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A B S T R A C T

In wind turbine blades, the complex resultant geometry due to the aerodynamic design cannot be modified in the
successive mechanical design stage. Hence, the reduction of the weight and manufacturing costs of the blades
while assuring appropriate levels of structural stiffness, integrity and reliability, require a composite material
layout that must be optimally defined.

The aim of this work is to present a metamodel-based method to optimize the composite laminate of wind
turbine blades. This methodology combines a genetic algorithm (GA) with an artificial neural network (ANN) in
order to reduce the computational cost of the optimization procedure. Therefore, at first, representative samples
were built to train and validate the ANN model, and then, the ANN model is coupled with GA to find the optimal
structural blade design. As an actual case study, the method was applied to redesign a medium-power 40-kW
wind turbine blade to reduce its mass while structural and manufacturing constrained are fulfilled.

The results indicated that is possible to save of up to 20% of laminated mass compared to a reference design.
Furthermore, a 40% reduction of the computational cost was achieved in contrast with the typical simulation-
based optimization approach.

1. Introduction

In the design process of laminated wind turbine blades, where the
geometry of the blades cannot be modified due to aerodynamic reasons,
the reductions of rotor weight and costs while maintaining adequate
levels of structural stiffness and reliability, leads to a composite mate-
rial layout that must be optimally defined. This design problem can be
stated as finding the proper variable stiffness laminate that minimizes
the weight of the blades while satisfying a series of design constraints
that include mechanical and manufacturing issues [1]. Given the large
number of design variables involved, the classical approach consists in
simulation-based optimization, which requires the use of an optimiza-
tion algorithm to handle variables and constraints, and a mechanical
model to compute the structural response of the blade. Genetic algo-
rithms (GA) are based in the nature principal of “survival of the fittest”,
and they are intensively used in the optimization of the stacking se-
quence of laminated composites due to their global searching capability
and discrete variable handling [2,3]. However, the main disadvantage
of simulation-based optimization approach is the computational cost of

each simulation analysis, so it becomes a large time-consuming process.
Artificial Neural Networks (ANNs) are models capable of mapping

non-linear relationships between a large number of inputs and outputs,
solving non-linear problems with very low computational time. With
the correct number of sampling points, ANNs are able to reproduce the
structural response of composite structures in less time compared to
numerical simulations [4], and for this reason, have become frequently
used in the design and optimization of composite structures.

Among design procedures of composites using ANN, Yan et al. [5]
used ANN to predict bond strength in glass fiber reinforced concrete
beams in which the neural network was trained with a table of nor-
malized bond strengths, and then GA was launched to optimize the
weights and biases of the ANN using as fitness function the difference
between predicted and actual values. Artero-Guerrero et al. [6] studied
the influence of the stacking sequence on the ballistic limit for com-
posite plates using an ANN model. The ANN model was trained with
both experimental data obtained from high-velocity impact tests and
numerical results through simulation. The results indicated an increase
of 40% for the ballistic limit without increasing the weight of the
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composite plates. Balokas et al. [7] presented a multiscale analysis to
determine the elastic properties for braided composite materials under
uncertainty due to manufacturing processes, by training an ANN with a
probabilistic FEM method that accounts for the prediction of elastic
properties under random uncertainties. These authors reported a re-
duction by orders of magnitude in the computational cost of the pro-
cedure.

ANNs also have a vast field of application in the optimization pro-
cess of composite materials. Bisagni and Lanzi [8] developed one of the
pioneering single objective optimization procedures, which combines
an ANN and GA in order to design stiffened composite panels under
compressive loads. The stacking sequence of the skin and stiffeners of
the panel were the designed variables, and the objective function
consisted in the weight of the panel subjected to post-bucking con-
straints. The authors reported a weight reduction of 18% and time-
saving of over 90% in the optimization process (without considering
training and evaluation). Another single objective optimization proce-
dure combining ANN with GA was presented by Fu et al. [9] to design
woven composite stiffened panels. A prior multi-scale analysis had been
performed to predict the macroscale behavior of the woven composite
and to determine the elastic properties of the material. The objective
function was the weight of the panels subject to buckling and post
bucking constraints. Mass savings of 26% were achieved with the
proposed methodology.

As for multi-objective optimization of composite materials,
Abouhamze and Shakeri [10] performed the multi-objective optimiza-
tion of cylindrical panels using ANN and GA. The optimal angle of the
stacking sequence was determined in an optimization strategy con-
sidering the first natural frequency and the critical buckling load as
equally important objective functions. This work reported that the
computational cost of the optimization process was reduced from
155min to 55 s. Marín et al. [11] carried out the multi-objective opti-
mization of composite panels under mechanical and hygrothermal
loads using ANN and GA. The weight, stresses, and strains due to hy-
grothermal expansion in the panels were equally important objective
functions. The authors reported a reduction of more than 90% in the
computational cost of the optimization process.

In a previous work [12], we described the simulation-based opti-
mization process for the blades of a 40-kW three-blade horizontal axis
wind turbine (HAWT), combining GA and the Inverse Finite Element
Method (IFEM) for structural analysis. The optimal number and order
of plies in tapered laminates were the design variables, and the objec-
tive function consisted in the minimum mass of the blade subjected to
displacement, stress, vibration and manufacturing constraints. A crucial
contribution is the use of IFEM [13,14] for the structural analysis, al-
lowing the designer to account for the shape the laminates are expected
to attain after large elastic deformations: the blades have to attain a
given aerodynamically efficient shape when they are deformed by the
service loads.

The aim of this current work is to present a metamodel-based
method that combines an ANN model with GA to optimize the com-
posite laminate of wind turbine blades, in order to reduce significantly
the computational cost of the optimization procedure. Firstly, re-
presentative samples were built to train and validate the ANN model in
order to replace the IFEM simulations, and then, the ANN model was
coupled with GA to find the optimal structural blade design. The ob-
jective function was the minimization of the mass of the blades, subject
to four constraints: allowable tip deflection, the maximum stress cri-
teria, natural vibration frequencies, and a maximum number of suc-
cessive identical plies. As in our former work [12], design variables
consisted in the number and order of plies in the tapered composite
laminates.

This paper is organized as follows: Section 2 presents the case study,
and describes the geometry and material layout of the reference blade,
the external loads acting over the blades, and the mechanical properties
of the composite materials adopted. Section 3 is the main core of this

work, and presents the optimization problem, the full procedure used to
combine ANN with GA, the description of the IFEM structural solver,
and the training and validation of the ANN. Numerical results are given
in Section 4, and the concluding remarks in Section 5.

2. Case study

Let us consider as a case study a 6.70m long wind turbine blade that
belongs to a 40 kW three-blade HAWT, designed in our previous work
[14] and depicted in Fig. 1. The turbine rotates at 72 RPM with a wind
velocity of 7m/s. The geometry of the blade is defined by three main
airfoils from the SG604X family [15]: (SG6040) at the root, (SG6042) at
mid-span and (SG6043) at the tip, and a linear interpolation is used
between these sections. The adimensional chord length and the twist
angle distribution are presented in Table 1 for the adimensional blade
span.

2.1. Laminate composite material of the reference blade

The composite laminate material of the reference blade consists of
multiple plies of E-type glass fibers and epoxy resin, with a volume
fraction of 60%. The blade is divided into 10 regions and a maximum of
11 laminate plies are allowed in the shell skin, as shown in Fig. 2.
Double-bias, biaxial and uniaxial fiberglass are considered, and the final
outer ply is always made of epoxy gelcoat. The lamination sequence is
uniform in each region [3], and ply drops are also allowed between
regions. The stacking sequence is repeated at the lower and upper side
(i.e., it is symmetric with respect to the core of the blade). The material
properties are listed in Table 2.

2.2. External loads over the blades

The service loads acting over the blades are a combination of the
resultant aerodynamic forces and the stationary inertial loads. The re-
sultant aerodynamic forces due to the pressure gradients and viscous
flow have been computed in [14] with Computational Fluid Dynamics

Fig. 1. Geometry of the reference blade, determined in [12].

Table 1
Chord length and twist angle distribution along the adimensional blade span.

Blade span [r/R] Chord [c/R] Twist [degrees]

0.12 0.170 28.51
0.19 0.140 19.08
0.27 0.118 13.49
0.35 0.090 9.95
0.42 0.080 7.59
0.50 0.070 5.93
0.58 0.060 4.72
0.65 0.055 4.12
0.73 0.050 3.72
0.81 0.045 3.43
0.88 0.041 3.31
0.96 0.039 3.25
1.00 0.038 3.25
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(CFD) using the finite volume method as implemented into the open-
source software OpenFoam. The steady-state solver for incompressible
and turbulent flow simpleFoam with the k-ω turbulence model was used
along with the multiple reference frame approach trough the fvOptions.
The boundary conditions are prescribed wind velocity at the inlet, a
uniform atmospheric pressure in the lateral surface (open boundary)
and in the outlet boundary, and the surface of the blades is assumed to
be a smooth no-slip wall. As for the body forces, the material dis-
tribution throughout the blade in combination with the angular velocity
determines the stationary inertial loads.

3. Methodology

In this section, the proposed methodology is presented. Firstly the
optimization problem is detailed, including the design variables and
both the manufacturing and mechanical constraints. Secondly, the si-
mulation-based and metamodeling optimization approaches for solving
the problem are explained. Thirdly, the proposed methodology is ex-
pounded, detailing the general procedure, the IFEM structural solver
used for the simulations, and the training and validation of the meta-
model.

3.1. Optimization problem

The optimization consists in the reduction of the mass of the blade.
Given a function w describing the mass, the following optimization

problem is stated:

∈
xwmin ( ),

x X (1)

where x is the set of variables defining the ply layout of the composite
material, and X is the known analysis domain which is described in
Section 3.5.

3.1.1. Design variables
Given the description of the laminate in Section 2.1 and following

the same convention used in [14,12], all the plies are assumed to start
at the root of the blade, and the outer ply is always made of gelcoat.

Since a maximum of 11 plies are considered, the optimization of the
blade is based on 22 integer variables. The set mi, with = …i 1,2, 11,
denote the material in ply i, in which =m 0i is an empty ply, =m 1i is a
ply made of uniaxial fiberglass, =m 2i is biaxial fiberglass, and =m 3i
is double-bias fiberglass. The set di, with = …i 1,2, 11, denote the end
region of the ply i, with ⩽ ≤d1 10i given that the blade is divided in 10
regions.

Two important aspects of this parameterization are that fiber con-
tinuity is ensured since any ply with >m 1i starts at the root and is
dropped at the end of the region ri. Also, the ply order, ply number, and
ply drops are simultaneously optimized.

3.1.2. Design constraints
The constraints of the optimization problem consider geometrical

aspects of the laminate (manufacturing constraints) and the mechanical
performance of the blade (mechanical constraints).

Given the vector of design variables xi, the material type mi, the
region ri, and maximum number of plies of the same material smax, the
manufacturing constraints can be stated as follows:

• At least three plies along the entire span length of the blade must
exists:

⩽ ≡ ⩽ ≡ = =+x m x r i1 3, 10, for 1,2,3.i i i i11 (2)

• At most three identical plies can be placed sequentially in any angle
direction:

= − ≤x xc s( ) ( ) 3 0.1 max (3)

The constraint in Eq. (2) is implemented to save computational time
and to reduce the amount of impractical solutions. To decrease the
transverse shear stress between plies, a maximum of three identical
plies can be placed sequentially in any angle direction. Hence, the
nonlinear and non-differentiable integer inequality constraint of Eq. (3)
is prescribed [16–18]. With these manufacturing constraints under
consideration, the integer design variables are presented in Table 3.

As for the mechanical constraints that measure the performance of
the blade, three parameters are considered:

• The maximum tip displacement of the blade should not exceed the
tip displacement for the reference blade designed in [14], which is

=u 0.350max m. Thus the following nonlinear inequality constraint is
defined:

= − ⩽x xc u u( ) ( ) 0,2 tip max (4)

• Being the rotational frequency of the rotor = =f 72 RPM 1.2 Hzrotor ,
the natural frequency of the blade should be separated ±5% from frot
as well as from 3 frot (since there are 3 blades in the turbine), to
avoid that the blades interact with each other in a similar range of
frequencies of the structure as a whole. These following nonlinear
inequality constraints are defined by:

Fig. 2. Composite layout of the reference blade [12]. The blade is divided into
10 regions and a maximum of 11 laminate plies are allowed in the shell skin.
The outer ply is always made of epoxy gelcoat.

Table 2
Mechanical properties of the composite materials, made of E-type glass fibers
and epoxy resin, with a volume fraction of 60%.

Property Uniaxial Biaxial Double bias Gelcoat

Longitudinal elastic modulus EX
[GPa]

44 44 44 5

Transverse elastic modulus EY [GPa] 12.6 44 44 5
Shear modulus GXY [GPa] 10 35 15 1.8
Density [Kg/m3] 1117 1004 914 650

Poisson ratio 0.32 0.36 0.36 0.4
Thickness [mm] 0.50 0.50 0.35 0.25

Long. tensile strength XT [MPa] 1020 1020 850 –
Long. compressive strength XC
[MPa]

610 610 550 –

Transverse tensile strength YT [MPa] 41 1020 850 –
Transverse compressive strength YC
[MPa]

140 610 550 –

Shear strength S [MPa] 72 95 76 –
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= − − ⩾x xc f f f( ) 0.05 | ( ) | 0,3 rot blade rot (5)

= − − ⩽x xc f f f( ) 0.05 | ( ) 3 | 0,4 rot blade rot (6)

• Each ply in the laminated composite material verifies the maximum
stress failure criterion [19–21], leading to the following nonlinear
and non-differentiable inequality constraints:

= − − ⩽x xc k σ X( ) min( ( )) 0,i i
C

i
5
( )

1
( ) ( ) (7)

= − ⩽x xc k σ X( ) max( ( )) 0,i i
T

i
6
( )

1
( ) ( ) (8)

= − − ⩽x xc k σ Y( ) min( ( )) 0,i i
C

i
7
( )

2
( ) ( ) (9)

= − ⩽x xc k σ Y( ) max( ( )) 0,i i
T

i
8
( )

2
( ) ( ) (10)

= − − ⩽x xc k τ S( ) min( ( )) 0,i i
τ

i
9
( )

12
( ) ( ) (11)

= − ⩽x xc k τ S( ) max( ( )) 0,i i
τ

i
10
( )

12
( ) ( ) (12)

where XT
i( ) is the ultimate longitudinal tensile strength, XC

i( ) is the ulti-
mate longitudinal compressive strength, YT

i( ) is the ultimate transverse
tensile strength, YC

i( ) is the ultimate transverse compressive strength,
and Sτ

i( ) is the ultimate shear strength, which are properties of the
material mi (see Table 2).

3.2. Simulation-based optimization approach

An approach commonly used to solve engineering design problems
such as (1) is the simulation-based optimization. In this procedure, an

optimization algorithm is directly coupled with a numerical simulation
where the later has the function to evaluate the performance of the
current design and the optimization algorithm, through iterative tasks,
has to find a new design that improves the performance of the current
one. Due to the integer nature of the design variables x , non-convexity
of the problem, and the non-differentiability of the objective function
and most of the constraints, meta-heuristic algorithms are most suitable
for the solution of the optimization problem (1). One of the most
popular optimization solvers is the genetic algorithm, and it has been
used by several authors to solve composed laminates problems; such as
the optimal design of tapered laminates [22,23] including wind turbine
blades [24]. Furthermore, some of them are implemented to tackle
integer design variables [25,26].

In a previous work [12], we used the simulated-based approach to
solve the same problem (1), coupling the IFEM solver with a sophisti-
cated version of GA specially made to take into account integer and
mixed integer design variables. Herein, the same version of GA based
on the operators Laplace crossover and the power mutation proposed by
Deep [27] is used.

3.3. Metamodeling using Artificial Neural Networks (ANNs)

Although GAs showed to be a robust tool to solve complex pro-
blems, it has a major limitation that they require hundreds or some-
times thousands of evaluations to reach optimal solutions. When the
evaluation of the objective function is performed by time-costly simu-
lations the optimization becomes a hard task. A way to improve this
drawback is to parallel the evaluations of the population individuals in
different computer cores [28], which is an advantage available for GAs.
Whereas this method save computational time, it does not decrease the
number of evaluations, and this is only achieved if a massive parallel
computer is available. An alternative technique is to replace the time-
costly simulations of the complex model for a metamodel (model of a
model). In this case, a small set of the full model simulations is used to
build a new simpler model, reducing the time of the objective function
evaluation and also the total number of simulation needed.

Despite metamodels are an approximate technique, one of them,
like artificial neural networks (ANNs), demonstrated to have a reliable
accuracy to replace the complex model. ANNs have been recommended
[29] for nonlinear very large problems with a high computational ex-
pense, such as (14). ANNs are parallel computational models inspired in
the performance of the human brain that consist in an arrangement of
interconnected processing units called neurons, used for tasks such as
function approximation, filtering and pattern association or recognition
[30]. In order to accomplish their objective, the ANNs perform a pro-
cess of supervised or unsupervised learning, depending on the type of
ANN and the available data (sets of inputs-outputs or sets of only in-
puts).

The type of ANN to implement depends on the type of problem to
solve: feedforward ANNs for non linear input-output mapping of gen-
eral nature or pattern association, recurrent ANNs for control, con-
volutional ANNs for pattern classification, adaptative ANNs for signal
processing, among others [30,31]. As it was mentioned before, the
purpose of the ANN models is to substitute the IFEM simulations in the
optimization problem, thus they are used as a function approximation.
Hence, a multilayer feedforward ANN, as shown in Fig. 3, has been
adopted in this work.

Multilayer feedforward ANNs have been widely employed in the
context of layered composite materials. For example, Yan et al. [5]
predicted bond strength in glass fiber reinforced concrete beams, Ar-
tero-Guerrero et al. [6] analized the ballistic limit for composite plates,
Balokas et al. [7] determined the elastic properties for braided com-
posite materials, Bisagni and Lanzi [8] reproduced the global behavior
of a structure in a single objective optimization procedure, Fu et al. [9]
analized the structural response of a woven composite stiffened panel,
Abouhamze and Shakeri [10] determined the first natural frequency

Table 3
Description and bounds of the discrete design variables, considering the man-
ufacturing constraints. Ply 1 always denotes the inner core layer, and the outer
ply is made of epoxy gelcoat. For variable =m m, 0i i is an empty ply, =m 1i is
uniaxial, =m 2i is biaxial, and =m 3i is double-bias. Since the blade is divided
into 10 region, variable di is the end region of the ply i, with ⩽ ≤d1 10i .

Description Variable Domain

Material in layer 1 m1 [1–3]
Material in layer 2 m2 [1–3]
Material in layer 3 m3 [1–3]
Material in layer 4 m4 [0–3]
Material in layer 5 m5 [0–3]
Material in layer 6 m6 [0–3]
Material in layer 7 m7 [0–3]
Material in layer 8 m8 [0–3]
Material in layer 9 m9 [0–3]
Material in layer 10 m10 [0–3]
Material in layer 11 m11 [0–3]
Extension of layer 1 d1 [10]
Extension of layer 2 d2 [10]
Extension of layer 3 d3 [10]
Extension of layer 4 d4 [1–10]
Extension of layer 5 d5 [1–10]
Extension of layer 6 d6 [1–10]
Extension of layer 7 d7 [1–10]
Extension of layer 8 d8 [1–10]
Extension of layer 9 d9 [1–10]
Extension of layer 10 d10 [1–10]
Extension of layer 11 d11 [1–10]
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and the critical buckling load of cylindrical panels, and Marín et al. [11]
modeled the mechanical response of composite panels under mechan-
ical and hygrothermal loads.

The architecture of this networks is formed by several layers of
neurons put one after another in order that the outputs of one layer
become the inputs of the following one. The first and last layers of the
ANN are the Input and Output Layer, while the ones in between are
called Hidden Layers.

According to the description proposed by Haykin [30], the neurons
of the ANNs are characterized by the inputs signals xi, a set of synaptic
weights wki, a bias bk, a summing junction or adder ∑, an activation
function φ (·) and the output yk, as it is seen in Fig. 4.

The input signals are, depending on the layer in which the neuron is
located, the inputs of the problem or the output of a neuron in a pre-
vious layer. The synaptic weights measure the contribution of each
input to the neuron and might take positive or negative values. The bias
of the neuron increase or lower the input of the activation function. The
summing junction constitutes a linear combiner of the weighted input
signals: ∑ =

x wi
n

i ki1 , where = …i n1, , indicates the corresponding input or
synaptic weight of the k neuron. The activation function limits the
amplitude of the output of the neuron described by = +y φ u b( )k k k ,
being the basic ones the threshold function, the piecewise-linear func-
tion, and the sigmoid function.

With regard to the learning procedure of the ANN, it can be sum-
marized in three steps [30]: the stimulation of the ANN by an en-
vironment, the changes in its free parameters (synaptic weights and
bias) as a result of the stimulation, and a response in a new way to the
environment due to the changes that have occurred in its internal
structure. In other words, the ANN performs a training process in which
it learns, by being exposed to a set of inputs and outputs, how to re-
spond to new data. The commonly used training algorithm in multi-
layer feedforward networks is the backpropagation one.

3.4. Proposed methodology

The proposed methodology for this work is depicted in Fig. 5, in
which the complete process from the creation of the samples to the
obtaining of the optimal solution is schematized. In order to replace the
IFEM simulation implemented in [12] with a metamodel, the first step
(box 1 in the figure) is to create the samples to train and validate the
metamodel by the implementation of the Latin Hypercube Sampling
(LHS) technique. After the inputs of the sample were obtained, they
were simulated with the IFEM algorithm to obtain the outputs needed
for the training and validation of the ANNs.

In the second step (box 2 in the figure), the different ANNs models
were trained according to the architectures proposed in Table 4. The
validation sample was used to choose the ANN model that had the best
performance (lowest MSE and/or maximum correlation factor R).

In the third and last step (box 3 in the figure), the optimization was
performed by the implementation of the GA algorithm described in
Section 3.2. In order to validate the process, the optimal solution found
was simulated with IFEM to obtain the structural response of the blade.
In the case that the error between the solution obtained with
GA+ANN and IFEM was small enough, the process could be finished;
if not, more ANN models should have been trained.

3.5. Simulation using IFEM structural solver

The IFEM solver is able to predict the blade structural behavior
given a state of loads. It computes all of the design constraints: the
maximum allowable tip deflection, the maximum stress criteria, and the
vibration frequency of the blades. The most outstanding feature of IFEM
is that it is able to determine the unloaded manufacturing shape of the
blade such that, under service loads, the deformed blade attains its
efficient aerodynamic shape (that given by Fig. 1). Hence, the analysis
domain consists in the shape of the blade after elastic deformations
caused by the service loads. Other analysis data are the multilayer
composite materials layout in the blade, and the total service loads
(given by the combination of the aerodynamic and stationary inertial
loads). IFEM then computes the manufacturing shape of the blade,
solving a nonlinear equilibrium equation only once.

Our IFEM model is the inverse counterpart of the widely known
MITC4 shell finite element [32], a quadrangle with nodes located at its
vertices that uses the MITC (mixed interpolation of tensorial compo-
nents) technique to avoid shear locking by replacing some components
of the covariant strain fields by “assumed” strain fields. It is based in the
degenerated solid approach for shells in which governing equations are
the same as those for general solids, and it is capable of representing
thin to moderately thick shells with multiple layers of transversely or-
thotropic materials due to the Mindlin-Reissner shell theory con-
sideration. Since the IFEM solver has been thoroughly described in our
previous works [14,12], only a very brief outline is presented here.

In the classic direct problem in elasticity, the undeformed config-
uration 0B depicted in Fig. 6, and the external loads responsible for
deforming the shell from 0B to B through the transformation χ , are
assumed to be known. Hence, the nonlinear equilibrium equation for
direct FEM degenerated-solid shells can be expressed as follows:

∫= + =R x X B x X S E x X F x XdV 0( , ) ( , ) ( ( , )) ( , ) ,T
ext0B (13)

where X is the position of any point in 0B with midsurface x,0S is the
position of any point in B with midsurface E,S Green-Lagrange strain
tensor that accounts for the deformation of the shell, S is the second
Piola Kirchoff stress tensor, Fext is the vector of external loads assumed
to be lumped at the nodes.

In IFEM, the loaded configuration B as well as the external loads,
responsible for deforming the shell from 0B to B through the trans-
formation −χ 1, are the variables assumed to be known (see Fig. 6). Since
B is the known domain, the vector of internal loads at each finite

Fig. 3. Artificial Neural Network model implemented in this work.

Fig. 4. Model of a neuron.

A. Albanesi et al. Composite Structures 194 (2018) 345–356

349



element ∫ ∫=F V f vd d0B B
, with = −f FJ 1, where J is the Jacobian de-

terminant of the transformation from 0B to B . At this point, we make
use of the close relationship between FEM and IFEM: both have the
identical governing equation that is given by the discrete equilibrium
Eq. (13), differing only in the fact that knowns and unknowns are

interchanged.

∫= + =R x X B x X S E x X
x X

F x X
J

dV 0( , ) ( , ) ( ( , )) 1
( , )

( , ) ,T
ext

B (14)

This is a nonlinear equation to be solved using the Newton-Raphson
method: At the iteration + Xi 1, is updated by solving the linear
equation for XΔ :

= +
∂

∂
=+R x X R x X

X
R x X X 0( , ) ( , ) ( , )Δ ,i i i( 1) ( ) ( )

(15)

where ∂

∂
R x X( , )X

i( ) is the tangent stiffness matrix (see [13] for details).
A series of mechanical, and numerical tests assure the feasibility of

the IFEM solution, and include (i) a topological test for detecting inter-
penetrated elements, (ii) a mechanical test to verify the validity of the
hypothesis of elasticity, and (iii) a numerical test to verify the unique-
ness of the solution (including a test for unstable equilibrium states
such as buckling phenomena). If these tests are successful, the IFEM
solution will attain the desired prescribed shape when it is subjected to
service loads, and buckling is not encountered during deformation. If
any of the tests fail, the IFEM output is an infeasible solution and should
not be considered. Further details on these tests can be found in
[13,14,33,34].

The IFEM model was implemented in the open source software GNU
Octave 4.0.3 [35], built with and ad hoc configuration that includes
several high performance libraries such as OpenBlas 0.2.19, Suisparse
4.5.4, ARPACK-NG 3.5.0, and LLVM-3.4 for the use of the JIT (just in
time) compiler implementation for large loops.

The finite element mesh used for the IFEM analysis is depicted in
Fig. 7, and it was created using the open source meshing software
GMSH [36]. It is a structured quadrilateral mesh with 22000 elements,
22044 nodes, and 110220 degrees of freedom and is the best compro-
mise between accuracy and computational cost (see [12,14]).

Fig. 5. Flowchart of the procedure. The first step (box 1) is the sampling and numerical simulation to feed the ANN, the second step (box 2) is the training and
validation of the ANN, and the third step (box 3) is the optimization process by combination of GA+ANN.

Table 4
Architecture, configuration and parameters of the ANNs trained.

Type of ANN Multilayer feedfoward
Training data size 2000 and 2500
Validation data size 100
Hidden layers 2
Neurons per layer 20 to 30 in Hidden Layers and 4 in Output Layer
Training function Bayesian regularization backpropagation
Activation function Hyperbolic tangent sigmoid for Hidden Layers, Linear for

Output Layer
Performance function Mean Squared Error (MSE)
Training stop criteria = × −MSE 1 10 5

Maximum iterations 500

Fig. 6. Undeformed and deformed configurations of a shell.
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3.6. Artificial neural network: training and validation

Due to the fact that multilayer feedforward networks perform a
supervised learning, the data needed to train the ANN have to contain
both inputs and outputs. The inputs are 19 of the 22 design variables
described in Section 3.1.1 and Table 3, and were obtained through the
implementation of the Latin Hypercube Sampling (LHS). The variables
d d,1 2 and d3 were not considered because they have a fixed value of 10.
The outputs are some of the design constrains explained in Section 3.1.2
related with: the maximum tip displacement defined in (4), the max-
imum of the stresses determined by (7)**–(12), and the frequency of
the rotor described in (5) and (6). They were calculated by the IFEM
simulation of the inputs.

Latin Hypercube Sampling is a technique described by McKay and
Beckman [37] in which the range of each input variable is divided into
N equally probable intervals, and a value from each interval is selected.
Then, the selected values are matched randomly, creating a sample of

size N. It is shown in Fig. 8 an example of the procedure for a sample of
=N 5 for a 2-input variable problem. This method is widely used to

construct computer design experiments because it ensures that each of
the input variables has all portions of its range represented [37], no
matter if the response is dominated by only a few ones [38]. Other
advantages of this method are: (a) it is computationally cheap to gen-
erate; (b) it can deal with a large number of runs and input variables;
(c) its sample mean has a smaller variance than the sample mean of a
simple random sample.

Three samples were created by the implementation of LHS: two for
the training process of the metamodels and one for the validation of
them. The size of the training samples were 2000 and 2500, and the size
of the validation sample was 100. These input variables were in-
troduced in the IFEM solver to obtain the structural response of the
blades, generating the input-output samples needed to create the me-
tamodel.

Regarding of the architecture of the metamodels, the guidelines for
the development of ANN metamodels proposed by Fonseca et al. [39]
were followed. Firstly, the number of hidden layers was decided by trial
and error, training several architectures with the 2000 and 2500 sam-
ples. As a result, it was obtained that a two hidden layer ANN was the
most appropriate configuration. Secondly, the number of neurons in
each layer was calibrated by increasing it one neuron at a time. Thirdly,
the ANNs that showed the best performance were chosen to validate
them with the validation sample. The architecture, configuration, and
parameters of the ANNs trained to replace the IFEM simulations are
described in Table 4.

Fig. 7. Quadrilateral finite element mesh with 22000 elements, 22044 nodes,
and 110220 degrees of freedom. Represents the desired shape of the blade after
deformation.

Fig. 8. Illustration of LHS for a 2-input variable problem.

Fig. 9. Best network architecture with 30 neurons in
the first hidden layer and 28 in the second one.

Fig. 10. Correlation coefficient for the ANN training process for all the outputs.
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Fig. 11. Correlation coefficient for the ANN validation process. (a) Maximum tip displacement constrain; (b) Maximum stress constrain; (c) Natural frequency
constrain ± 5% of frot ; (d) Natural frequency constrain ± 5% of f3 rot .

Table 5
ANN metamodel approximation errors. Maximum average error (MAE), and
mean square error (RMSE), of the ANN metamodel trained with 2500 sampling
points.

Output MAE RMSE

Utip [m] 0.0066734 0.008626
Smax [MPa] 0.28880 0.36240
Freq1 [Hz] 0.34580 0.43470
Freq3 [Hz] 0.35880 0.44450

Table 6
GA algorithm settings.

Parameter Value

Number of individuals 96
Number of generations 200
Elite individuals 1
Selection Tournament
Crossover method Laplace
Crossover probability 100%
Mutation method power
Mutation probability 0.5%
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4. Results and discussion

4.1. ANN results

The best network architecture had 30 neurons in the first hidden
layer and 28 in the second one, as illustrated in Fig. 9. It was trained
with 2500 IFEM sampling points and validated with 100 sampling
points. The training correlation factor for all the outputs is
R= 0.99983, and the validation correlation factors of each output are
between 0.99499 and 0.99907 which give an excellent agreement as it
is shown in Figs. 10 and 11. Table 5 presents the maximum average
error (MAE), and mean square error (RMSE) of this ANN for all outputs.

4.2. Optimization results

The best-trained and validated ANN model is used as the objective
function in the optimization task, coupling this ANN model with the GA
presented before. GA settings (population size, selection, crossover and
mutation methods, the probability of mutation and crossover, etc.)
depend on the characteristics of the optimization problem [40]. In this
case, the results were obtained for the GA configuration shown in
Table 6. Note that because the low time of ANN evaluation, was pos-
sible to make an exhaustive optimization analysis (with a bigger size of
the population and more generations than the direct coupling
GA+ IFEM) in order to find the global minimum or one nearly to it.

4.2.1. Optimal design
Using the combination of ANN+GA, the optimal blade weighs

22.85 kg, being 20% lighter than the reference blade (28.82 kg) and 6%
lighter that the former design with IFEM+GA (24.48 kg). The resulting

material layout in the shell skin of the blade consists in a total of 6
layers (besides the outer gelcoat ply) having the stacking sequence
(from the core): biaxial/biaxial/biaxial/uniaxial/biaxial/biaxial/
double-bias. The optimal design variables are listed in Table 7.

Fig. 12 shows the laminated of the optimal design found and the
comparison with others results obtained in previous works. The current
laminate (Fig. 12a) represents a reduction of 5 layers compared to the

Table 7
Description of the optimal design variables obtained with ANN+GA. For
variable =m m, 0i i is an empty ply, =m 1i is uniaxial, =m 2i is biaxial, and

=m 3i is double-bias. Variable di is the end region of the ply i, with ⩽ ≤d1 10i .

Description Variable Value

Material in layer 1 m1 2
Material in layer 2 m2 2
Material in layer 3 m3 2
Material in layer 4 m4 1
Material in layer 5 m5 2
Material in layer 6 m6 2
Material in layer 7 m7 3
Extension of layer 1 d1 10
Extension of layer 2 d2 10
Extension of layer 3 d3 10
Extension of layer 4 d4 7
Extension of layer 5 d5 8
Extension of layer 6 d6 9
Extension of layer 7 d7 9

Fig. 12. (a) Resulting material layout in the shell skin of the blade obtained with ANN+GA method; (b) Design obtained with IFEM+GA; (c) Design obtained with
IFEM and user’s calibration.

Fig. 13. Thickness of the laminated composite material in the shell skin of the
optimal design.

Fig. 14. Adimensional thickness of the shell skin for the reference and optimal
designs.
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reference design (Fig. 12c) [14], and of 2 layers compared to the design
obtained using IFEM+GA (Fig. 12b) [12]. It also has a lower number
of ply drops compared to the previous designs and has less variation of

material in the laminate thickness. In addition to the weight reduction,
this fact also implies that the laminate would be easier and cheaper to
manufacture. We note that some regions may be longer than the inner
layers without losing continuity, see reference [23].

Fig. 13 compares the thickness of the laminated composite material
in the shell skin of the designs, i.e., the reference, the former optimized
design obtained with IFEM+GA, and the current optimal design ob-
tained with ANN+GA. Fig. 14 shows the comparison between the
adimensional thickness of the shell skin for the reference and optimal
wind turbine blade designs.

4.2.2. Design constraints
Besides satisfying all the manufacturing constraints, xopt also must

satisfy all the mechanical constraints. To validate this latter, the op-
timal design found (xopt) is evaluated using the accurate IFEM simula-
tion.

4.2.2.1. Maximum stress failure criterion. Regarding the maximum
stresses, this can be assessed by comparing those listed in Table 8
with their thresholds (dependent on the material of the ply) given in
Table 2. Since the values of Table 8 are below 100 [MPa], all stresses
remain in the linear elastic regime for a composite made of E-type glass
fiber and epoxy resin [41,42].

4.2.2.2. Maximum deflection of the blade. Fig. 15 depicts the computed
manufacturing shape of the blade with the new laminate using IFEM. As
it can be observed, the tip displacement in the optimized blade is

=u 0.356tip m, only 0.006 m larger than the admissible tip displacement
=u 0.350max m of the inequality constraint (4). Hence, the error in

Table 8
Maximum and minimum principal stresses (σ1 and σ2) and shear stress τ12,
measured in [MPa]. All values are below 100 [MPa], ensuring that stresses
remain in the linear elastic regime.

Ply Material σmax 1 σmin 1 σmax 2 σmin 2 τmax 12 τmin 12

1 Biaxial 89.54 −20.98 43.22 −44.67 27.01 −27.01
2 Biaxial 71.38 −15.12 36.22 −39.77 22.07 −22.07
3 Biaxial 69.21 −18.88 32.37 −39.91 25.08 −25.08
4 Uniaxial 49.07 −6.62 8.92 −39.73 22.31 −22.31
5 Biaxial 55.84 −17.13 14.76 −34.28 26.22 −26.22
6 Biaxial 51.65 −17.87 22.26 −59.38 44.32 −44.32
7 Double-bias 43.37 −21.78 27.34 −67.59 37.30 −37.30

Fig. 15. Displacement modulus in the optimized blade. The prescribed aero-
dynamic geometry is plotted in wireframe. The tip displacement in the opti-
mized blade is only 0.006 m larger than the admissible tip displacement

=u 0.350max m.

Fig. 16. First natural mode of vibration (4.3932 Hz), flapwise predominant. (a)
depicted for the manufacturing shape of the blade; (b) depicted for the loaded
shape of the blade. Represented by the color surface and amplified by a factor of
30.

Fig. 17. Campbell diagram regarding blade vibrations.

Table 9
Comparison between the reference, former IFEM+GA design, and current
ANN+GA optimal designs.

Characteristic Reference IFEM+GA ANN+GA

Number of plies 11 9 7
Blade weight 28.82 kg 24.28 kg 22.85 kg
Tip deflection 0.3500m 0.3425m 0.3560m
1st eigenvalue 5.8575 Hz 4.4561 Hz 4.3932 Hz
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displacement is only 1.71%, which we consider a negligible value
compared to the mass reduction of 20% achieved with the current
procedure.

4.2.2.3. Vibration of the blades. The first natural frequency constraint of
the optimal design is 4.3932 Hz, quite far from the frequency of the
rotor =f 1.2rot Hz and =f3 3.6rot Hz, in which case resonance is
avoided. The first natural vibration mode for the optimal blade is
illustrated in Fig. 16 for both the unloaded (manufacturing) and loaded
shapes (service shape).

In Fig. 17 the Campbell diagram for all of the blades considered in
this work is represented. The vertical axis corresponds to the natural
frequency of the blades, and the horizontal axis is the operation range
of the turbine (rotation frequency of the rotor) [43]. The main regions
of this plot are the exclusion windows representing the rotation con-
straint frot ± 5% and bladepassing constraint 3 frot ± 5% along the op-
erating range of the rotor. It can be seen that resonance is avoided since
the vertical line representing the rotation frequency of the rotor
( =f 1.2rot ) does not cross any of the exclusion windows. Also, all blades
lie in the stiff-stiff region of the diagram, in which case a very stiff
foundation is required [44]. This is because the stiffening effect due to
the rotation is very important small and medium-sized wind turbines
[45,46].

4.2.2.4. Computational cost. In order to compare the computational
cost between ANN+GA and IFEM+GA, the total IFEM simulations
used in each method is considered. Although two different sample sizes
(2000 and 2500, which gives a total of 4500 IFEM simulations) were
tested to get an accurate ANN model, it was demonstrated that with the
correct size sample (2500) it is possible to get accurate optimization
results. On the other hand, the short computational time of the ANN
evaluation used by ANN+GA method allowed to run an exhaustive
optimization and to find a better optimal design than the IFEM+GA
approach.

4.2.2.5. Summary results. Finally, Table 9 compares the main
characteristics of the optimal and the reference blades.

5. Conclusion

In this work, a new metamodel-based optimization approach to
redesign the composite laminate of wind turbine blades was presented.
The method combines a genetic algorithm (GA) with an artificial neural
network (ANN) model to achieve the simultaneous optimal ply-order,
ply-number, and ply-drop of the composite materials. Finally, the
method was applied to the redesign of a medium-power 40-kW wind
turbine blade to minimize its mass while structural and manufacturing
constraints are fulfilled.

The Latin Hypercube Sampling technique proved to be an adequate
method to obtain a representative sample of 2500 designs, out of a total
1.8×1014 possible laminate configurations. The ANN model trained
with this sample showed an excellent agreement between the inverse
finite element method (IFEM) structural solver and the metamodel
prediction, attaining correlation coefficients above 0.99 for each con-
straint.

The use of the ANN model in the current optimization task allowed
a 40% reduction of the computational cost in contrast with the typical
simulation-based optimization approach if the correct sample size is
chosen. Further, because of the short computational time consumed by
the ANN evaluation in this ANN+GA procedure, a more exhaustive
optimization was possible, and savings of up to 20% (5% better than
IFEM+GA) of laminated mass was achieved compared to a reference
design.

Future work will be focused on extending the proposed method to
bigger wind turbine blades with more complex laminate configurations
(for instance different fiber orientations), more detail in the

manufacturing technology (including for example shear webs and spar
caps), and manufacturing costs. Moreover, multi-objective optimization
will be considered to take into account naturally contradictory objec-
tives, like the weight and stiffness of the laminated blade.

Acknowledgments

The authors gratefully acknowledge the financial support from
CONICET (Argentine Council for Scientific and Technical Research). A.
E. Albanesi also acknowledges the National Technological University of
Argentina (UTN) for Grants PID 4405 and PID 2425, and the National
Agency of Scientific and Technological Promotion of Argentina
(ANPCYT) for the Grant PICT 3396.

References

[1] Burton T, Jenkins N, Sharpe D, Bossanyi E. Wind Energy Handbook. 2nd ed. John
Wiley and Sons; 2011.

[2] Ghiasi H, Pasini D, Lessard L. Optimum stacking sequence design of composite
materials Part I: Constant stiffness design. Compos Struct 2009;90:1–11.

[3] Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L. Optimum stacking sequence design of
composite materials Part II: Variable stiffness design. Compos Struct 2010;93:1–13.

[4] Dey S, Mukhopadhyay T, Adhikari S. Metamodel based high-fidelity stochastic
analysis of composite laminates: A concise review with critical comparative as-
sessment. Compos Struct 2017;171(Supplement C):227–50.

[5] Yan F, Lin Z, Wang X, Azarmi F, Sobolev K. Evaluation and prediction of bond
strength of GFRP-bar reinforced concrete using artificial neural network optimized
with genetic algorithm. Compos Struct 2017;161(0):441–52.

[6] Artero-Guerrero JA, Pernas-Sánchez J, Martín-Montal J, Varas D, López-Puente J.
The influence of laminate stacking sequence on ballistic limit using a combined
Experimental/FEM/Artificial Neural Networks (ANN) methodology. Compos Struct
2018;183(Supplement C):299–308. In honor of Prof. Y. Narita.

[7] Balokas Georgios, Czichon Steffen, Rolfes Raimund. Neural network assisted mul-
tiscale analysis for the elastic properties prediction of 3d braided composites under
uncertainty. Compos Struct 2018;183(Supplement C):550–62. In honor of Prof. Y.
Narita.

[8] Bisagni C, Lanzi L. Post-buckling optimisation of composite stiffened panels using
neural networks. Compos Struct 2002;58(2):237–47.

[9] Fu X, Ricci S, Bisagni C. Minimum-weight design for three dimensional woven
composite stiffened panels using neural networks and genetic algorithms. Compos.
Struct. 2015;134(Supplement C):708–15. ISSN 0263-8223.

[10] Abouhamze M, Shakeri M. Multi-objective stacking sequence optimization of la-
minated cylindrical panels using a genetic algorithm and neural networks. Compos
Struct 2007;81(2):253–63.

[11] Marín L, Trias D, Badall P, Rus G, Mayugo JA. Optimization of composite stiffened
panels under mechanical and hygrothermal loads using neural networks and ge-
netic algorithms. Compos Struct 2012;94(11):3321–6.

[12] Albanesi A, Bre F, Fachinotti V, Gebhardt C. Simultaneous ply-order, ply-number
and ply-drop optimization of laminate wind turbine blades using the inverse finite
element method. Compos Struct 2017;184:894–903.

[13] Fachinotti VD, Albanesi AE, Martínez Valle JM. Inverse finite element modeling of
shells using the degenerate solid approach. Comput Struct 2015;157:89–98.

[14] Albanesi A, Fachinotti V, Peralta I, Storti B, Gebhardt C. Application of the inverse
finite element method to design wind turbine blades. Compos Struct
2016;161:160–72.

[15] Giguere PP, Selig MS. New airfoils for small horizontal axis wind turbines. ASME J
Sol Energy Eng 1998;120(2):108–14.

[16] Zein S, Madhavan V, Dumas D, Ravier L, Yague I. From stacking sequences to ply
layouts: an algorithm to design manufacturable composite structures. Compos
Struct 2016;141:32–8.

[17] Liu D, Toropov VV, Zhou M, Barton D, Querin O. Optimization of Blended
Composite Wing Panels Using Smeared Stiffness Technique and Lamination
Parameters. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference; 2010.

[18] Niu MCY. Airframe structural design. 2nd ed. Conmilit Press Ltd; 1999.
[19] Barbero EJ. Introduction to composite materials design. 2nd ed. CRC Press; 2011.
[20] Kaw AK. Mechanics of composite materials. 2nd ed. CRC Press; 2006.
[21] Jones R. Mechanics of composite materials. 2nd ed. Taylor and Francis; 1999.
[22] Irisarri F-X, Lasseigne A, Leroy F-H, Le Riche R. Optimal design of laminated

composite structures with ply drops using stacking sequence tables. Compos Struct
2014;107:559–69.

[23] Fan H-T, Wang H, Chen X-H. An optimization method for composite structures with
ply-drops. Compos Struct 2016;136:650–61.

[24] Wang L, Kolios A, Nishino T, Delafin P-L, Bird T. Structural optimisation of vertical-
axis wind turbine composite blades based on finite element analysis and genetic
algorithm. Compos Struct 2016;153:123–38.

[25] Dal Monte A, Castelli MR, Benini E. Multi-objective structural optimization of a
HAWT composite blade. Compos Struct 2013;106:362–73.

[26] Fagan EM, Flanagan M, Leen SB, Flanagan T, Doyle A, Goggins J. Physical ex-
perimental static testing and structural design optimisation for a composite wind
turbine blade. Compos Struct 2017;164:90–103.

A. Albanesi et al. Composite Structures 194 (2018) 345–356

355

http://refhub.elsevier.com/S0263-8223(18)30187-9/h0005
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0005
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0010
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0010
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0015
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0015
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0020
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0020
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0020
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0025
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0025
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0025
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0030
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0030
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0030
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0030
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0035
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0035
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0035
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0035
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0040
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0040
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0045
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0045
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0045
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0050
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0050
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0050
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0055
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0055
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0055
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0060
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0060
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0060
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0065
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0065
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0070
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0070
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0070
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0075
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0075
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0080
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0080
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0080
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0090
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0095
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0100
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0105
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0110
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0110
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0110
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0115
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0115
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0120
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0120
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0120
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0125
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0125
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0130
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0130
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0130


[27] Deep K, Singh KP, Kansal ML, Mohan C. A real coded genetic algorithm for solving
integer and mixed integer optimization problems. Appl Math Comput
2009;212(2):505–18.

[28] Bre F, Fachinotti VD. A computational multi-objective optimization method to
improve energy efficiency and thermal comfort in dwellings. Energy Build
2017;154(Supplement C):283–94. ISSN 0378-7788.

[29] Simpson TW, Peplinski J, Koch PN, Allen JK. Metamodels for computer-based en-
gineering design: survey and recommendations. National Aeronautics and Space
Administration; 1997. Technical report.

[30] Haykin Simon. Neural networks: a comprehensive foundation. 2nd ed. Pearson
Education; 1999.

[31] Fausett Laurene V. Fundamentals of neural networks. us ed edition Prentice Hall;
1993. ISBN 9780133341867,0133341860.

[32] Dvorkin EN, Bathe K-J. A continuum mechanics based four-node shell element for
general nonlinear analysis. Eng Comput 1984;1:77–88.

[33] Albanesi AE, Pucheta MA, Fachinotti VD. A new method to design compliant me-
chanisms based on the inverse beam finite element model. Mech Mach Theory
2013;65:14–28.

[34] Albanesi AE. Inverse design methods for compliant mechanisms. Santa Fe,
Argentina: Faculty of Engineering and Water Sciences, National Littoral University;
2011. (Ph.D. thesis).

[35] Eaton JW, Bateman D, Hauberg S, Wehbring R. GNU Octave version 4.0.3 manual: a
high-level interactive language for numerical computations; 2016. URLhttp://
www.gnu.org/software/octave/doc/interpreter.

[36] Geuzaine C, Remacle J-F. Gmsh: a three-dimensional finite element mesh generator
with built-in pre-and post-processing facilities. Int J Numer Meth Eng
2009;79(11):1309–31.

[37] McKay MD, Beckman RJ. A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code. Technometrics
1979;21(2):239–45.

[38] Fang K-T, Li R, Sudjianto A. Design and modeling for computer experiments. CRC
Press; 2005.

[39] Fonseca DJ, Navaresse DO, Moynihan GP. Simulation metamodeling through arti-
ficial neural networks. Eng Appl Artif Intell 2003;16(3):177–83.

[40] Deb K. An efficient constraint handling method for genetic algorithms. Comput
Methods Appl Mech Eng 2000;18:311–38.

[41] Belingardi G, Paolino DS, Koricho EG. Investigation of influence of tab types on
tensile strength of E-glass/epoxy fiber reinforced composite materials. Procedia Eng
2011;10:3279–84.

[42] Elanchezhian C, Vijaya Ramnath B, Hemalatha J. Mechanical behaviour of glass
and carbon fibre reinforced composites at varying strain rates and temperatures.
Procedia Mater Sci 2014;6:1405–18.

[43] Petersen B, Pollack M, Connell B, Greeley D, Daivis D, Slavik C. Evaluate the effect
of turbine period of vibration requirements on structural design parameters. Appl
Phys Sci 2010. Technical report.

[44] Andersen LV, Vahdatirad MJ, Sichani MT, Srensen JD. Natural frequencies of wind
turbines on monopile foundations in clayey soils A probabilistic approach. Comput.
Geotech. 2012;43(Supplement C):1–11.

[45] Gebhardt CG, Roccia BA. Non-linear aeroelasticity: an approach to compute the
response of three-blade large-scale horizontal-axis wind turbines. Renewable
Energy 2014;66:495–514.

[46] Holm-Jrgensen K, Nielsen SRK. A component mode synthesis algorithm for multi-
body dynamics of wind turbines. J Sound Vibr 2009;326:753–67.

A. Albanesi et al. Composite Structures 194 (2018) 345–356

356

http://refhub.elsevier.com/S0263-8223(18)30187-9/h0135
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0135
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0135
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0140
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0140
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0140
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0145
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0145
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0145
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0150
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0150
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0155
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0155
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0160
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0160
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0165
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0165
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0165
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0170
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0170
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0170
http://www.gnu.org/software/octave/doc/interpreter
http://www.gnu.org/software/octave/doc/interpreter
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0180
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0180
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0180
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0185
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0185
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0185
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0190
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0190
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0195
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0195
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0200
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0200
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0205
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0205
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0205
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0210
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0210
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0210
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0215
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0215
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0215
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0220
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0220
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0220
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0225
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0225
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0225
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0230
http://refhub.elsevier.com/S0263-8223(18)30187-9/h0230

	A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades
	Introduction
	Case study
	Laminate composite material of the reference blade
	External loads over the blades

	Methodology
	Optimization problem
	Design variables
	Design constraints

	Simulation-based optimization approach
	Metamodeling using Artificial Neural Networks (ANNs)
	Proposed methodology
	Simulation using IFEM structural solver
	Artificial neural network: training and validation

	Results and discussion
	ANN results
	Optimization results
	Optimal design
	Design constraints
	Maximum stress failure criterion
	Maximum deflection of the blade
	Vibration of the blades
	Computational cost
	Summary results


	Conclusion
	Acknowledgments
	References




