to attain after large elastic deformations. This methodology combines
Genetic Algorithms with the Inverse Finite Element Method.

As an actual engineering application, we redesigned the composite stacking layout of a medium-power 40-kW
wind turbine blade to reduce its weight, subjected to mechanical and manufacturing constraints such as al-
lowable tip deflection, maximum stress, natural frequencies, and maximum number of successive identical plies.
Results demonstrate weight reductions of up to 15% compared to the initial layout, proving that the proposed
methodology is a robust redesign tool capable of effectively determining the optimal composite stacking layout
of laminate wind turbine blades.

1. Introduction

In the pursuit of better, more competitive and more efficient wind
turbines, the structural layout of the blades is one of the design aspects
that can lead to significant reductions of weight and costs, while
maintaining the reliability of the machine. Improvements on the
stacking sequence and the number of plies along the blade provide not
only weight and costs savings in the rotor, but also in the tower and
foundation. The use of composite materials in the manufacturing pro-
cess of the blades is a natural choice due to many technical and eco-
nomic reasons, such as outstanding mechanical properties, excellent
strength-to-weight ratio, availability, reliability, and competitive cost.
The vast amount of scientific works addressing the search of the optimal
stacking sequence and number of plies in the composite laminates of
the blades proves that this is one of the most popular design problems in
the wind energy community.

The use of laminates with variable stiffness along the blade [1] is of
particular interest due to their superior structural performance com-
pared to laminates with longitudinally constant stiffness [2]. Variable
stiffness laminates taper material distribution that is achieved by ply
drop: A material layer can be dropped from the root to the tip of the
blade, if it is not essential for its structural stability.

Hence, the optimal design of a blade can be determined by finding
the proper laminate distribution that minimizes the weight of the blade,

while satisfying all given constraints [3]. This is usually a nonlinear
programming problem with integer design variables, like the number of
plies and their order, which are continuous design variables, where the
mechanical constraints (minimal compliance, maximal stress) are de-
termined using computational mechanics.

Genetic algorithms (GA) [4], based on the natural principle of
“survival of the fittest”, are by far the widest methods for the solution of
this kind of problem. In a pioneering work on optimization of tapered
laminates, Kim et al. [5] developed the “patch-wise layout design
method” using GA for minimizing the weight of the structure subject to
a strength constraint based on the Tsai-Hill fail criterion, considering as
design variables the ply angles and the number of plies in each patch.
To ensure fiber continuity between patches, only the stacking sequence
in the patch with the maximum number of plies is optimized, and the
same sequence is adopted for the remaining patches (although plies can
be dropped from patches where the failure constraint is satisfied). Ir-
isarri et al. [6] used a Pareto-based GA to minimize the mass and
maximize the buckling margin for a tapered laminate, subject to
strength constraint for avoiding instability issues throughout the
structure (even if the buckling margin is maximized, it could remain
low). They used a Stacking Sequence Table (SST) to describe the se-
quence of ply-drops ensuring the transition between patches, which
allowed them to satisfy design rules without additional constraints. Fan
et al. [7] minimized a unique function defined as the sum of the weight
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of the laminate and a term that decreases as the buckling margin in-
creases, penalized by factors considering contiguity and disorientation.
They introduced the ply-composition and the ply-ranking chromo-
somes, whose construction forced the satisfaction of the design rules on
continuity, balance and symmetry without using constraints.

Specific to wind turbine applications, Dal Monte et al. [8] presented
a multi-objective GA optimization procedure to minimize the mass and
maximum displacement of a 7.22-meter blade for the AOC 15/50
Horizontal Axis Wind Turbine (HAWT), by changing the material layup
and placement in the shell skin. Integer design variables to optimize
categorical variables are used in this case. In a more recent work, Dal
Monte et al. [9] present a coupled optimization procedure where both
aerodynamic and structural parameters are considered as the design
variables, to improve the performance and mechanical integrity of the
AOC 15/50 HAWT. In this approach, the blade element momentum
(BEM) and the finite element method (FEM) are used for the aero-
dynamic and structural response, respectively, and the optimization is
carried out by GA. Wang et al. [10] applied GA to minimize the weight
of a blade of a 30-kW Vertical Axis Wind Turbine (VAWT), subject to
constraints on stress, deformation, vibration and buckling, manu-
facturing and continuity. They consider not only integer design vari-
ables (the number of unidirectional plies at each region of the blade)
but also continuous ones (the location of spar caps and the thickness of
shear webs). Fagan et al. [11] minimized the weight, penalized by the
deformation excess, of a 13-meter blade for a medium-power HAWT. In
this case, they considered integer design variables defining the amount
of plies in the shell skin, the shear webs, and the spar caps of the blade,
the end point of the core in the shear webs and the number of shear
webs.

In a previous work [12], we widely describe the use of the Inverse
Finite Element Method (IFEM) for the design of the blade of a 40 k
three-blade HAWT. In this work, we introduce a new method for the
determination of the optimal number and order of plies in tapered la-
minates, capable of accounting for the shape the laminates are expected
to attain after large elastic deformations. As usual in the above men-
tioned literature, we use GA to minimize the weight of the structure
subject to manufacturing and mechanical constraints, the latter being
evaluated by numerical structural solver. Here, we make a crucial
contribution to the optimization of slender structures undergoing large
elastic deformations (like most of the turbine blades): the use of IFEM
[12,13] for structural analysis. IFEM computes the manufacturing
shape of a structure such that it attains a prescribed shape under given
loads. By this way, a major requirement is taken into account in the
optimal design of the blade: It has to attain a given aerodynamically
efficient shape when it is largely deformed by the service loads. This is a
novel methodology, and to the best of the authors’ knowledge, no other
combination of an optimization method and IFEM has been reported in
literature so far. Hence, the former blade of [12] is taken as the base
case to highlight the current optimization results.

This paper is organized as follows: Section 2 presents the design
problem under study, and describes the geometry and material layout
of the reference blade, and the mechanical properties of the composite
materials adopted. Section 2.3 describes the objective function, the
design variables, and the design constraints of the optimization pro-
blem. Section 3 describes the GA algorithm used in this work, and its
specific setup. Numerical results are given in Section 4, and the con-
cluding remarks in Section 5.

2. Case study

In order to validate the current optimization methodology, let us
take as reference the blade of a 40 kW three-blade HAWT designed in
our previous work [12]. This turbine has a radius of =R 6.70 m and,
under operating conditions, it rotates at 72 RPM for a wind velocity of
7m/s. Three airfoils from the SG604X family [14] were selected for the
root (SG6040), the mid-span (SG6042) and the tip of the blade

(SG6043), while intermediate airfoils were defined by linear inter-
polation. The adimmensional chord length and the twist angle dis-
tribution vary along the span following classical Schmitz theory. Both
of these values are presented in Table 1 along the adimmensional blade
span. The resulting shape of the blade is shown in Fig. 1.

The aerodynamic pressure over the reference blade was computed
using Computational Fluid Dynamics (CFD) for the given operating
conditions in [12], and it is depicted in Fig. 2. This problem was nu-
merically solved using the finite volume method as implemented into
the open-source software OpenFoam. The steady-state solver for in-
compressible and turbulent flow simpleFoam with the k-ω turbulence
model was used along with the multiple reference frame approach

Table 1
Chord length and twist angle distribution along the adimmensional blade span.

Blade span [r/R] Chord [c/R] Twist [degrees]

0.12 0.170 28.51
0.19 0.140 19.08
0.27 0.118 13.49
0.35 0.090 9.95
0.42 0.080 7.59
0.50 0.070 5.93
0.58 0.060 4.72
0.65 0.055 4.12
0.73 0.050 3.72
0.81 0.045 3.43
0.88 0.041 3.31
0.96 0.039 3.25
1.00 0.038 3.25

Fig. 1. Geometry of the reference blade, determined in [12].

Fig. 2. Resultant aerodynamic pressure over the blade, computed in [12]. View from the
upper side (a) and from the lower side (b).
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trough the fvOptions. The boundary conditions are prescribed wind
velocity at the inlet, and uniform atmospheric pressure in the lateral
surface (open boundary) and in the outlet boundary, and the surface of
the blades is assumed to be a smooth no-slip wall. This procedure was
validated in [12]. The resultant aerodynamic forces are determined by
these pressure gradients in combination with the viscous flow.

The blade was assumed to be made of a tapered laminate of multiple
plies of double-bias, biaxial and uniaxial fiberglass, and epoxy gelcoat,
as shown in Fig. 3. The fiberglass consists of an epoxy resin reinforced
by E-type glass fibers with volume fraction of 60%. Fibers in the plies of
uniaxial fiberglass are parallel to the longitudinal axis of the blade,
while they are either parallel or normal to this axis in the plies of biaxial
fiberglass, and they are inclined ± °45 with respect to this axis in the
plies of double-bias fiberglass. In all cases, ply 1 always denotes the
layer next to the core of the blade, the outer ply is made of epoxy
gelcoat, and the stacking sequence is repeated at the lower and upper
side (i.e., it is symmetric with respect to the core of the blade). The
design of this reference blade was inspired by similar designs of Sandia
[15] and NREL [16]. Material properties are listed in Table 2.

The material distribution throughout the blade in combination with
the angular velocity, determines the stationary inertial loads. These
body forces, together with the resultant aerodynamic forces, have as
resultant the service loads producing the large elastic deformation of
the blade.

2.1. Finite element mesh

The structured quadrilateral mesh used for the IFEM structural
analysis is depicted in Fig. 4, and consists of 22,000 elements, 22,044
nodes, and 110,220 degrees of freedom (see [12]). It was created using
the open source meshing software GMSH [17]. A mesh sensitivity
analysis was performed with meshes of 6000, 12,000, 22,000, 26,000,
and 32,000 elements. Results showed that the 22,000 elements mesh

was the best compromise between accuracy and computational cost.

2.2. Description of the IFEM structural solver

To ensure the deformed blade attains its efficient aerodynamic
shape (that given by Fig. 1), we used the model of Albanesi et al. [12],
based on the IFEM for shells developed by Fachinotti et al. [13]. The
analysis domain consists in the geometry of the blade after large elastic
deformations, caused by given service loads. This deformed shape of the
blade is that determined to be efficient using an aerodynamics analysis
methods. From this analysis, the aerodynamic loads on the blade are
known. Then, multilayer composite materials need to be chosen to
manufacture the blade, and after this selection, the stationary inertial
loads on the blade are known. With this information, IFEM is used to
compute the manufacturing shape of the blade, solving a nonlinear
equilibrium equation only once. This is a one-step, one-direction
strategy where the aerodynamics analysis feeds the structural analysis,
and no further interaction between both solvers is required, see Fig. 5.

Our IFEM model is the inverse counterpart of the widely known
MITC4 shell element [18], a formulation based on the degenerated solid
approach in which governing equations are the same as those for
general solids, and in the Mindlin-Reissner shell theory in which
transverse shear deformation is considered, and henceforth are capable
of representing thin to moderately thick shells with multiple layers of
transversely orthotropic materials. This section presents a very brief
description of this IFEM model, and the interested reader is encouraged
to visit references [13,12] for further details and validation bench-
marks.

2.2.1. Finite element technology
Let us consider the undeformed configuration B 0, and deformed

configurationB , depicted in Fig. 6. The position of any point X inB 0 is
expressed as follows:

= +X X Tξ ξ ξ ξ ξ ξ H ξ ξ( , , ) ( , )
2

( , ),1 2 3 1 2 3 1 2 (1)

where X lies in the midsurface S 0 of B T,0 is the material director
vector, H is the thickness, and ξ ξ ξ{ , , }1 2 3 is a system of natural coordinates
with origin X , so that ξ1 and ξ2 lie in S 0. After deformation, the point

B∈X 0 occupies the position B∈x in B with midsurface S :

= +x x tξ ξ ξ ξ ξ ξ h ξ ξ( , , ) ( , )
2

( , ),1 2 3 1 2 3 1 2 (2)

where S∈x t, is the unit vector known as spatial director, and
=h h ξ ξ( , )1 2 is the thickness of the deformed shell. Since the Mindlin-

Fig. 3. Layout of the reference blade.

Table 2
Mechanical properties of the materials in the blade.

Property Uniaxial Biaxial Double bias Gelcoat

Longitudinal elastic modulus EX
[GPa]

44 44 44 5

Transverse elastic modulus EY [GPa] 12.6 44 44 5
Shear modulus GXY [GPa] 10 35 15 1.8
Density [Kg/m3] 1117 1004 914 650

Poisson ratio 0.32 0.36 0.36 0.4
Thickness [mm] 0.50 0.50 0.35 0.25

Long. tensile strength XT [MPa] 1020 1020 850 –
Long. compressive strength XC
[MPa]

610 610 550 –

Transverse tensile strength YT [MPa] 41 1020 850 –
Transverse compressive strength YC
[MPa]

140 610 550 –

Shear strength S [MPa] 72 95 76 –

Fig. 4. Quadrilateral finite element mesh. Represents the desired shape of the blade after
deformation.
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Reissner plate theory is adopted, t does not have to be normal toS , ifT
is normal toS 0 (and vice versa) as an effect of shear deformation, and
assumes that the strain normal to the midsurface is null, so =h H .

As in standard isoparametric finite element formulations, B∈x
and B∈X 0 are interpolated as:

= ⎡
⎣⎢

+ ⎤
⎦⎥

=X X T Qξ ξ ξ φ
ξ

h ξ ξ ξΦ( , , )
2

( , , ) ,i i i1 2 3
3

1 2 3
(3)

= ⎡
⎣⎢

+ ⎤
⎦⎥

=x x t qξ ξ ξ φ
ξ

h ξ ξ ξΦ( , , )
2

( , , ) ,i i i1 2 3
3

1 2 3
(4)
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where X T( , )i i defines the position of the node = …i N1,2, of the un-
deformed finite element, x t( , )i i defines the position of the node i of the
deformed finite element, and =φ φ ξ ξ( , )i i 1 2 is the 2-D shape function
associated with node i I; is the ×3 3 identity matrix. The deformation of
the shell is measured using the Green–Lagrange strain tensor defined as

  
= − ⊗E g g G G G G1

2
( · · ) ,α β α β

E

α β

αβ
cov (7)

where

= ∂ ∂ = ∂ ∂ = −g x ξ G X ξ G G G G G G/ , / , [ | | ] [ | | ]α α α α
T1 2 3

1 2 3 (8)

To avoid shear locking, we use the MITC4 formulation, initially
proposed by Dvorkin and Bathe [18]. The MITC4 finite element is a
quadrangle with nodes located at its vertices, and bilinear shape func-
tions ϕi. Inside this element, the covariant strain fields Eij

cov are defined
by Eq. (7), except the fields E13

cov and E23
cov that are replaced by “as-

sumed” strain fields.
The equilibrium of degenerated solid shell models is governed by

the same variational principle governing the equilibrium of general
solids for all admissible variations of the displacement u:

W
B

∫ =S δE V δud ( ).αβ
αβ

ext
0 (9)

Eq. (9) can be transformed into

B
∫ =S δE V δq F q Qd ( , ),αβ

αβ
T int

0 (10)

where F q Q( , )int is the vector of nodal internal loads. Assuming the
external loads to be lumped at the nodes and grouped in the vector of
nodal external forces F ext, the r.h.s. of Eq. (9) can be written as

W =q Q δq F q Q( , ) ( , ),Text ext (11)

where it is admitted that the external forces generally depend on Q
(body forces are usually given by unit undeformed volume) and q (as in
the case of wind pressure).

Following Simo et al. [19], the increment of the director vector ti is
computed as ̃= ∼λδt δti i i, where ̃δti is a vector lying in the plane i j{ , } of
the fixed global Cartesian frame i j k{ , , }, and ∼λi is the ×3 2 matrix made
of the first two columns of the orthogonal transformation matrix λi that
maps the director vector update from ∈δti

3 to ̃ ∈δti
2 (see [13] for

details). Thus, the nodal director update involves only two degrees of
freedom, making the current formulation have five degrees of freedom
per node.

Finally, the following nonlinear equilibrium equation for direct FEM
degenerated-solid shells is obtained:

= − =R q Q F q Q F q Q( , ) ( , ) ( , ) 0.int ext (12)

In IFEM, the loaded configuration B as well as the external loads,
responsible for deforming the shell from B 0 to B , are assumed to be
known. Since B is the known domain, at each shell finite element the
vector of nodal internal loads F int can be written as

B B
∫ ∫=F V f vd d0 ,

with = −f FJ 1, where J is the Jacobian determinant of the transforma-
tion from B 0 to B

= = ×
×

J v
V

x x x
X X X

d
d

( )·
( )·

.1 2 3

1 2 3 (13)

At this point, we make use of the close relationship between FEM
and IFEM: Both have the identical governing equation that is given by
the discrete equilibrium Eq. (12), differing only in the fact that knowns
and unknowns are interchanged. Then, Eq. (12) defines also the equi-
librium equation for IFEM applied to degenerated solid shells, being
now a nonlinear equation for the unknown Q for a given q. This is a
nonlinear equation to be solved using the Newton–Raphson method: At
the iteration +k Q1, is updated by solving the linear equation for δQ:

= + ∂
∂

=+R q Q R q Q R
Q

Q( , ) ( , ) Δ 0,k k

Q

( 1) ( )
k( ) (14)

where ∂ ∂R Q/ is the tangent stiffness matrix (see [13] for details).
The IFEM solution must pass a series of topological, mechanical, and

numerical tests that assure its feasibility. These tests consist in: (i) a
topological test for detecting inter-penetrated elements, (ii) a mechan-
ical test to verify the validity of the hypothesis of elasticity, and (iii) a
numerical test to verify the uniqueness of the solution (including a test
for unstable equilibrium states such as buckling phenomena). If these
tests are successful, the IFEM solution will attain the desired prescribed
shape when it is subjected to service loads, and buckling is not en-
countered during deformation. If any of the tests fail, the IFEM output is
an infeasible solution and should not be considered. Further details on
these tests can be found in [12,13,20,21].

The IFEM model has been implemented in the open source software

Fig. 5. Inverse analysis of wind turbine blades: The efficient
aerodynamic shape of the blade, depicted in wireframe, is
the domain of IFEM. The manufacturing shape of the blade,
depicted in color gradient, is the IFEM solution.

Fig. 6. Undeformed and deformed configurations of a shell.
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GNU Octave 4.0.3 [22], built with and ad hoc configuration that in-
cludes several high performance libraries such as OpenBlas 0.2.19,
Suisparse 4.5.4, ARPACK-NG 3.5.0, and LLVM-3.4 for the use of the JIT
(just in time) compiler implementation for large loops.

2.3. Optimization of the blade

To optimize the blade, we mean to solve the following optimization
problem:

X∈
w xmin ( ),

x (15)

where w is the weight of the blade, and x is the set of design variables
defining the ply layout based on the admissible design space X .

The turbine blade is assumed to be divided into 10 patches as shown
in Fig. 3, and ply drops are allowed between patches. Following Ghiasi
et al. [1], in this work we consider a patch to be a region within the
structure where the lamination sequence is uniform. Like in the re-
ference blade, besides the outer ply that is always made of gelcoat, a
maximum of 11 stacked plies is allowed. A priori, all the plies are as-
sumed to start at the root of the blade, although some of them could be
dropped from the beginning (i.e., these plies do not exist). Now, let us
characterize any particular layout by the following vector of design
variables:

= … …x m m m d d d[ | ]1 2 11 1 2 11 (16)

where mi and di denote the material and the end patch of the ply i. Both
variables are integer, with ⩽ ≤d1 10i and

=

⎧

⎨
⎪

⎩
⎪

m

0 empty ply,
1 uniaxial fiberglass,
2 biaxial fiberglass,
3 double-bias fiberglass.

i

(17)

If =m 0i , the ply i is assumed to have zero thickness, i.e., it does not
exist, and di becomes irrelevant. Considering such empty ply allows to
control the number of plies in the laminate.

So, the vector of design variables characterizing the reference blade
shown in Fig. 3 is

=x [3 2 1 1 1 1 3 1 2 1 2 | 10 10 9 9 8 8

7 7 4 2 1].
ref

Note that such parameterization automatically ensures fiber con-
tinuity: The ply with >m 1i starts at the root and is dropped at the end
of patch pi. Further, by considering such x as design variables of the
optimization problem (15), we are simultaneously optimizing the ply
order (given by …m m, ,1 2 excluding those empty plies having =m 0i ), the
ply number (equal to the maximum number of plies minus the number
of empty plies) and ply drops (determined by di).

2.3.1. Constraints
The solution of the optimization problem (15) with integer design

variables x is subject to the following constraints:

• Manufacturing constraints:
1. There must exist at least three plies along the whole length of the

blade, which is simply assessed by the bound constraints:

⩽ ≡ ⩽ ≡ = =+x m x p i1 3, 10, for 1,2,3.i i i i11 (18)

The remaining variables have the following box constraints:

⩽ ≡ ⩽ ≡ ⩽ ⩽ = …+x m x p i0 3, 1 10, for 4,5, ,11.i i i i11 (19)

2. The maximum number of plies of the same material placed se-
quentially in any angle direction is limited to 3. Given the ply
layout x , the stacking sequence is defined as …m m, ,1 2 excluding
the plies with =m 0i , from which can be determined the

maximum number of plies of the same material, say s x( )max .
Then, the following nonlinear, non-differentiable integer in-
equality constraint is prescribed:

= − ≤c x s x( ) ( ) 3 0.1 max (20)

This rule serves to reduce the transverse shear stress between
plies and the free edge defects [23–25].
The above manufacturing constraints were not taken into account
in the design of the reference blade [12].

• Mechanical constraints:
1. Maximum tip displacement constraint: usually, the tip displace-

ment of the blade should not exceed a given value umax. With the
aim of optimizing the blade previously designed [12], widely
described in Section 2, let us assume =u 0.350max m, which is the
tip displacement for this reference blade. This is a nonlinear in-
equality constraint expressed as follows:

= − ⩽c x u x u( ) ( ) 0,2 tip max (21)

where u x( )tip is the displacement of the tip of the blade whose ply
layout is defined by x , determined from the IFEM analysis.

2. Vibration frequency constraints: Wind turbine blades are flexible
slender structures that are prone to vibrate and to interact with
each other, especially when the main dynamic excitations take
place predominantly in a similar range of frequencies compared
to those corresponding to the lowest modes of the structure as a
whole. Moreover, the design of blades is a stand-alone process,
which may consider time-domain aeroelastic simulations for de-
termining equivalent Ultimate Limit States (ULS) and Fatigue
Limit States (FLS). These equivalent loads may not lead to a de-
sign, which is close to the optimal configuration for the nominal
condition, in which the turbine is conceived to run most of the
time. Therefore, the inclusion of ULS and FLS is not within the
scope of this work. An essential aspect to be taken into account
even during the design stage is to avoid the matching of natural
frequencies and integer multiples of the angular speed of the
rotor. This could be achieved by introducing constraints that can
be directly derived from the Campbell diagram. The first one is a
lower bound restriction given by

= − + ⩾c x f p α f( ) ( ) 0,lower blade rotor (22)

for >f pfblade rotor, and the second one is an upper bound restric-
tion given by

= − − ⩾c x p α f f( ) ( ) 0,upper rotor blade (23)

for >pf frotor blade, in which fblade is a given natural frequency of
the blade for the clamped-free boundary condition, frotor is the
rotational frequency of the rotor, p is a multiple integer of the
rotational frequency of the rotor. The later is also a positive safety
factor, typically 0.05 or larger due to the fact that the natural
frequency for the clamped-free boundary condition (for the
structure attached to a rotating base) and the corresponding
frequency considering the wind turbine as a whole that runs at
nominal condition, are certainly different. Special attention must
be paid to the fact that the blades suffer a stiffening due to the
rotation and a stiffening or softening due to axial loads, which
can be briefly described as:

∝
∂
∂

+
∂
∂

+
∂
∂

K
K K K

P
P

Ω
Ω

Ω
Ω ,g

g g g

1
2 1

2

2
2 2

2

3
3

(24)

where Kg is the geometric part of the stiffness matrix, Ω1 and Ω2
are components of the angular velocity of the rotor lying on the
plane normal to the axial direction of the blade, and P3 is the
component of actuating loads along the blade, see for instance
[26,27]. For small and medium-sized wind turbines, the stif-
fening effect is very important and the corresponding Campbell
diagram ought to be corrected to avoid designs that could result
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in very conservative and therefore suboptimal solutions.
Given = =f 72RPM 1.2 Hzrotor , we prescribe the natural fre-
quency of the blade to be separated ±5% from frot as well as from
3 frot (the number of blades in the turbine being 3). This gives rise
to the following nonlinear inequality constraints:

= − − ⩾c x f f x f( ) 0.05 | ( ) | 0,3 rot blade rot (25)

= − − ⩽c x f f x f( ) 0.05 | ( ) 3 | 0.4 rot blade rot (26)

The value of f x( )blade is obtained as a result of the IFEM analysis
of the blade whose ply layout is defined by x .

3. Maximum stress constraints: We use the maximum stress failure
criterion [28–30] to verify the stresses in each ply of the blade,
which is expressed by the following nonlinear and non-differ-
entiable inequality constraints:

= − − ⩽c x k σ x X( ) min( ( )) 0,i i
C

i
1
( )

1
( ) ( ) (27)

= − ⩽c x k σ x X( ) max( ( )) 0,i i
T

i
2
( )

1
( ) ( ) (28)

= − − ⩽c x k σ x Y( ) min( ( )) 0,i i
C

i
3
( )

2
( ) ( ) (29)

= − ⩽c x k σ x Y( ) max( ( )) 0,i i
T

i
4
( )

2
( ) ( ) (30)

= − − ⩽c x k τ x S( ) min( ( )) 0,i i
τ

i
5
( )

12
( ) ( ) (31)

= − ⩽c x k τ x S( ) max( ( )) 0,i i
τ

i
6
( )

12
( ) ( ) (32)

applied to each non-empty ply i (having >m 1i ), where XT
i( ) is the

ultimate longitudinal tensile strength, XC
i( ) is the ultimate long-

itudinal compressive strength, YT
i( ) is the ultimate transverse

tensile strength, YC
i( ) is the ultimate transverse compressive

strength, and Sτ
i( ) is the ultimate shear strength, which are

properties of the material mi (see Table 2). Following [10], the
material safety factor adopted is =k 2.204. σ x( )i

1
( ) and σ x( )i

2
( ) are

the stresses in the material principal directions, and τ x( )i
12
( ) is the

maximal shear stress in ply i to be determined for each particular
design x using IFEM. For an empty ply i, we force the above
constraints to be automatically satisfied by setting =c x( ) 0j

i( )

( = …j 1,4, ,6) for =m 0i .

3. Genetic algorithms

Given the integer nature of the design variables x and the non-dif-
ferentiability of most of the constraints, meta-heuristic algorithms are
most suitable for the solution of the optimization problem (15). Here,
we use genetic algorithms (GA) [4], which are by far the most popular
solvers for the optimal design of tapered laminates [5–7], including
wind turbine blades [10,11].

Regarding to integer variables, Fagan et al. [11] used thirty-two
integer variables to define the distribution of biaxial and triaxial layers
in a structural design optimization of a composite wind turbine blade.
Dal Monte et al. [8] proposed the use of integer variables to optimize
the categorical variables of a multi-objective structural optimization
problem of a HAWT composite blade, where each categorical variable
represents the material, the orientation of the fibers with respect to the
spanwise direction and thickness of the single layer. Here, the current
implementation of GA is based on the algorithm proposed by Deep et al.
[31], who introduced the Laplace crossover and the power mutation

techniques to improve the performance of the GA solver in the presence
of integer and mixed integer design variables. In this work, the im-
plementation of this approach takes as platform the Distributed Evo-
lutionary Algorithms in Python (DEAP) [32] as was proposed by Bre
et al. [33] to optimize the categorical design variables of a residential
building in order to improve its energy performance. Briefly, the steps
for the current GA optimization process are summarized in the fol-
lowing pseudo-code:

population = random(popsize)
Fitness(population)
Update elite list
From 1 to #generations do
offspring = Selection(population)
offspring = Crossover(offspring)
offspring = Mutation(offspring)
Fitness(offspring)
Update elite list
population = offspring

End

The individuals of a population are ply layouts x satisfying the
bound constraints. To be feasible, x must also satisfy the inequality
constraints, Eqs. (20)–(26), (32). Following Deb [34], the inequality
constraints are taken into account in the definition of the fitness func-
tion:

∑ ∑

∑

=

⎧

⎨

⎪
⎪

⎩

⎪
⎪

+ 〈− 〉 +

= 〈− 〉

=

=

f x

w x x

w x c x j

c x

x
( )

( ) for feasible ,

( ) ( )

1 ( )

for unfeasible ,
j

j

i
j
i

worst
1

4

6

1

11
( )

(33)

where xworst is the individual which has the maximal weight among all
the feasible individuals of a population, and 〈 〉 = +y y y( | |)/2 is the
ramp function, so that a constraint penalizes the fitness only, if it is
violated.

Note that at every fitness step, the mechanical constraints, Eqs.
(21)–(26), (32), are obtained as results of IFEM analysis, making the
current approach a simulation-based optimization method.

GA settings (population size, selection, crossover and mutation
methods, the probability of mutation and crossover, etc.) depend on the
characteristics of the optimization problem [35]. In this case, the best
results were found for the GA configuration shown in Table 3.

3.1. Optimization procedure flowchart

In order to summarize the optimization procedure, Fig. 7 depicts the
optimization flowchart. In each GA loop generation, the offspring popu-
lation is obtained through the selection, crossover and mutation operation.
During each fitness step, the objective f x( )i , the mechanical and manu-
facture constraints are calculated for each individual x in the population.

Table 3
GA algorithm settings.

Parameter Value

Number of individuals 48
Number of generations 100
Elite individuals 1
Selection Tournament
Crossover method Laplace
Crossover probability 100%
Mutation method power
Mutation probability 0.5%
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Briefly, the new designs proposed by GA and given by the design
variables are parameterized in a laminate definition indicating the
material in each layer, and the extension of each layer along the blade.
Once the laminate is defined, the stationary inertial forces around the
rotation axis are computed considering the density and thickness of the
composite, the turbine rotational velocity, and distance to the rotation
axis. The total forces over the blade are computed by adding the nodal
stationary inertial forces to the aerodynamic forces. These total forces
are known data in the IFEM analysis.

Given the prescribed aerodynamic geometry and the total forces as
known data, the IFEM solver is called. If it converges, this solution is
subjected to a series of verification tests (detailed in Section 2.2), and if
these tests are passed, the output is composed of the manufacturing
shape of the wind turbine blade, the value of the objective function, and
the value of the design constraints.

The output of IFEM is fed to the GA algorithm for evaluation, and
for the proposal of a new set of design candidates. This sequence is
repeated until the convergence of the GA algorithm.

4. Results and discussion

Using GA as detailed in the previous section, we obtained the op-
timal layout of the current blade given by the vector of design variables

=x [2 2 2 0 3 2 1 2 3 0 0 | 10 10 10 8 7 9

9 8 3 4 1].

opt

(34)

Since = = =m m m 04 10 11 , plies 4, 10 and 11 actually do not exist.
Henceforth, the laminate in the optimized blade has 8 plies (besides the
outer gelcoat ply), following the stacking sequence (from the core):
biaxial/biaxial/biaxial/double-bias/biaxial/uniaxial/biaxial/double-
bias.

The optimal layout given by the design vector (34) is the one gra-
phically represented in Fig. 8, where the empty plies (those with
mi =0) have been discarded when numbering the plies, because these
have zero thickness, and thus plies located above (towards the outside
of the blade) fall down to this position. For instance, in patch 8, since
ply 4 does not exist (m4 =0), ply 5 becomes ply 4. This forces all plies
located above to fall by one position, i.e. ply 6 becomes ply 5. Hence,
the resulting layout may have different but continuous stacking se-
quences, and in some patches, outer layers may be longer than the inner
layers without losing continuity, see reference [7].

Fig. 9 depicts the thickness of the laminated composite material in
the shell skin of the optimal blade design. Fig. 10 shows the comparison
between the adimensional thickness of the shell skin for the reference
and optimal wind turbine blade designs.

Regarding the weight of the blade that is the current objective
function, the optimal blade weighs 24.28 kg, being 15.7% lighter than
the reference blade (28.82 kg). It is important to remark that, because
GA is a population based algorithm and due to the current para-
meterization permits the existence of two designs with the same weight
and different distributions of the layup, it is possible that in the final
population one may obtain two solution with these characteristic. We
have not encountered that situation in this work. However, in such

Fig. 7. Flowchart of the optimization procedure combining GA and IFEM.

Fig. 8. Layout of the optimized blade. Empty plies (those with mi =0) have been dis-
carded when numbering the plies, because they have zero thickness, and thus plies lo-
cated above fall down to this position. For instance, in patch 8, since ply 4 does not exist
(m4 =0), ply 5 becomes ply 4, forcing the ply above to fall by one position, i.e. ply 6
becomes ply 5.

Fig. 9. Thickness of the laminated composite material in the
shell skin of the optimal design.

Fig. 10. Adimensional thickness of the shell skin for the reference and optimal designs.
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case, the final decision should be taken by the design engineer by
considering other design aspects such as material cost, manufacturing
complexity, and availability among others.

Besides satisfying all the manufacturing constraints, xopt also sa-
tisfies all the mechanical constraints. Regarding the maximum stresses,
this can be assessed by comparing those listed in Table 4 with their
thresholds (dependent on the material of the ply) given in Table 2.
Since the values of Table 4 are below 100 [MPa], all stresses remain in
the linear elastic regime for a composite made of E-type glass fiber and
epoxy resin [36,37].

Figs. 11 and 12 show the given efficient aerodynamic shape and the
computed manufacturing shape. As it can be observed, the tip dis-
placement in the optimized blade is =u 0.3425tip m, slightly smaller
than that of the reference blade taken as the maximum admissible tip
displacement =u 0.350max m in the inequality constraint (21).

Regarding vibrations, we consider the constraint first natural fre-
quency of the optimal blade to be 4.456 Hz, quite far from both

=f 1.2rot Hz the frequency of the rotor) and =f3 3.6rot Hz, preventing
the occurrence of resonances in the operating conditions. Although they
were not taken into account in the definition of the vibration con-
straints (25) and (26), the second and third natural frequencies are also

far from frot and f3 rot, reinforcing the safety margin of the blade. The
first, second, and third natural vibration mode for the optimal blade are
depicted in Figs. 13–15 respectively, for both the manufacturing and
loaded shapes.

Finally, Table 5 compares the main characteristics of the optimal
and the reference blades.

Table 4
Maximum and minimum principal stresses (σ1 and σ2) and shear stress τ12, measured in
[MPa]. All values are below 100 [MPa], ensuring that stresses remain in the linear elastic
regime.

Ply Material σmax 1 σmin 1 σmax 2 σmin 2 τmax 12 τmin 12

1 biaxial 93.23 −21.25 47.68 −47.01 28.67 −28.67
2 biaxial 76.69 −17.82 39.42 −41.60 25.90 −25.90
3 biaxial 62.67 −12.35 27.62 −36.48 24.51 −24.51
4 double-bias 52.28 −12.65 16.14 −34.29 23.40 −23.40
5 biaxial 53.12 −13.16 11.15 −39.66 28.98 −28.98
6 uniaxial 46.61 −4.31 4.04 −38.92 24.61 −24.61
7 biaxial 49.98 −19.72 20.76 −62.54 42.75 −42.75
8 double-bias 45.95 −23.83 25.98 −62.44 34.27 −34.27

Fig. 11. Displacement modulus in the optimized blade. The prescribed aerodynamic
geometry is plotted in wireframe. View from the leading edge.

Fig. 12. Displacement modulus in the optimized blade. The prescribed aerodynamic
geometry is plotted in wireframe. View from the trailing edge.

Fig. 13. First natural mode of vibration, flapwise predominant. a) depicted for the
manufacturing shape of the blade, b) depicted for the loaded shape of the blade (re-
presented by the color surface and amplified by a factor of 35).

Fig. 14. Second natural mode of vibration, edgewise predominant. a) depicted for the
manufacturing shape of the blade, b) depicted for the loaded shape of the blade (re-
presented by the color surface and amplified by a factor of 35).
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5. Conclusion

This work presents a new simulation-based optimization tool com-
bining GA and IFEM for nonlinear shells for the simultaneous ply-order,
ply-number and ply-drop optimization of the composite laminate for
wind turbine blades. A unique feature of the IFEM structural solver is
the computation of the manufacturing shape of the blade in such a way
that it attains an efficient prescribed aerodynamic shape after large
elastic deformations.

In the optimization procedure, the weight of the blade was mini-
mized, subjected to mechanical (allowable tip deflection, maximum
stress, natural vibration frequencies) and manufacturing constraints
(maximum number of successive identical plies). The fiber continuity
was assured by a proper definition of the design variables, avoiding
impractical stacking solutions.

The application of the proposed methodology in an actual en-
gineering case study demonstrated that this procedure is a robust re-
design tool fully capable of accurately determining the optimal material
stacking sequence of laminate wind turbine blades. Results showed
weight reductions of up to 15% compared to a reference design, while
satisfying all mechanical and manufacturing constraints.

Future work will be focused on the one hand, on multi-objective
optimization considering the weight and stiffness of the laminated
blade, and on the other hand, on the use of metamodel-based optimi-
zation to reduce optimization time.
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