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In this paper, a segregated algorithm is proposed to suppress high-frequency oscillations 
in the velocity field for incompressible flows. In this context, a new velocity formula 
based on a reconstruction of face fluxes is defined eliminating high-frequency errors. In 
analogy to the Rhie–Chow interpolation, this approach is equivalent to including a flux-
based pressure gradient with a velocity diffusion in the momentum equation. In order to 
guarantee second-order accuracy of the numerical solver, a set of conditions are defined 
for the reconstruction operator. To arrive at the final formulation, an outlook over the 
state of the art regarding velocity reconstruction procedures is presented comparing them 
through an error analysis. A new operator is then obtained by means of a flux difference 
minimization satisfying the required spatial accuracy. The accuracy of the new algorithm 
is analyzed by performing mesh convergence studies for unsteady Navier–Stokes problems 
with analytical solutions. The stabilization properties of the solver are then tested in a 
problem where spurious numerical oscillations arise for the velocity field. The results show 
a remarkable performance of the proposed technique eliminating high-frequency errors 
without losing accuracy.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the context of the Finite Volume Method (FVM), segregated algorithms are among the most popular strategies to 
couple pressure and velocity in Computational Fluid Dynamics (CFD). In these methodologies, the variables of the problem 
can be stored in the same or different spatial location, which gives place to grid arrangements known as collocated or 
staggered respectively. The staggered grids have the advantage of avoiding interpolations and thus prevent the appearance 
of spurious oscillations on the unknown fields. On the other hand, collocated grid arrangements are more suitable for 
unstructured meshes which are mandatory to address practical applications involving complex geometries.

One major disadvantage of collocated grids is the appearance of the aforementioned high-frequency oscillations due to 
a decoupling between pressure and velocity. This is related to the employment of central differencing for the discretization 
of the spatial derivatives. A common way to tackle these numerical issues is introducing a stabilizing effect on the pressure 
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equation through the so-called Rhie–Chow interpolation [1]. Since its development, this technique has been the most used 
alternative to mitigate pressure oscillations and it is still subject of several discussions regarding its accuracy and stability 
properties [2–8]. One of the main issues regarding this technique is that it does not guarantee non-oscillatory fields for 
all problem conditions. Oxtoby et al. [6] and Mencinger et al. [7] proposed new discretization rules to eliminate unphysical 
spikes at the interface with porous media in Volume Of Fluid techniques. Other authors proposed solutions involving adjust-
ments on the Rhie–Chow interpolation to mitigate these problems. In particular, Zhang et al. [8] put in evidence the flaws 
of the standard Rhie–Chow interpolation when the corrective terms on the mass conservation equations become sufficiently 
large. Such situation arises when dealing with discontinuous momentum sources. They propose a correction consisting on 
smoothing out the pressure gradient on cell faces by introducing the body forces in the calculation. In the same manner, 
Nordlund et al. [9] addressed similar problems and proposed two methods to mitigate spurious oscillations: one involving 
an adjustment of the porous resistivity in the cells near the interface and another one which introduces auxiliary pressure 
values in the same region. All these works propose particular solutions to eliminate oscillatory fields in different situa-
tions. However, for the velocity, a deeper study on the reasons that generate high-frequency oscillations still needs to be 
addressed, which is the main motivation of this work.

In this context, a new approach to mitigate spurious high-frequency velocity oscillations in pressure-velocity coupling 
algorithms for incompressible flows is presented; this formulation is inspired by the non-oscillatory nature of the fluxes in a 
collocated FVM. More precisely, the velocity field is defined by a face-to-cell reconstruction of the fluxes which must satisfy 
certain conditions to preserve second-order accuracy. Reconstruction operators can be obtained through different proce-
dures, such as flux difference minimization [10–12] or weighted average [13]. Here, a reconstruction operator is designed 
based on a flux difference minimization to obtain an oscillation-free algorithm.

The paper is organized as follows: On Section 2, the general framework of the standard SIMPLE (Semi-Implicit Method for 
Pressure-Linked Equations) family algorithms is presented, including a study of the reasons for the velocity oscillations and 
a solution based on face-to-cell reconstruction. Section 3 presents an overlook of some reconstruction procedures followed 
by the development of a new reconstruction method. In Section 4, two benchmark cases are solved to demonstrate that 
the new formulation is second-order accurate. Section 5 shows the stabilization properties solving a porous media flow 
problem. Finally, the conclusions are presented in Section 6.

2. Theoretical background

2.1. Segregated algorithms on collocated grids

The continuum incompressible Navier–Stokes equations may be presented as:

∇· u = 0, (2.1)
∂u

∂t
+ ∇· (uu) = −∇p + ν ∇2u + �, (2.2)

where p = P
ρ

, P is the pressure field, u = (u, v, w) is the velocity field, ρ is the mass density, ν is the kinematic viscosity 

and � is a momentum source term (e.g. a body force). Based on the Finite Volume Method [14], Eqs. (2.1) and (2.2) may 
be discretized as:∑

f

u f ·S f =
∑

f

F f = 0, (2.3)

aP u P +
∑

N

aN uN = bP u0
P + �P − ∇p P , (2.4)

where the subscript P indicates the cell-centered value of the current cell, N indicates neighbor cells values and f refers to 
the face values. The term bP u0

P is the contribution of the previous time-step and is function of the temporal scheme. The 
face-normal vector S f has the magnitude of the face area and points out of the cell, F f is the velocity flux at the face f and 
aP and aN are the diagonal and off-diagonal momentum matrix coefficients respectively. The operator ∇p P is a Gauss-based 
gradient of the pressure computed using first neighbors values of that field. Isolating u P from Eq. (2.4),

u P = H P − 1

aP
∇p P , (2.5)

where the term H P is computed as,

H P = bP u0
P + �P −∑N aN uN

aP
. (2.6)

One way to solve Eqs. (2.3) and (2.4) for u and p consists on addressing one equation at a time, update one of the 
unknown fields, solve the remaining equation and iterate the sequence. These techniques are known as segregated methods, 
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where the SIMPLE-family techniques [15–19] are among the most popular for incompressible flows. It broadly consists of a 
Momentum Predictor step and a Corrector step. In the Momentum Predictor, a first approximation for the velocity field is 
computed using the momentum equation where the pressure term is treated explicitly:

aP ui+1
P +

∑
N

aN ui+1
N = bP u0

P + �P − ∇pi
P , (2.7)

where the superscript i indicates fields that are stored from previous iterations and i + 1 are the fields being solved at 
the current iteration. This preliminary result does not satisfy the divergence-free condition. In the Corrector step, a pressure 
equation, based on including Eq. (2.5) in Eq. (2.3), is assembled and solved. In order to do so, the velocity field u P , originally 
on cell-centers, needs to be interpolated to the faces obtaining:∑

f

(
H P − 1

aP
∇p P

)
f
·S f = 0 (2.8)

Therefore, the Corrector step may be summarized as:

1. Assemble and solve the pressure based on Eq. (2.8):∑
f

(
1

aP
∇p P

)
f
·S f =

∑
f

H f ·S f (2.9)

Here, H f is obtained by linear interpolation of the H P values on the cells that shares the same face f . In practice, this 
operation may lead to high-frequency oscillations for the pressure field. To address this issue, the left-hand-side term 
on Eq. (2.9) is replaced by 

∑
f

(
1

aP

)
f

(∇p f ·S f
)
, where ∇p f is a face gradient based on adjacent cell values [14]. This 

approximation is an undercover form of the Rhie–Chow correction [1] for collocated grids.
2. Compute the face fluxes by adding the new pressure contribution:

F f = H f ·S f −
(

1

aP

)
f
∇p f ·S f (2.10)

3. Correct the cell-centered velocity field based on the new pressure field, using Eq. (2.11)

u P = H P − 1

aP
∇p P (2.11)

Most of the SIMPLE-family algorithms preserve this general structure. In particular, the SIMPLE algorithm [15], originally 
conceived as a steady state flow solver, adds under-relaxation factors to obtain a stable solution. Another variant is the 
PISO (Pressure-Implicit with Splitting of Operators) algorithm, which relies on iterating the Corrector step a given number 
of times to ensure a correct coupling between pressure and velocity for transient flow problems [19,20]. The SIMPLE-PISO 
combined technique has been largely adopted in several computational codes (e.g. OpenFOAM(R) [21]) to address transient 
incompressible flow problems due to its beneficial convergence features. It consists on iterating the corrector steps until 
a certain mass conservation criteria is fulfilled (as in PISO) and iterating the whole sequence (Momentum Predictor and 
Corrector Step) several times until both mass and momentum equations are verified for each time step. This algorithm will 
be adopted in the present work.

2.2. Velocity oscillations

The Rhie–Chow correction [1] is a mechanism to mitigate high-frequency oscillations in the pressure field. These os-
cillations are a consequence of using a central differencing scheme to discretize the pressure gradients. In this manner, 
high-frequency oscillations on the pressure are filtered in the momentum equation. The correction consists of modifying the 
pressure equation adding numerical diffusion which results in a smoother field with a non-oscillatory behavior.

For the velocity field, a similar issue arises due to the role of central interpolation schemes. Following Eq. (2.11), the 
velocity field is a function of H P , aP and ∇p P . This indicates that, in spite of any improvement regarding the pressure field 
oscillations, the corrected velocity field may still be affected by high-frequency oscillations on H P and aP . Moreover, the 
pressure gradient in Eq. (2.11) cannot control these issues since oscillations in H P and aP are not present in the pressure 
equation due to the cell-face interpolation procedure. Thus, there is no feedback possible between velocity oscillations and 
the pressure gradient. The interpolation operation is crucial since it is responsible for filtering high-frequency oscillations 
of cell-centered fields on faces. This may be appreciated by considering a generic field defined on cell centers, which 
can be decomposed in two terms as depicted in Fig. 1: one consisting only of a high-frequency contribution and other 
which is the oscillation-free field. After the linear interpolation on cell faces, the high-frequency contribution becomes null. 
Ultimately, the standard SIMPLE-PISO algorithm has no mechanism to damp velocity oscillations in the pressure equation as 
a consequence of linear interpolation of the velocity fluxes.
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Fig. 1. Cell-centered oscillatory field and the filtering effect of face interpolation.

2.3. An oscillation-free corrector step for the velocity

After the pressure equation (Eq. (2.9)) is solved, a smooth pressure field is obtained and used to update the face fluxes 
F f through Eq. (2.10). Therefore, the updated fluxes F f are free from oscillations which encourages its use to eliminate such 
behavior on the velocity field. In this sense, this work proposes to compute the velocity at cell-centers through a face-to-cell 
reconstruction of the fluxes,

ũ P = R(F f ), (2.12)

where R is a linear operator that reconstructs face fluxes into a cell-centered velocity value with a given accuracy and 
preserves its smoothness. In order to be consistent with the momentum equation, the pressure gradient must be modified 
by including Eq. (2.12) in Eq. (2.11),

∇̃p P = aP
[

H P −R(F f )
]
. (2.13)

In fact, the original algorithm can be preserved by only modifying the pressure gradient according to Eq. (2.13) for the 
algebraic momentum expression given by Eq. (2.11). Introducing Eq. (2.10) in Eq. (2.13) and reordering using the linear 
property of the operator R,

∇̃p P = aP R
[(

1

aP

)
f
(∇p) f · S f

]
+ aP

[
H P −R(H f ·S f )

]
. (2.14)

It can be observed that this new pressure gradient has two contributions. The first term uses the pressure field obtained 
from Eq. (2.9) and the second one is a function of H P and aP . Then, the new Corrector step is,

ũ P = H P − 1

aP
∇̃p P . (2.15)

2.4. Accuracy requirements for the new formulation

The redefinition of the pressure gradient given in Eq. (2.14) introduces a difference into the velocity corrector step with 
respect to the standard formulation. Subtracting Eq. (2.11) from Eq. (2.15),

ũ P − u P = − 1

aP

[(
∇̃p P − ∇p P

)]
, (2.16)

and introducing Eq. (2.14) in the last expression,

ũ P − u P = [R(H f ·S f ) − H P
]−R

[(
1

aP

)
f
(∇p) f · S f

]
+ ∇p P

aP
. (2.17)

This expression is the difference between the new and standard methodologies for the first time step where H P , aP and 
the pressure field p are the same in both formulations. The difference at a given time, ũ P (t) − u P (t), is the accumulation of 
the errors generated at each time-step:

ũ P (t) − u P (t) =
N∑

n=1

(
ũn

P − un
P

)
(N = t/�t), (2.18)

where n is the time-step index.



H.J. Aguerre et al. / Journal of Computational Physics 365 (2018) 135–148 139
The quantity defined in the last equation is an extra term included in the governing equations to suppress velocity 
oscillations. To obtain second-order convergence of the numerical method, the spatial and temporal terms must be dis-
cretized with second-order schemes as a necessary condition. However, when an extra term is incorporated in the governing 
equations, this condition may not be sufficient since these terms may alter the convergence behavior. Any additional term 
incorporated into the equations must converge to zero when the mesh and time steps tend to zero. For the term of Eq. (2.18)
this means that:

lim
�x, �t→0

[
ũ P (t) − u P (t)

]= 0. (2.19)

Otherwise, the numerical formulation will not be consistent having a zero-order term. Moreover, the magnitude of this 
term must decrease to zero with a second-order rate to guarantee this order of convergence for the solver. In this context, 
the following condition is imposed for Eq. (2.18), considering a mesh refinement analysis with a constant Courant number 
and a uniform time-step,

O(ũ P (t) − u P (t)) = O
[

N∑
n=1

(
ũn

P − un
P

)]= O(hk) k ≥ 2, (N = t/�t), (2.20)

where h is the cell size. Since each of the terms of the summation have the same order,

O
[

t

�t

(
ũn

P − un
P

)]= O
[

t

h

(
ũn

P − un
P

)]= O(hk) k ≥ 2, (2.21)

and then,

(ũn
P − un

P ) ∝ O(hk) k ≥ 3. (2.22)

Considering that the term 
(
ũn

P − un
P

)
shares the same order of the term given by Eq. (2.17), the condition over the 

reconstruction operator can be expressed as,

R
[(

1

aP

)
f
(∇p) f · S f

]
− ∇p P

aP
+ [H P −R(H f ·S f )

]∝ O(hk) k ≥ 3, (2.23)

which implies,

[
H P −R(H f ·S f )

]∝ O(hk) k ≥ 3, (2.24)

R
[(

1

aP

)
f
(∇p) f · S f

]
− ∇p P

aP
∝ O(hk) k ≥ 3. (2.25)

In Eq. (2.24), a third-order convergence is imposed over the R operator. An analysis over the second requirement shows 
that the term aP varies with the spatial and temporal refinement. Given a standard discretization scheme for the momentum 
equation, aP can be expressed as:

aP =
⎛
⎝ U

Co h
+
∑

f

α f

h
+
∑

f

νβ f

h2

⎞
⎠ , (2.26)

where α f and β f are the convective and diffusive coefficients given by the discretization schemes and U is the characteristic 
velocity of the problem. Considering that α f , β f , ν , U and the Courant number (Co = U�t/h) are constant, the most 
restrictive condition arises when ν → 0, which implies,

lim
h→0

aP ∝ 1

h
. (2.27)

This expression corresponds to a convective-dominated flow. Introducing Eq. (2.27) in Eq. (2.25), the following requirement 
is obtained for the reconstruct operator R,

∇p P −R
(∇p f · S f

)∝ O(hk) k ≥ 2. (2.28)

Adopting an R operator that satisfies the conditions given in Eq. (2.24) and Eq. (2.28) for the computation of the pressure 
gradient (Eq. 2.14), an oscillation-free and second-order accurate solution will be obtained.
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3. Face-to-cell reconstruction of vector fields

In the context of the FVM on collocated grids, computing face values based on cell interpolations is a common prac-
tice. The reverse operation, getting cell values from face fields, is known as reconstruction [10,13]. This procedure can be 
performed in several ways.

Shashkov et al. [10] propose a least square scheme to minimize the difference between the original fluxes at faces F f (u f )

and a new set of fluxes F ∗
f which are expressed as function of u P . In this sense, the problem consists in finding the value 

of u P which minimize the following function:

g(u P ) =
∑

f

[
F f (u f ) − F ∗

f (u P )
]2

, (3.1)

where u f are the faces values of the velocity field to be reconstructed and F f = u f · S f are the corresponding face fluxes. 
Shashkov et al. describe two approximations for the fluxes F ∗

f using a zero and first-order Taylor series,

F ∗
f (u P ) = u P · S f

F ∗
f (u P ) = (u P + ∇u P · dP f ) · S f ,

(3.2)

where dP f is the vector connecting the cell and face centroids (pointing to the face centroid) and ∇u P is the cell-centered 
Gauss gradient. Solving the minimization problem in Eq. (3.1), the following cell-centered velocity expressions are obtained,

u P =
⎛
⎝∑

f

S f S f

⎞
⎠

−1

·
⎛
⎝∑

f

F f S f

⎞
⎠ ,

u P =
⎛
⎝∑

f

S f S f

⎞
⎠

−1

·
⎡
⎣∑

f

(
F f − ∇u P · dP f · S f

)
S f

⎤
⎦ .

(3.3)

On the other hand, Weller et al. [11,12] describes a cell-centered velocity reconstruction,

u P =
⎛
⎝∑

f

S f S f

‖S f ‖

⎞
⎠

−1

·
⎡
⎣∑

f

F f
S f

‖S f ‖

⎤
⎦ . (3.4)

This form is adopted in some CFD codes (e.g. OpenFOAM(R) [21]). It can be demonstrated that this formula results from 
solving a minimization problem using a functional similar to that presented by Shashkov et al., but employing the inverse 
of the face area as a weighting factor for the face error,

g(u P ) =
∑

f

1

‖S f ‖
[

F f (u f ) − F ∗
f (u P )

]2
. (3.5)

In this case, the zero order approximation of Eq. (3.2) for the flux F ∗
f (u P ) is considered.

A different approach, by Perot et al. [13], consists in computing a volume weighted average of the given face values u f ,

u P = 1

V P

∑
f

(S f · dP f ) u f . (3.6)

3.1. A new reconstruction formula

Linear interpolation of cell values to faces consists in applying a second order Taylor approximation based on a face 
gradient ∇u f computed from adjacent cells,

u∗
f = u P + ∇u f · dP f . (3.7)

The reconstruction operator should act as the inverse of cell-to-face interpolation, as suggested by Eq. (2.24). To accom-
plish this, the approximation of fluxes in the reconstruction procedures should be based on Eq. (3.7) which is not the case 
of the presented reconstructions.

If the original velocity field is oscillatory, adopting the same face gradient used in Eq. (3.7) for the reconstruction will give 
the exact inverse function of the linear interpolation recovering the oscillatory behavior. For this reason, the face gradient on 
Eq. (3.7) is replaced here by an approximation based on a linear interpolation of cell gradients, (∇ui

P ) f . Thus, the following 
expression for the approximated face values u∗ is proposed,
f
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u∗
f = ui+1

P + (∇ui
P ) f · dP f . (3.8)

The fluxes resulting from this approximation take the following form,

F ∗
f (u P ) =

[
ui+1

P + (∇ui
P ) f · dP f

]
· S f . (3.9)

Adopting the minimization of the function given by Eq. (3.5), the ui+1
P is,

ui+1
P = R(F f ) =

⎛
⎝∑

f

S f S f

‖S f ‖

⎞
⎠

−1

·
⎧⎨
⎩
∑

f

[
F f − (∇ui

P ) f · dP f · S f

] S f

‖S f ‖

⎫⎬
⎭ . (3.10)

where (∇ui
P ) f is computed based on stored velocity values from the previous iteration of the Corrector Step.

The difference between the velocity given by Eq. (3.7) and the spatial approximation of the new reconstruction formula 
given by Eq. (3.8) is,

u∗
f − u f =

[
(∇ui

P ) f − ∇u f

]
· dpf . (3.11)

The numerical error introduced to the final reconstructed velocity field is proportional to Eq. (3.11), which is equivalent 
to a discrete form of a third order derivative [22]. The Rhie–Chow interpolation adds a similar term based on pressure 
gradients in the pressure equation. In the same manner, the proposed operator adds a diffusive effect over the velocity 
filtering high-frequency oscillations in the final reconstructed fields.

3.2. Accuracy of the reconstruction operators

To evaluate the accuracy of the reconstruction methodologies, the following test is performed: a vector field located at 
cells u P is linearly interpolated at faces obtaining the fluxes F f . Subsequently, these fluxes are reconstructed into cell values 
to define the field ũ P . The error of this procedure is computed as the root mean square (RMS) difference between the initial 
and final fields u P and ũ P given by,

E2(u P ) =
√∑n

i

(
u P − ũ P

)2
n

, (3.12)

where n represents the total number of cells. The field used in the test is the initial condition of the two-dimensional 
Taylor–Green problem:

ux (x, y) = −sin(x) cos(y)

u y (x, y) = cos(x) sin(y).
(3.13)

The procedure is applied over a square domain with a side length of 2π . To analyze the convergence of the error, the 
mesh resolution is increased by a factor of two ranging from 10 to 640 grid points per side. The results are presented in 
Fig. 2 showing the error as a function of the mesh resolution. The methods proposed by Shashkov et al., Weller et al. and 
Perot et al. follow a second order trend which, according to the conditions given in Eq. (2.24), will reduce the accuracy 
of the flow solver below second order. In contrast, the reconstruction formula defined by Eq. (3.10) follows a fourth order 
trend, fulfilling the first requirement.

A second test is conceived to prove if the new reconstruction formula satisfy the second requirement given by Eq. (2.28). 
Here, the RMS error is computed as,

E2(∇φP ) =
√∑n

1(∇φP − ∇φR
P )2

n
, (3.14)

where φ is a generic field and ∇φP is the cell-centered Gauss gradient and ∇φR
P is calculated by the following formula:

∇φR
P = R(∇φ f · S f ). (3.15)

The field for this test is a Gaussian function,

φ(x, y) = exp

[
(x2 + y2)

2

]
. (3.16)

The domain is a square with a side length of 20 m. As in the first test, the computation of E2 uses different mesh sizes 
varying between 20 and 2560 divisions per side. The results are presented in Fig. 3 where the required second-order 
convergence for the term given by Eq. (2.28) is obtained.
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Fig. 2. Error between final and initial fields applying several reconstruction operators.

Fig. 3. E2 convergence of error using the new reconstruction formula to compute cell centered gradient.

The new reconstruction formula satisfy the requirements given in Eqs. (2.24) and (2.28) which enables its use in Eq. (2.14)
ensuring a second-order accuracy of the flow solver when using second-order discretization schemes for the spatial and 
temporal terms.

4. Accuracy of the flow solver

This section is devoted to evaluate the accuracy of the flow solver which uses the new reconstruction technique 
(Eq. (3.10)) for the velocity computation. In this sense, two unsteady flow problems are solved. To compare, two additional 
numerical formulations are included in the analysis: the standard SIMPLE-PISO algorithm and a solver which computes the 
velocity via Eq. (2.12) but using the reconstruction formula described by Weller et al. (Eq. (3.4)) which is the standard face-
cell reconstruction operator implemented in the OpenFOAM(R) suite. In all simulations, second-order discretization schemes 
are set up for the temporal and spatial terms. For each problem, the numerical results are compared with its respective 
analytical solution and an error convergence study is performed varying the mesh resolution and the time-step size.

4.1. Taylor–Green vortex problem

The two-dimensional Taylor–Green case is an unsteady flow problem in which initial vortices decay due to viscosity 
dissipation. The analytic solution of the problem is presented as follows:
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Fig. 4. Square domain with periodic boundary conditions.

Fig. 5. Error in velocity for the Taylor–Green vortex problem.

u (x, y, t) = −sin(x) cos(y)exp(−2νt),

v (x, y, t) = cos(x) sin(y)exp(−2νt),

p(x, y, t) = 1

4
[cos(2x) + sin(2y)] exp(−4νt),

(4.1)

where ν is the kinematic viscosity. The domain of the problem is a square with sides of 2π where periodic conditions are 
set up at the boundaries as depicted in Fig. 4.

A convergence study is performed evaluating the numerical error of the velocity for several mesh resolutions, where 
the coarsest grid has 20 divisions per side and the finest one is refined with 640 divisions per side. In all simulations, 
the time step is adjusted accordingly to define a maximal Courant number of 2 and the kinematic viscosity is 0.01 m2/s 
corresponding to a Reynolds number of 157. The simulations end at t = 1.28 s.

The error curves of the velocity components are plotted in Fig. 5. The solvers with the standard formulation and with the 
new reconstruction formula exhibit a convergence rate higher than second order. On the contrary, the solver that uses the 
reconstruction of Weller et al. is below first-order accurate. The numerical dissipation of this last technique can be seen in 
Fig. 6 where the velocity magnitude along the domain is depicted for the simulations with the coarsest mesh resolution. In 
the same figure, no significant difference between the results of the standard solver and the current technique is recognized.
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Fig. 6. Taylor–Green vortex problem: domains colored according to velocity magnitude at time 1.28 s. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Fig. 7. Description of the vortex advection problem.

4.2. Viscous advection of a vortex

This test is graphically explained in Fig. 7: a vortex structure of diameter 2 Rc which is initially located at position 
(−3Rc,0) is transported through an uniform flow U = (U0, 0) during a total time of t = 0.1 s. The problem is solved using 
a square domain with sides of 0.5 m.

The initial conditions for the velocity field are,

u(x, y,0) = U0 − 


R2
c

(y − yc)exp

(−r2

2R2
c

)
, v(x, y,0) = 


R2
c

(x − xc)exp

(−r2

2R2
c

)
, (4.2)

where xc and yc are the vortex center coordinates, r = 2
√

(x − xc)2 + (y − yc)2 is the distance to the vortex center, 
 = 0.036
is the vortex strength, Rc the radius of the vortex and U0 is the mean velocity magnitude. The analytical solution for this 
problem is,

u(x, y, t) = U0 − 


R2
c

(y − yc)

α2
exp

( −r2

2α R2
c

)
, v(x, y, t) = 


R2
c

(x − xc)

α2
exp

( −r2

2α R2
c

)
, (4.3)

where α is,

α = 1 + 2ν t, (4.4)

and ν is the kinematic viscosity. A convergence study is performed using several mesh resolutions and modifying the 
time-step in order to preserve a constant Courant number of 0.9. The convergence of the error is presented in Fig. 8 which 
shows a second-order convergence of the solver with the new reconstruction approach. For this solver, there is a relatively 
small deviation of the error against the standard SIMPLE-PISO formulation proving that the accuracy is not affected by the 
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Fig. 8. Error of velocity components for two different viscosities using three formulations: standard solver, this work reconstruction and OpenFOAM(R) 
reconstruction.

new reconstruction step. On the other hand, the solver based on the reconstruction described by Weller et al. reduces the 
solution accuracy to first order. In Fig. 9, results showing the velocity magnitude are shown for the inviscid simulations with 
a mesh resolution of 80 × 80.

The vortex structure is similar in the standard and new solver solutions. On the other hand, the reconstruction formula 
of Weller et al. produces high levels of dissipation.

5. Non-oscillatory property of the new solver: discontinuous body-force stabilization

In this section, the stabilization effect of the new solver is studied comparing its numerical results with those of the 
standard SIMPLE-PISO formulation. With this aim, an incompressible flow through a two-dimensional channel with a porous 
material in its middle region is simulated. A schematic description for this problem is presented in Fig. 10.

The porous plug is modeled by the Darcy–Forchheimer model, as described in [23], resulting in the following momentum 
balance:

∂u

∂t
+ 1

ε
∇· (uu) = −ε∇p + ν ∇2u −

(
εν

κ
+ ε√

κ

cE |u|
2

)
u, (5.1)

where ε is the porosity of the material, κ is its permeability (given by Da = κ/H2) and cE is the inertial coefficient, which 
is computed using the expression cE = 1.75 ε/

√
150ε5. The boundary conditions of the problem are the following: the inlet 

of the channel has a fixed inlet velocity profile uin = 6 (y/H) [1 − (y/H)], the outlet has a fixed pressure pout = 0 and a 
non-slip condition is imposed at the top and bottom walls.

The problem is addressed using different Reynolds numbers (Re = 25, 250 and 2500) and evaluating three Darcy numbers 
(Da = 10−3, 10−4 and 10−5). Regarding the porosity properties, ε = 1 in the non-porous region 
A and at ε = 0.7 in the 
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Fig. 9. Vortex advection problem: domains colored according to velocity magnitude at time 0.1 s.

porous region 
B . All simulations are solved using a structured mesh of h = 2 mm and a time-step of � t = 0.025 s 
resulting in a mean Courant number of 1. As in the previous tests, second order temporal and spatial discretization schemes 
are applied.

The model of Eq. (5.1) introduces a discontinuous body force acting only in the porous region. This discontinuity is prone 
to generate velocity oscillations for the standard SIMPLE-PISO algorithm when the body force is large enough. This behavior 
can be recognized in the steady-state solution of the problem as shown in Fig. 11, where both standard and new approaches 
are presented. It can be observed that the standard algorithm solution presents unphysical velocity peaks at the interface 
between regions. In contrast, the new formulation produces a smooth solution.

A more detailed insight into the numerical results is presented in Fig. 12 which shows the velocity along the x axis 
for several Re and Da values. For the standard formulation, the results show that the amplitude of the velocity oscillation 
increases as the Da and Re numbers decrease (producing an increment on the Darcy force term). However, this numerical 
anomaly is completely eliminated with the new formulation which exhibits a physical-compatible variation of the velocity 
profiles for all cases.

Fig. 10. Domain for the porous plug test. H = 50 mm.

Fig. 11. Velocity field solved with (top) and without (bottom) applying velocity reconstruction (Da = 10−5, Re = 25).
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Fig. 12. Porous plug test solved by the standard (left) and new (right) solver. Re numbers are, from top to bottom, 25, 250 and 2500.

6. Conclusions

A new incompressible flow solver that eliminates spurious velocity oscillations has been developed. The procedure relies 
on a reconstruction of face fluxes to compute the velocity values. To guarantee second-order accuracy of the numerical 
formulation, two requirements have been obtained defining lower bounds for the spatial accuracy of the reconstruction 
operator. In order to fulfill these conditions, a new high-order formula has been designed.

An analysis of the SIMPLE-PISO algorithm has shown that oscillations on H P and aP remain after a whole iteration and 
are introduced directly into the velocity correction. On the other hand, the fluxes corrected by the pressure equation are free 
from this spurious behavior due to the filtering effect of the linear interpolation. Hence, reconstructing these fluxes results 
in an oscillation-free cell-centered velocity. The new approach is equivalent to using a different pressure gradient in the 
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momentum equation. This introduces numerical diffusion proportional to a high-order derivative of H P damping velocity 
oscillations in a similar manner as the Rhie–Chow correction over the pressure.

The proposed solver has been tested for two benchmark cases observing that the second-order accuracy given by the dis-
cretization schemes is preserved throughout the iterative procedure in the same manner as the standard formulation. After 
that, the non-oscillatory feature of this new technique is put into contrast with the original algorithm in a practical prob-
lem with a porous material, which is modeled as a discontinuous body force. The results show that the new methodology 
completely removes the oscillations of the velocity near the interface for different problem conditions.

Finally, it is worth to emphasize that this new formulation does not affect the global structure of the algorithm which 
makes it suitable for a direct implementation in pre-developed computational codes.
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