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J.P. Carlomagnoa,b, D. Gómez Dumma,b and N.N. Scoccolab,c,d

a IFLP, CONICET − Dpto. de F́ısica, Universidad

Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina,

b CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentina

c Physics Department, Comisión Nacional de Enerǵıa Atómica,
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We study the features of nonlocal SU(3) chiral quark models with wave function renormal-

ization. Model parameters are determined from meson phenomenology, considering different

nonlocal form factor shapes. In this context we analyze the characteristics of the deconfine-

ment and chiral restoration transitions at finite temperature, introducing the couplings of

fermions to the Polyakov loop. We analyze the results obtained for various thermodynam-

ical quantities considering different Polyakov loop potentials and nonlocal form factors, in

comparison with data obtained from lattice QCD calculations.

I. INTRODUCTION

The detailed understanding of the behavior of strongly interacting matter under extreme con-

ditions of temperature and/or density has become an issue of great interest in recent years. It

is widely believed that as the temperature and/or density increase, one finds a transition from a

hadronic phase, in which chiral symmetry is broken and quarks are confined, to a partonic phase

in which chiral symmetry is restored and/or quarks are deconfined. From the theoretical point of

view, one way to address this problem is through lattice QCD calculations [1–3], which have been

significantly improved in the last years. However, this ab initio approach is not yet able to provide a

full understanding of the QCD phase diagram and the related hadron properties, owing to the well-

known difficulties of dealing with small current quark masses and finite chemical potentials. Thus,

it is worth developing effective models that show consistency with lattice results, and can be ex-

trapolated into regions not accessible by lattice calculation techniques. Here we will concentrate on

one particular class of effective theories, namely the so-called nonlocal Polyakov−Nambu−Jona-
Lasinio (nlPNJL) models [4–8], in which quarks move in a background color field and interact

through covariant nonlocal chirally symmetric four-point couplings. These approaches, which can

http://arxiv.org/abs/1305.2969v2
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be considered as an improvement over the (local) PNJL model [9–15], offer a common framework

to study both the chiral restoration and deconfinement transitions. In fact, the nonlocal character

of the interactions arises naturally in the context of several successful approaches to low-energy

quark dynamics [16, 17], and leads to a momentum dependence in the quark propagator that can

be made consistent [18] with lattice results [19–21]. Moreover, it has been found that, under cer-

tain conditions, it is possible to derive the main features of nlPNJL models starting directly from

QCD [22].

Some previous works have addressed the study of nlPNJL models for the case of two dynamical

quarks, showing that the presence of nonlocal form factors in the current-current quark interactions

leads to a momentum-dependent mass and wave function renormalization (WFR) in the quark

propagator [23–25]. As stated, it is possible to choose the model parameters and form factors so as

to fit these momentum dependences to those obtained in lattice QCD [18]. The aim of this work is

to extend those works to three flavors, including flavor mixing through a nonlocal ’t Hooft-like six-

fermion interaction. The case of a three-flavor nlPNJL model with simple Gaussian form factors

and no WFR in the quark propagator has been previously addressed in Refs. [5, 6], where the

phenomenology of light scalar and pseudoscalar mesons is analyzed. In addition, the introduction

of a Gaussian form factor to account for the WFR in the three-flavor case has been considered in

Ref. [26]. For comparison, we analyze here both the case of a model in which the form factors are

Gaussian functions (which ensure a fast ultraviolet convergence of loop integrals), and a model in

which these are given by the mentioned lattice QCD-inspired functions [see Eqs. (29,30) below] of

the momentum. In this framework we determine several properties of light mesons (masses, mixing

angles, decay constants), analyzing the compatibility with the corresponding phenomenological

values. Then we study the deconfinement and chiral restoration phase transitions that occur at

finite temperature, and we determine the corresponding critical temperatures. Our analyses are

carried out at the mean field level, considering the above-mentioned form factor shapes and various

parameter sets and functional forms for the Polyakov potential. We also analyze the behavior of

thermodynamical quantities such as the interaction energy and the entropy and energy densities.

The results are discussed in comparison with data obtained from lattice QCD calculations.

This article is organized as follows. In Sec. II we present the general formalism, including

analytical results for the scalar and pseudoscalar meson properties. We discuss the model pa-

rameterization and compare our predictions with phenomenological expectations. In Sec. III we

extend our analysis to nonzero temperature. The Polyakov loop potential is introduced and the

deconfinement and chiral restoration phase transitions are analyzed. In Sec. IV we summarize our
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results and conclusions. The Appendix includes some of our analytical expressions.

II. NONLOCAL SU(3) CHIRAL QUARK MODEL - ZERO TEMPERATURE

We start by considering the Euclidean effective action

SE =

∫

d4x

{

ψ(x)(−ı /D + m̂)ψ(x) − G

2

[

jSa (x)j
S
a (x) + jPa (x)j

P
a (x) + jr(x)jr(x)

]

−H
4
Aabc

[

jSa (x)j
S
b (x)j

S
c (x)− 3jSa (x)j

P
b (x)j

P
c (x)

]

+ U [A(x)]
}

, (1)

where ψ(x) is the Nf = 3 fermion triplet ψ = (u d s)T , and m̂ = diag(mu,md,ms) is the current

quark mass matrix. We will work in the isospin symmetry limit, assuming mu = md. The fermion

currents are given by

jsa(x) =

∫

d4z g(z)ψ
(

x+
z

2

)

λaψ
(

x− z

2

)

,

jpa(x) =

∫

d4z g(z)ψ
(

x+
z

2

)

ıλaγ5ψ
(

x− z

2

)

,

jr(x) =

∫

d4z f(z)ψ
(

x+
z

2

) ı
←→
/∂

2κ
ψ
(

x− z

2

)

, (2)

where f(z) and g(z) are covariant form factors responsible for the nonlocal character of the inter-

actions, and λa, a = 0, ..., 8, are the standard eight Gell-Mann matrices, plus λ0 =
√

2/313×3. The

relative weight of the interaction driven by jr(x), which is responsible for the quark wave function

renormalization, is controlled by the parameter κ. The model includes flavor mixing through a ’t

Hooft-like term, in which the SU(3) symmetric constants Aabc are defined by

Aabc =
1

3!
ǫijkǫmnl(λa)im(λb)jn(λc)kl . (3)

The interaction between fermions and color gauge fields Ga
µ takes place through the covariant

derivative in the fermion kinetic term, Dµ ≡ ∂µ − ıAµ, where Aµ = g Ga
µλ

a/2. Finally, the

action includes an effective potential U that accounts for gauge field self-interactions. At the mean

field level we will assume that fermions move on a uniform background gauge field, which for

zero temperature decouples from matter (finite temperature effects will be discussed in the next

sections).

To work with mesonic degrees of freedom we proceed to perform a standard bosonization of the

fermionic theory, introducing scalar fields σa(x), ζ(x) and pseudoscalar fields πa(x), together with

auxiliary fields Sa(x), Pa(x) and R(x), with a = 0, ..., 8. After integrating out the fermion fields
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we obtain a partition function

Z =

∫

DσaDπaDζ A(σa, πa, ζ)

×
∫

DSaDPaDR exp

∫

d4x

[

σaSa + πaPa + ζR+
G

2
(SaSa + PaPa +R2) +

+
H

4
Aabc(SaSbSc − 3SaPbPc)

]

, (4)

where the operator A(p, p′) (in momentum space) is given by

A(p, p′) = (2π)4δ(4)(p− p′)(−/p +mc) + g

(

p+ p′

2

)

[σa(p
′ − p) + ıγ5πa(p

′ − p)]λa +

+
1

2κ
f

(

p+ p′

2

)

(/p + /p
′)ζ(p′ − p) . (5)

Now we follow the stationary phase approximation, replacing the path integrals over the auxiliary

fields by the corresponding argument evaluated at the minimizing values S̃a, P̃a, and R̃. The

procedure is similar to that carried out in Ref. [27], where more details can be found.

A. Mean Field Approximation

We consider the mean field approximation (MFA), in which the meson fields are expanded

around their vacuum expectation values. One thus has

σa(x) = σ̄a + δσa(x) ,

πa(x) = δπa(x) ,

ζ(x) = ζ̄ + δζ(x) , (6)

where we have assumed that pseudoscalar mean field values vanish, owing to parity conservation.

Moreover, for the scalar fields only σ̄0,8 and ζ̄ can be different from zero due to charge and isospin

symmetries. Thus, the Euclidean action reduces to

SMFA

E

V (4)
= −2 Tr

∫

d4p

(2π)4
log

[

M2(p) + p2

Z2(p)

]

− σ̄aS̄a − ζ̄R̄−
G

2
(S̄aS̄a + R̄2)− H

4
AabcS̄aS̄bS̄c , (7)

where S̄a, P̄a, and R̄ stand for the values of S̃a, P̃a and R̃ within the MFA.

For the neutral fields (a = 0, 3, 8) it is convenient to change to a flavour basis, φa → φi, where

i = u, d, s, or equivalently i = 1, 2, 3. In this basis, by minimizing the mean field action in Eq. (7)
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we obtain the gap equations given in Ref. [27],

σ̄u +GS̄u +
H

2
S̄dS̄s = 0 ,

σ̄d +GS̄d +
H

2
S̄sS̄u = 0 ,

σ̄s +GS̄s +
H

2
S̄uS̄d = 0 , (8)

plus an extra equation arising from the jr(x) current-current interaction,

ζ̄ +GR̄ = 0 , (9)

where the mean field values S̄i and R̄ are given by

S̄i = −8Nc

∫

d4p

(2π)4
g(p)

Z(p)Mi(p)

p2 +M2
i (p)

, i = u, d, s,

R̄ =
4Nc

κ

∫

d4p

(2π)4
p2 f(p)

3
∑

i=1

Z(p)

p2 +M2
i (p)

. (10)

The functions Mi(p) and Z(p) correspond to momentum-dependent effective masses and WFR of

the quark propagators. In terms of the model parameters and form factors, these are given by

Mi(p) = Z(p) [mi + σ̄i g(p)] ,

Z(p) =

[

1 − ζ̄

κ
f(p)

]−1

. (11)

Thus, for a given set of model parameters and form factors, from Eqs. (8-11) one can numerically

obtain the mean field values σ̄u,s and ζ̄.

The chiral condensates 〈q̄q〉, order parameters of the chiral restoration transition, can be ob-

tained by varying the MFA partition function with respect to the current quark masses. These

quantities are, in general, divergent and can be regularized by subtracting the free quark contri-

butions. One has

〈q̄q〉 = −4Nc

∫

d4p

(2π)4

[

Z(p)Mq(p)

p2 +M2
q (p)

− mq

p2 +m2
q

]

, q = u, d, s. (12)

B. Quadratic Fluctuations - Meson masses and weak decay constants

In order to analyze the properties of meson fields it is necessary to go beyond the MFA, con-

sidering quadratic fluctuations in the Euclidean action:

Squad
E =

1

2

∫

d4p

(2π)4

∑

M

rM GM (p2) φM (p) φ̄M (−p) , (13)
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where meson fluctuations δσa, δπa have been translated to a charge basis φM , M being the scalar

and pseudoscalar mesons in the lowest mass nonets (σ, π0, etc.), plus the ζ field. The coefficient

rM is 1 for charge eigenstates M = a00, σ, f0, ζ, π
0, η, η′, and 2 for M = a+0 ,K

∗+
0 ,K∗0

0 , π
+,K+,K0.

Meson masses are then given by the equations

GM (−m2
M ) = 0 . (14)

In addition, physical states have to be normalized through

φ̃M (p) = Z
−1/2
M φM (p) , (15)

where

Z−1
M =

dGM (p)

dp2

∣

∣

∣

∣

p2=−m2

M

. (16)

The full expressions for the one-loop functions GM (q) are quoted in the Appendix. They can

be written in terms of the coupling constants G and H, the mean field values S̄u,s, and quark loop

functions that prove to be ultraviolet convergent, owing to the asymptotic behavior of the nonlocal

form factors. For the pseudoscalar meson sector, the π and K mesons decouple, while the I = 0

states get mixed. Since the corresponding mixing angles are momentum-dependent functions, it

is necessary to introduce two mixing angles θη and θη′ , defined at p2 = −m2
η and p2 = −m2

η′

respectively, see Eq. (49). In the case of the scalar meson sector, the a0 and K∗
0 mesons decouple,

while the ζ, σ0, and σ8 fields get mixed by a 3× 3 matrix, see Eq. (50).

One can also calculate the weak decay constants of pseudoscalar mesons. These are given by

the matrix elements of the axial currents Aa
µ between the vacuum and the physical meson states,

ıfab(p
2) pµ = 〈0|Aa

µ(0)|δπb(p)〉 . (17)

The matrix elements can be calculated from the expansion of the Euclidean effective action in the

presence of external axial currents,

〈0|Aa
µ(0)|δπb(p)〉 =

δ2SE
δAa

µδπb(p)

∣

∣

∣

∣

Aa
µ=δπb=0

. (18)

It is important to notice that, owing to nonlocality, the axial currents have to be introduced not

only into the covariant derivative in the Euclidean action, but also in the fermion fields entering

the nonlocal currents, through the replacements [27, 28]

ψ
(

x− z

2

)

−→ WA

(

x, x− z

2

)

ψ
(

x− z

2

)

ψ†
(

x+
z

2

)

−→ ψ†
(

x+
z

2

)

WA

(

x+
z

2
, x
)

. (19)
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Here the transport function WA(x, y) is given by

WA(x, y) = P exp

{

ı

2

∫ y

x
dsµγ5λaA

a
µ(s)

}

, (20)

where s runs over an arbitrary path connecting x with y.

After a rather lengthy calculation, we find that the relevant term in the expansion of the

Euclidean action can be written as

S
[A,φ]
E =

∫

d4p

(2π)4
d4p′

(2π)4

3
∑

i,j=1

Aµ ij(p) δπji(p
′) Gµ

ij(p, p
′) , (21)

where we have defined Aµ = λaA
a
µ/
√
2, δπ = λaδπa/

√
2. The functions Gµ

ij(p, p
′) are found to

satisfy the relation

pµG
µ
ij(p, p

′) = − i δ(4)(p + p′)Fij(p
2) , (22)

where

Fij(p
2) = 2Nc

∫

d4q

(2π)4
[

g(q+) + g(q−)− 2g(q)
]

Z(q)

[

Mi(q)

q2 +M2
i (q)

+
Mj(q)

q2 +M2
j (q)

]

− 2Nc

∫

d4q

(2π)4
(σ̄i + σ̄j)

[

g(q+) + g(q−)− 2g(q)
]

g(q)

× Z(q+)

M2
i (q

+) + q+2

Z(q−)

M2
j (q

−) + q−2

[

(q+ · q−) +Mi(q
+)Mj(q

−)
]

+4Nc

∫

d4q

(2π)4
g(q)

[Mi(q
+)q− −Mj(q

−)q+] · [Z(q−)q+ − Z(q+)q−]
[q+2 +M2

i (q
+)] [q−2 +M2

j (q
−)]

, (23)

with q± = q ± p/2. It is worth pointing out that the functions Fij (and, therefore, the weak decay

constants) are given by the longitudinal component of Gµ
ij(p, p

′), which does not depend on the

arbitrary path chosen in the transport functions WA(x, y).

From the above expressions, the weak decay constants for π and K mesons in the isospin limit

are given by

fπ =
Z

1/2
π

m2
π

Fuu(p
2)

∣

∣

∣

∣

p2=−m2
π

,

fK =
Z

1/2
K

m2
K

Fus(p
2)

∣

∣

∣

∣

p2=−m2

K

. (24)

For the η − η′ sector, the functions fab(p
2) defined in Eq. (17) are related to Fij(p

2) through

f00(p
2) =

1

3

[

2Fuu(p
2) + Fss(p

2)
]

,

f88(p
2) =

1

3

[

Fuu(p
2) + 2Fss(p

2)
]

,

f08(p
2) =

√
2

3

[

Fuu(p
2)− Fss(p

2)
]

. (25)
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These can be translated to the mass eigenstate basis through the mixing angles in Eq. (49). Thus

one defines

faη =
Z

1/2
η

m2
η

[

fa8(p
2) cos θη − fa0(p2) sin θη

]

∣

∣

∣

∣

p2=−m2
η

, a = 0, 8 ,

faη′ =
Z

1/2
η′

m2
η′

[

fa8(p
2) sin θη′ + fa0(p

2) cos θη′
]

∣

∣

∣

∣

p2=−m2

η′

, a = 0, 8 . (26)

In order to compare with phenomenological determinations, it is convenient to consider an alterna-

tive parametrization in terms of two decay constants f0, f8 and two mixing angles θ0, θ8 [29, 30].

Both parametrizations are related by




f8η f0η

f8η′ f
0
η′



 =





f8 cos θ8 −f0 sin θ0
f8 sin θ8 f0 cos θ0



 . (27)

C. Model parameters and form factors

The model includes five parameters, namely the current quark masses mu,s and the coupling

constants G, H, and κ. In addition, one has to specify the form factors f(z) and g(z) entering

the nonlocal fermion currents. Here, following Ref. [18], we will consider two parameter sets,

corresponding to two different functional forms for f(z) and g(z). The first one corresponds to the

often-used exponential forms

g(p) = exp
(

−p2/Λ2
0

)

, f(p) = exp
(

−p2/Λ2
1

)

, (28)

which guarantee a fast ultraviolet convergence of the loop integrals. Note that the range (in

momentum space) of the nonlocality in each channel is determined by the parameters Λ0 and Λ1,

respectively. The second set of form factors considered here is

g(p) =
1 + αz

1 + αz fz(p)

αm fm(p)−m αzfz(p)

αm −m αz
, f(p) =

1 + αz

1 + αz fz(p)
fz(p) , (29)

where

fm(p) =
[

1 +
(

p2/Λ2
0

)3/2
]−1

, fz(p) =
[

1 +
(

p2/Λ2
1

)]−5/2
. (30)

As shown in Ref. [18], for the SU(2) version of the model these functional forms can very well

reproduce the momentum dependence of mass and wave function renormalization obtained in

lattice calculations.

Given the form factor functions, one can fix the model parameters so as to reproduce the

observed meson phenomenology. To the above-mentioned parameters mu,s, G, H, and κ one has
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to add the cutoffs Λ0 and Λ1, introduced through the form factors. Here we have chosen to take

as input value the light quark mass mu, while the remaining six parameters are determined by

fixing the value of the quark WFR at momentum zero, Z(0) = 0.7 (as dictated by lattice QCD

estimations), and by requiring that the model reproduces the empirical values of five physical

quantities. These are the masses of the pseudoscalar mesons π, K and η′, the pion weak decay

constant fπ and the light quark condensate 〈uu〉. In Table I we quote the numerical results for

the model parameters that we have obtained for the above-described form factor functions. In

what follows, the parameter sets corresponding to the form factors in Eqs. (28) and (29-30) will

be referred to as set I and set II, respectively. As expected from the ansatz chosen for the form

factors, for set II the momentum-dependent mass and WFR in the light quark propagators are able

to fit adequately the results obtained in lattice QCD calculations. This is shown in Fig. 1, where

we plot the curves obtained for the functions M(p) and Z(p), together with Nf = 2 + 1 lattice

data taken from Ref. [20]. For comparison we also quote the results corresponding to set I.

Set I Set II

mu [MeV] 5.7 2.5

ms [MeV] 136 63.9

GΛ2

0
23.64 15.55

−HΛ5

0
526 241

κ [GeV] 4.36 8.08

Λ0 [GeV] 0.814 0.824

Λ1 [GeV] 1.032 1.550

Table I: Model parameters for the form factors in Eqs. (28) (set I) and (29-30) (set II).

D. Meson phenomenology

Once the parameters have been determined, we can calculate the values of several meson proper-

ties for the scalar and pseudoscalar sectors. Our numerical results for sets I and II are summarized

in Table II, together with the corresponding phenomenological estimates. The quantities marked

with an asterisk are those that have been chosen as input values. In general, it is seen that the

meson masses, mixing angles, and weak decay constants predicted by the model are in reasonable

agreement with phenomenological expectations. Moreover, the results for set I do not differ signif-

icantly from those obtained in Ref. [6] for a nlPNJL model with a Gaussian form factor g(p) and
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Figure 1: Mass and WFR as functions of the momentum for our parameterizations sets I and II, in com-

parison with lattice results from Ref. [20].

no WFR. Regarding the scalar meson sector, a new ingredient with respect to the model with no

WFR is the presence of the additional field ζ, which mixes with the I = 0 fields σ0 and σ8. The

mass of the physical particles can be obtained by determining the zeros of the functions Gζ,σ,f0(p
2)

arising from the diagonalization of the 3 × 3 matrix in Eq. (50) (see the Appendix). From the

corresponding numerical calculation it is seen that one of these functions is positive definite for

the momentum range described by our models, which reflects that the eigenstate associated with ζ

does not correspond to a physical particle. For the remaining two states, which can be interpreted

as the f0(500) (or σ) and f0(980) scalar mesons quoted by the Particle Data Group (PDG) [31], we

obtain masses of about 550 and 1200 MeV. In fact, in the case of the f0 meson it happens that the

loop integrals in Eq. (51) become divergent, and need some regularization prescription. This oc-

curs since p2 exceeds a threshold above which both effective quarks can be simultaneously on shell,

which can be interpreted as the possibility of a decay of the meson into two massive quarks. The

integrals can be properly defined e.g. following the prescription in Ref. [27]. Since the threshold

lies at about 1 GeV, we have estimated the mass value for the f0 meson by an extrapolation from

the momentum region in which the integrals are well defined. Following a similar procedure, the

masses of K∗
0 charged and neutral mesons are found to be ≃ 1300 MeV; thus, these particles can be

identified with the K∗
0 (1430) mesons quoted by the PDG (mK∗

0
= 1425±50 MeV) [31]. Our models

do not seem to include the light strange scalar mesons κ, which indeed still need confirmation and

thus have been omitted from PDG particle summary tables.
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Set I Set II Empirical

σ̄u [MeV] 529 454 -

σ̄s [MeV] 702 663 -

ζ̄/κ −0.429 −0.429 -

−〈uu〉1/3 [MeV] ∗ 240 320 -

−〈ss〉1/3 [MeV] 198 343 -

mπ [MeV] ∗ 139 139 139

mK [MeV] ∗ 495 495 495

mη [MeV] 527 537 547

mη′ [MeV] ∗ 958 958 958

ma0
[MeV] 936 916 980

mK∗

0
[MeV] 1300 1300 1425

mσ [MeV] 599 537 400 - 550

mf0 [MeV] 1300 1200 990

fπ [MeV] ∗ 92.4 92.4 92.4

fK/fπ 1.17 1.16 1.22

f0

η/fπ 0.17 0.14 (0.11 - 0.507)

f8

η/fπ 1.12 1.12 (1.17 - 1.22)

f0

η′/fπ 1.09 1.43 (0.98 - 1.16)

f8

η′/fπ −0.48 −0.42 −(0.42 - 0.46)

θη −2.95◦ −1.01◦ -

θη′ −41.62◦ −30.79◦ -

θ0 −8.63◦ −5.53◦ −(0◦ - 10◦)

θ8 −22.94◦ −20.67◦ −(19◦ - 22◦)

Table II: Numerical results for various phenomenological quantities. Input values are marked with an

asterisk.

Concerning the quark masses and condensates, it is found that in the case of set II we obtain

relatively low values for mu and ms, and a somewhat large value for the light quark condensate.

Similar results have previously been obtained in Refs. [18] and [26], within two- and three-flavor

parameterizations respectively. As discussed in those articles, this can be in part attributed to the

fact that our fit to lattice data for the function Z(p) is based on the calculations in Ref. [20], which

correspond to a rather large renormalization scale µ = 3 GeV. On the other hand, for both sets I

and II we find that the quark mass ratio is ms/mu ≃ 25, which is phenomenologically adequate.

Something similar happens with the product −〈ūu〉mu, which gives 7.9× 10−5 GeV4 for set I and
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8.2×10−5 GeV4 for set II: these values are in agreement with the scale-independent result obtained

from the Gell-Mann-Oakes-Renner relation at the leading order in the chiral expansion, namely

−〈ūu〉mu = f2πm
2
π/2 ≃ 8.3 × 10−5 GeV4.

III. NONZERO TEMPERATURE

A. Polyakov loop

As stated in the previous section, the effective action of the model includes the interaction

of quarks with color gauge fields through the covariant derivative in the fermion kinetic term.

This coupling will be treated at the mean field level, considering that quarks move on a constant

background field φ = A4 = iA0 = ig δµ0G
µ
aλa/2, where G

µ
a are the SU(3) color gauge fields. Then

the traced Polyakov loop, which in the infinite quark mass limit can be taken as order parameter

of confinement, is given by Φ = 1
3Tr exp(iφ/T ). We will work in the so-called Polyakov gauge,

in which the matrix φ is given a diagonal representation φ = φ3λ3 + φ8λ8. Owing to the charge

conjugation properties of the QCD Lagrangian [32], the mean field traced Polyakov loop field Φ is

expected to be a real quantity. Assuming that φ3 and φ8 are real valued [13], this implies φ8 = 0,

Φ = [2 cos(φ3/T ) + 1]/3.

The effective gauge field self-interactions are given by the Polyakov-loop potential U [A(x)]. At

finite temperature T , it is normal to take for this potential a functional form based on properties

of pure gauge QCD. One possible ansatz is that based on the logarithmic expression of the Haar

measure associated with the SU(3) color group integration. The corresponding potential is given

by [13]

Ulog(Φ, T )
T 4

= − 1

2
a(T )Φ2 + b(T ) log

(

1− 6Φ2 + 8Φ3 − 3Φ4
)

, (31)

where

a(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

, b(T ) = b3

(

T0
T

)3

. (32)

The parameters can be fitted to pure gauge lattice QCD data so as to properly reproduce the

corresponding equation of state and Polyakov loop behavior. This leads to [13]

a0 = 3.51 , a1 = −2.47 , a2 = 15.2 , b3 = −1.75 . (33)

The values of ai and bi are constrained by the condition of reaching the Stefan-Boltzmann limit

at T →∞ and by imposing the presence of a first-order phase transition at T0, which is a further
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parameter of the model. In the absence of dynamical quarks, from lattice calculations one expects a

deconfinement temperature T0 = 270 MeV. However, it has been argued that in the presence of light

dynamical quarks this temperature scale should be adequately reduced to about 210 and 190 MeV

for the case of two and three flavors, respectively, with an uncertainty of about 30 MeV [33].

Besides the logarithmic function in Eq. (31), other forms for the Polyakov-loop potential can be

found in the literature. In the following some of them will be considered, and the effect of the

parameter T0 on the phase transitions will be analyzed.

B. Thermodynamics

To investigate the phase transitions and the temperature dependence of thermodynamical quan-

tities within our model, we consider the thermodynamical potential per unit volume at the mean

field level. We will proceed by using the standard Matsubara formalism, following the same pre-

scriptions as in previous works, see e.g. Refs. [27, 34]. In this way we obtain

ΩMFA = Ωreg +Ωfree + U(Φ, T ) + Ω0 , (34)

where

Ωreg = −2T
∞
∑

n=−∞

∑

c,f

∫

d3p

(2π)3
log

[

p2nc +M2
f (pnc)

Z2(pnc) (p2nc +m2
f )

]

−
(

ζ̄ R̄+
G

2
R̄2 +

H

4
S̄u S̄d S̄s

)

− 1

2

∑

f

(

σ̄f S̄f +
G

2
S̄2
f

)

,

Ωfree = −2T
∑

c,f

∑

s=±1

∫

d3p

(2π)3
Re log

[

1 + exp

(

−ǫfp + ı s φc
T

)]

. (35)

Here we have defined p2nc = [(2n + 1)πT + φc]
2 + ~p 2, ǫfp =

√

~p 2 +m2
f . The sums over color and

flavor indices run over c = r, g, b and f = u, d, s, respectively, and the color background fields are

φr = −φg = φ3, φb = 0. The term Ω0 is just a constant that sets the value of the thermodynamical

potential at T = 0.

Now, from the thermodynamic potential we can calculate various thermodynamic quantities

such as the energy and entropy densities, which are given by

ε = Ω+ Ts , s = −∂Ω
∂T

. (36)

We are also interested in the behavior of the quark condensates and the corresponding chiral

susceptibilities, defined by

〈q̄q〉 = ∂Ω

∂mq
, χq =

∂〈q̄q〉
∂mq

=
∂2Ω

∂m2
q

, q = u, d, s . (37)
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For large temperatures, the behavior of the regularized quark condensates is dominated by the

free contribution, which grows with T as 〈q̄q〉 ∼ −mqT
2. Therefore, in order to analyze the chiral

restoration transition it is normal to define a subtracted chiral condensate

〈q̄q〉sub =
〈ūu〉 − mu

ms
〈s̄s〉

〈ūu〉0 − mu

ms
〈s̄s〉0

, (38)

where we have also introduced a normalization factor given by the values of the chiral condensates

at zero temperature.

C. Numerical results

We present here our numerical results for the quantities defined in the previous section, con-

sidering different form factors and Polyakov loop potentials. Let us start by taking into account

the parameterization set II, based on lattice QCD results for the quark propagators, and the log-

arithmic Polyakov-loop potential in Eq. (31). In Fig. 2 we quote the corresponding behavior of

the subtracted chiral condensate, the traced Polyakov loop Φ and the associated susceptibilities

as functions of the temperature. In the upper panel we show the results for the subtracted chi-

ral condensate 〈q̄q〉sub and the traced Polyakov loop Φ, for T0 = 270 and 200 MeV (dashed and

solid curves, respectively). As stated, T0 = 270 MeV is the deconfinement transition tempera-

ture obtained from lattice calculations in pure gauge QCD, while we have taken T0 = 200 MeV

as a reference temperature arising from the corresponding rescaling in the presence of dynamical

quarks [33]. For comparison we also include lattice QCD data taken from Refs. [35, 36]. As ex-

pected, it is found that when the temperature is increased the system undergoes both the chiral

restoration and deconfinement transitions, which proceed as smooth crossovers for the considered

values of T0. In the central and lower panels of Fig. 2 we show the curves for the Polyakov loop

susceptibility —defined as dΦ/dT— and the chiral susceptibilities χu,s [given by Eq. (37)] as func-

tions of the temperature. As usual, we take the position of the peaks to define the corresponding

transition critical temperatures. From the figure it is seen that the curves get steeper for lower

values of T0; in fact, first order phase transitions are found for T0 . 185 MeV. In addition, in the

curves for χs it is possible to identify a second, broad peak that allows us to define an approximate

critical temperature for the restoration of the full SU(3) chiral symmetry. For clarity we have

plotted in the graphs the subtracted susceptibilities χ̄q ≡ χq − χq(T = 0).

It is seen that both the SU(2) chiral restoration and deconfinement transitions occur essentially

at the same critical temperatures, in agreement with lattice QCD results. The numerical values
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Figure 2: Subtracted chiral condensate, Polyakov loop, chiral susceptibilities, and Polyakov loop suscepti-

bility dΦ/dT as functions of the temperature. Solid (dashed) curves correspond to parameter set II, for

a logarithmic Polyakov loop potential with T0 = 200 (270) MeV. Triangles, circles, and squares stand for

lattice QCD results from Refs. [35, 36].

from the plots in Fig. 2 are Tc ≃ 200 MeV and Tc ≃ 165 MeV for T0 = 270 and 200 MeV,

respectively, while lattice QCD analyses lead to a transition temperature of about 160 MeV [35,

36]. Thus, the agreement with lattice QCD data favors the suggested rescaling of the reference

temperature T0 from the pure gauge transition temperature towards values around 200 MeV.

The above results, which correspond to the lattice QCD-inspired form factors of our parame-
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terization set II, are qualitatively similar to those obtained for the case of set I, based on Gaussian

form factors. In order to compare the features of parameterizations I and II, it is useful to consider

other thermodynamical quantities, such as the interaction energy and the entropy. The corre-

sponding curves are shown in Fig. 3, where we plot the normalized interaction energy (ε− 3p)/T 4

(left) and the normalized entropy density s/sSB (right), where sSB stands for the entropy density

Stefan-Boltzmann limit. Dashed and solid curves correspond to parameterization sets I and II,

respectively, for the logarithmic Polyakov loop potential in Eq. (31) with T0 = 200 MeV. We have

included, for comparison, three sets of lattice data, taken from Refs. [36–38]. It can be seen that for

both the interaction energy and the entropy, the curves for set I show a pronounced dip at about

T ∼ 300 MeV, which is not observed in the case of set II, where the falloff is smooth. In order to

trace the source of this effect we have also considered a third parameterization set III in which the

form factor g(p) has a Gaussian shape as in set I, but we do not include the coupling driven by the

currents jr(x) [i.e. there is no wave function renormalization, Z(p) = 1]. This parameterization

has previously been considered in Ref. [6], where the values of model parameters can be found

(see also Ref. [8]). In Fig. 3 it corresponds to the dashed-dotted curve, which does not show the

mentioned dip. This indicates that the effect can be attributed to the exponential behavior of the

form factor f(p) in the wave function renormalization for set I. Moreover, our results can also be

compared with those obtained from the parameterization considered in Ref. [26], where the form

factors are introduced so as to fit lattice results for the quark propagator (as in our set II), but

f(p) is assumed to have a Gaussian shape. The curves for the interaction energy and the entropy

for this model (dotted lines in Fig. 3) are similar to those obtained for our parameterization set

I. Thus, from the comparison with lattice data, one can conclude that the choice of a powerlike

behavior for f(p), such as that proposed in Eqs. (29-30), turns out to be more adequate than the

exponential one.

Another aspect to be analyzed is the steepness of the curves in the transition region. From both

the plots in Figs. 2 and 3, it is seen that the transition predicted by the nlPNJL models is too

sharp in comparison with lattice estimations. In order to study the robustness of this behavior, it

is interesting to consider different forms for the Polyakov loop potential proposed in the literature.

Besides the logarithmic form in Eq. (31), a widely used potential is that given by a polynomic

function based on a Ginzburg-Landau ansatz [12, 39]:

Upoly(Φ, T )
T 4

= − b2(T )
2

Φ2 − b3
3
Φ3 +

b4
4
Φ4 , (39)
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Figure 3: Normalized interaction energy (left) and entropy density (right) as functions of the temperature,

for different model parameterizations. Curves correspond to nlPNJL models with logarithmic Polyakov loop

potentials, with T0 = 200 MeV. Squares, circles, and triangles stand for lattice data from Refs. [36], [37]

and [38], respectively.

where

b2(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2

+ a3

(

T0
T

)3

. (40)

Here the reference temperature T0 plays the same role as in the logarithmic potential in Eq. (31).

Once again, the parameters can be fitted to pure gauge lattice QCD results so as to repro-

duce the corresponding equation of state and Polyakov loop behavior (numerical values can be

found in Ref. [12]). Another widely considered form is the Polyakov loop potential proposed by

Fukushima [10, 40], which includes both a logarithmic piece and a quadratic term with a coefficient

that falls exponentially with the temperature:

UFuku(Φ, T ) = − b T
[

54 exp(−a/T )Φ2 + log
(

1− 6Φ2 + 8Φ3 − 3Φ4
) ]

. (41)

Values of dimensionful parameters a and b are given in Ref. [40] (notice that these lead to

Tc ≃ 200 MeV, a somewhat large transition temperature in comparison with present lattice QCD

estimations). Finally, we consider here the “improved” Polyakov loop potential forms recently

proposed in Ref. [41], where the full QCD potential Uglue is related to a Yang-Mills potential UYM:

Uglue(Φ, tglue)
T 4

=
UYM[Φ, tYM(tglue)]

T 4
YM

, (42)

where

tYM(tglue) = 0.57 tglue = 0.57

(

T − T glue
c

T glue
c

)

. (43)
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The dependence of the potential on the Polyakov loop Φ is taken from an ansatz such as those in

Eq. (39) or (31), while for T glue
c a preferred value of 210 MeV is obtained [41].
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Figure 4: Subtracted chiral condensate (left) and traced Polyakov loop (right) as functions of the tempera-

ture, for different Polyakov loop potentials. Curves correspond to parameterization set II. Squares, circles,

and triangles stand for lattice data from Refs. [35, 36].

The transition shapes induced by these Polyakov loop potentials within our framework are

shown in Fig. 4. We have taken T0 = 200 MeV for the logarithmic and polynomic potentials, and

the parameters b and T glue
c in Eqs. (41) and (43) have been rescaled to (145 MeV)3 and 200 MeV,

respectively, in order to get critical temperatures of about 165 MeV. From the curves for the

subtracted chiral condensate (left panel) it is seen that for the case of the polynomic and Fukushima

potentials the transition is slightly smoother than for the logarithmic one. Moreover, the improved

potentials proposed in Ref. [41] lead to even smoother transitions, showing a reasonable agreement

with lattice QCD estimations. On the other hand, by looking at the curves for the Polyakov loop

Φ (right panel in Fig. 4) one finds that the transition is too steep in comparison with lattice data.

This is a general feature of Polyakov NJL-like models, both local and nonlocal, and also extends

to quark-meson models. In fact, as discussed in Refs. [42–44], the strict comparison between our

curves and lattice data for the traced Polyakov loop has to be taken with some care, owing to the

difference between the definitions of Φ in the continuum and on the lattice. One should expect a

coincidence in the crossover temperatures, which in general appears to be satisfied in the nlPNJL

models for the potentials considered here.

It is important to remark that in nlPNJL models one finds an entanglement between both chiral

restoration and deconfinement transitions, in agreement with lattice QCD results. This feature is
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usually not observed in local PNJL models, where both transitions appear to be typically separated

by about 20 MeV, or even more (see e.g. Refs. [45, 46]). Something similar happens in the region of

imaginary chemical potential, where the entanglement between both transitions occurs in a natural

way within nonlocal models [24], while in the PNJL model it can be obtained only after e.g. the

inclusion of an eight-quark interaction [47]. This discrepancy with lattice QCD results can be cured

after the inclusion of an “entangled scalar interaction”, in which the effective four-quark coupling

is a function of the traced Polyakov loop Φ [48, 49]. It is also worth noticing that while the local

PNJL in general predicts smoother transitions than the nlPNJL, this feature should not be seen

as a consequence of the nonlocality. In fact, the enhancement of the steepness arises from the

feedback between both chiral restoration and deconfinement transitions. This is supported by the

results found in the above-mentioned “entangled” PNJL: by including a Φ-dependent interaction

that leads to simultaneous critical temperatures at about 175 MeV, the transitions become steeper,

just as those obtained in nlPNJL models.

Finally, for completeness we quote in Fig. 5 our results for the behavior of the interaction en-

ergy and the entropy and energy densities as functions of the temperature, considering both the

logarithmic and the polynomic Polyakov loop potentials, as well as the improved polynomic po-

tential from Ref. [41]. The curves correspond to our parameter set II. It is seen that the improved

potential seems to be more compatible with lattice results up to the critical temperature, while at

higher temperatures the agreement is better for the usual logarithmic and polynomic potentials.

Concerning the steepness of the transitions, it is worth mentioning that the behavior may be soft-

ened after the inclusion of mesonic corrections to the Euclidean action, since when the temperature

is increased the light mesons should be excited before the quarks [4, 7, 8, 50]. The incorporation of

meson fluctuations should not modify the critical temperatures, which for the parameters chosen

here are in good agreement with lattice estimations.

IV. SUMMARY AND CONCLUSIONS

We analyze here the features of three-flavor nlPNJL models that include a wave function renor-

malization in the effective quark propagators. This represents an extension of previous works that

consider two-flavor schemes, and three-flavor models with no quark WFR. In this framework, we

obtain a parameterization of the model that reproduces lattice QCD results for the momentum

dependence of the effective quark mass and WFR, and at the same time leads to an acceptable phe-

nomenological pattern for particle masses and decay constants in both the scalar and pseudoscalar
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Figure 5: Normalized interaction energy, entropy density and energy density as functions of the temperature,

for parameterization set II and three different Polyakov loop potentials. Squares, circles and triangles stand

for lattice data from Refs. [36–38].

meson sectors. For comparison we also consider a parameterization based on Gaussian form fac-

tors, which leads to a faster convergence of quark loop integrals. Gaussian and lattice-inspired

parameterizations are called here set I and set II, respectively. It is seen that the predictions for

meson properties are qualitatively similar in both cases, and they also agree with those obtained

previously within three-flavor models with no WFR.
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As a second step we analyze the characteristics of the deconfinement and chiral restoration

transitions at finite temperature, introducing the couplings of fermions to a background gauge field

and taking the traced Polyakov loop as order parameter for the deconfinement. In general it is found

that both transitions occur at the same critical temperature, in agreement with lattice QCD results.

This temperature turns out to be strongly dependent on the scale parameter T0 in the Polyakov

loop potential. A critical temperature of about 170 MeV, consistent with that arising from lattice

QCD calculations, is obtained for T0 ≃ 200 MeV, in agreement with theoretical expectations for a

model with two/three light dynamical quarks. On the other hand, in order to distinguish between

the different parameterizations and those proposed in related works, we analyze the temperature

dependence of the interaction energy and the normalized entropy and energy densities. For these

thermodynamical quantities it is seen that the lattice-inspired powerlike parameterization set II

shows indeed the best agreement with lattice QCD results, which supports the consistency of our

approach. We also consider various possible forms for the Polyakov loop potential, tuning the

corresponding parameters so as to obtain critical temperatures in a range compatible with lattice

QCD data. It is seen that while the logarithmic potential Eq. (31) leads to rather sharp transitions,

for some alternative forms such as the polynomic and Fukushima potentials [Eqs. (39) and (41),

respectively] the crossovers tend to be somewhat smoother. Moreover, the improved potentials

proposed in Ref. [41] lead to even smoother transitions, showing a reasonable agreement with lattice

QCD estimations. The compatibility with the results for the other mentioned thermodynamical

quantities is also discussed. Finally, it is worth mentioning that the transitions could also be

softened after the incorporation of meson fluctuations, which is presently under study in the context

of our models.

Acknowledgments

This work has been partially funded by CONICET (Argentina) under Grants No. PIP 00682

and No. PIP 02495, and by ANPCyT (Argentina) under Grant No. PICT-2011-0113.

Appendix: analytic expressions for GM (p2) functions

We present here the analytic expressions for the functions GM (p2) appearing in the quadratic

expansion of the Euclidean action, see Eq. (13). Our calculations are in agreement with the results
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reported in Ref. [26]. For the I 6= 0 states π, a0, K and κ we obtain

G( π

a0
)(p) = (G± H

2
S̄s)

−1 + 4C∓
uu(p) ,

G(Kκ)
(p) = (G± H

2
S̄u)

−1 + 4C∓
us(p) , (44)

where the functions C∓
ij (p), with i, j = u or s, are defined as

C∓
ij (p) = − 2Nc

∫

d4q

(2π)4
g2(q)

Z(q+)

q+2 +M2
i (q

+)

Z(q−)

q−2 +M2
j (q

−)

× [(q+ · q−)±Mi(q
+)Mj(q

−)] , (45)

with q± = q± p/2. In the I = 0 pseudoscalar sector one has a mixing between the η0 and η8 fields.

The masses of the physical states η and η′ can be obtained from the functions

G( η

η′)
(p) =

G−
88(p) +G−

00(p)

2
∓

√

G−
80(p)

2 +

(

G−
88(p)−G−

00(p)

2

)2

, (46)

where we use the definitions

G∓
00(p) =

4

3

[

2C∓
uu(p) +C∓

ss(p) +
6G∓HSs ± 4HS̄u

8G2 − 4H2S̄2
u ∓ 4HGS̄s

]

G∓
88(p) =

4

3

[

2C∓
ss(p) + C∓

uu(p) +
6G∓ 2HS̄s ∓ 4HS̄u

8G2 − 4H2S̄2
u ∓ 4HGS̄s

]

G∓
80(p) =

4

3

√
2

[

C∓
uu(p)− C∓

ss(p)±
H(S̄s − S̄u)

8G2 − 4H2S̄2
u ∓ 4HGS̄s

]

. (47)

The states η and η′ are thus defined as

η = η8 cos θη − η0 sen θη ,

η′ = η8 sen θ′η + η0 cos θ′η , (48)

where the mixing angles θη, θη′ are given by

tan 2 θη,η′ =
−2G−

80

G−
88 −G−

00

∣

∣

∣

∣

p2=−m2

η,η′

. (49)

Finally, for the I = 0 scalar sector, the quadratic terms involving the fields ζ, σ8 and σ0 are

mixed by the 3× 3 matrix











4Cζ(p) +G−1
√

8
3 [2C

+ζ
u (p) + C+ζ

s (p)] 4√
3
[C+ζ

u (p)− C+ζ
s (p)]

√

8
3 [2C

+ζ
u (p) + C+ζ

s (p)] G+
00(p) G+

80(p)

4√
3
[C+ζ

u − C+ζ
s (p)] G+

80(p) G+
88(p)











, (50)
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where

Cζ(p) =
Nc

κ2

∫

d4q

(2π)4
q2f2(q)

3
∑

i=1

Z(q+)

q+2 +M2
i (q

+)

Z(q−)

q−2 +M2
i (q

−)

×
[

q+q− +
q+2q−2 − (q+q−)2

2q2
−Mi(q

+)Mi(q
−)

]

C+ζ
i (p) = −2Nc

κ

∫

d4q

(2π)4
g(q) f(q)

Z(q+)

q+2 +M2
i (q

+)

Z(q−)

q−2 +M2
i (q

−)

× q ·
[

q−Mi(q
+) + q+Mi(q

−)
]

, (51)

with i = u, s. For a given value of p2, we denote the eigenvalues of this matrix by Gζ(p), Gσ(p)

and Gf0(p). As stated in Sec. IID, from the functions Gσ(p) and Gf0(p) one can determine the

masses of the σ, f0 physical states [the function Gζ(p) turns out to be positive definite for the

allowed values of −p2]. The corresponding mixing angles can be obtained in a similar way as in

the η meson sector, now defining SO(3) rotation matrices for the σ and f0 physical states.
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