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Abstract: This article deals with the free transverse vibration of a Timoshenko beam with inter-
mediate elastic constraints and ends elastically restrained against rotation and translation. A
combination of the Ritz method and the Lagrange multiplier method and also the standard Ritz
method are used to examine the free vibration characteristics of the mentioned beam. Trial func-
tions denoting the transverse deflections and the normal rotations of the cross-section of the
beam are expressed in polynomial forms.

In order to obtain an indication of the accuracy of the developed mathematical models, some
cases available in the literature have been considered. New results are presented for different end
conditions and intermediate elastic restraints.
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1 INTRODUCTION

Timoshenko proposed a beam theory that adds the
effects of shear distortion and the rotatory inertia
to the Euler–Bernoulli model [1, 2]. Later, there has
been a considerable interest in developing techniques
for the solutions of equations according to the Tim-
oshenko theory. Several authors have obtained the
frequencies equations for various end conditions. One
of the first and more complete studies was carried
out by Traill-Nash and Collar [3]. Dolph [4] ana-
lysed a hinged–hinged beam with external forces and
determined the orthogonality conditions.

Huang [5] derived the exact solutions of eigenfre-
quency and modes for a one-span Timoshenko beam
under various classical end conditions. Carnegie and
Thomas [6] studied the effect of shear deformation and
rotatory inertia on the frequencies of flexural vibration
of uniform and tapered cantilever beams. Anderson [7]
presented the general solution of mode superpo-
sition form for the flexural response of a uniform
beam according to the Timoshenko theory. Bhashyam
and Prathap [8] confirmed the existence of a second
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spectrum of frequency for the hinged–hinged case by
using a finite-element model.

The problem of elastic end restraints has also
received considerable attention. Abbas [9] treated
the problem of free vibration of Timoshenko beams
with elastically supported ends by using a finite-
element model, which can satisfy all the geometric and
natural boundary conditions. Farghaly [10] investi-
gated the natural frequencies and the critical buckling
load coefficients for a multi-span Timoshenko beam
elastically supported. The free vibrations of Timo-
shenko beams having classical boundary conditions
satisfied by Lagrange multipliers were analysed by
Kocatürk and Simsek [11]. These authors [12] also
studied the free vibration of elastically supported
Timoshenko beams by using the Lagrange equations
with the trial functions expressed in the power series
form. Zhou [13] analysed the free vibration of multi-
span Timoshenko beams by the Rayleigh–Ritz method
using static Timoshenko beam functions. Lee and
Schultz [14] presented a study of the free vibration of
Timoshenko beams and axisymmetric Mindlin plates
by the pseudospectral method. Grossi and Aranda [15]
applied the Ritz method in the variational formulation
of Timoshenko beams with elastically restrained ends.

The free vibration of multi-span Timoshenko beams
with an arbitrary number of flexible intermediate
constraints was analysed by Lin and Chang [16], by
using a hybrid analytical numerical solution. The full
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development and analysis of four theories, including
the Timoshenko model, for the transversely vibrating
uniform beam were presented by Han et al. [17].

A review of the literature further reveals that there
is only a limited amount of information for the vibra-
tion of Timoshenko beams with intermediate elastic
restraints.

The aim of the present article is to investigate the
natural frequencies and mode shapes of a Timoshenko
beam with intermediate elastic constraints and gen-
erally restrained ends. Several cases are solved by a
combination of the Ritz method and the Lagrange
multiplier method in conjunction with sets of simple
polynomials as trial functions. In order to obtain an
indication of the accuracy of the developed mathe-
matical model, some cases available in the literature
have been considered and comparisons of numerical
results are included. The algorithms developed can be
applied to a wide range of elastic restraint conditions.
The generally restrained beam analysed includes the
classical end conditions: clamped, simply supported,
sliding, and free as simply particular cases.

A great number of problems were solved and, since
this number of cases is prohibitively large, results are
presented for only a few cases.

2 THEORY AND FORMULATIONS

A uniform Timoshenko beam of length l with elasti-
cally restrained ends and constrained at an interme-
diate point c with variable position is considered as in
Fig. 1.

According to the Timoshenko beam theory, two
independent variables, transverse deflection w and
normal rotational angle φ due to bending, are used
to describe the deformation of the beam. The elas-
tic strain energy because of the beam and the elastic
restraints at any instant t is given by

U = 1
2

∫ l

0

{
EI

[
∂φ(x̄, t)

∂ x̄

]2

+kGA
[
∂w(x̄, t)

∂ x̄
−φ(x̄, t)

]2
}

× dx̄ + 1
2
[t1w2(0, t) + r1φ

2(0, t) + tcw2(c, t)

+ rcφ
2(c, t) + t2w2(l, t) + r2φ

2(l, t)] (1)

where E is the Young’s modulus, G is the transverse
shear modulus, I is the moment of inertia, A is the

Fig. 1 Vibrating system under study

area of the cross-section, and k is the shear correction
factor. The rotational restraints are characterized by
the spring constants r1, r2, and rc , and the translational
restraints by the spring constants t1, t2, and tc .

The kinetic energy of the beam at any instant t is
given by

T = 1
2

∫ l

0

{
ρA

[
∂w(x̄, t)

∂t

]2

+ ρI
[
∂φ(x̄, t)

∂t

]2
}

dx̄ (2)

where ρ is the mass per unit volume.
When the beam executes free vibrations, transverse

deflection and normal rotation can be written as

w(x̄, t) = W̄ (x̄) sin(ωt), φ(x̄, t) = �̄(x̄) sin(ωt)

where ω is the radian frequency.
By introducing the following non-dimensional para-

meters

x = x̄
l

, W = W̄
l

, � = �̄ (3)

the Lagrangian functional L0 of the problem can be
written as

L0 = U − T

= 1
2

∫ 1

0

[(
d�

dx

)2

+ γ

(
l
r

)2 (
dW
dx

− �

)2
]

dx

+ 1
2
[T1W 2(0) + R1�

2(0) + TcW 2(cl)

+ Rc�
2(cl) + T2W 2(1) + R2�

2(1)]

− 1
2
�2

∫ 1

0

[(r
l

)2

�2 + W 2

]
dx (4)

where

γ = kG
E

, r =
√

I
A

, � = ωl2

√
ρA
EI

, cl = c
l

Ti = til3

EI
, Ri = ril

EI
, i = 1, 2, Rc = rcl

EI
, Tc = tcl3

EI

2.1 Combination of the Ritz method and the
Lagrange multiplier method

Assuming that W (x) and �(x) can be written in the
form

W (x) =
{

W1(x), ∀x ∈ [0, cl]
W2(x), ∀x ∈ (cl, 1]

and

�(x) =
{

�1(x), ∀x ∈ [0, cl]
�2(x), ∀x ∈ (cl, 1]

(5)

and considering the compatibility requirements on
the intermediate elastically restrained point, the
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relationships between two adjacent spans can be
expressed as

�1(cl) − �2(cl) = 0 (6a)

W1(cl) − W2(cl) = 0 (6b)

Now the problem can be posed as one of extremizing
the given functional in equation (4) subjected to the
following constraints

G1(�1, �2) = �1(cl) − �2(cl) (7a)

G2(W1, W2) = W1(cl) − W2(cl) (7b)

These constraints may be incorporated into the
energy functional given by equation (4) by using the
Lagrange multiplier method [18] as

LL = L0 + λ1G1 + λ2G2 (8)

where LL is the new Lagrangian functional and λi, i =
1, 2 are the Lagrange multipliers.

The normal rotation and the transverse deflec-
tion, at the kth span, can be represented by the sets
of polynomials {p(k)

i (x)} and {q(k)

j (x)}, respectively, as

�k =
M∑

i=1

a(k)

i p(k)

i (x), k = 1, 2 (9)

Wk =
N∑

j=1

b(k)

j q(k)

j (x), k = 1, 2 (10)

where both a(k)

i and b(k)

j are unknown coefficients to
be determined. It is sufficient that the trial functions
satisfy the geometric boundary conditions of the beam
since, as the number of functions approaches infinity,
the natural boundary conditions will be exactly sat-
isfied [19]. In consequence, the first members of the
sets p(k)

i (x) and q(k)

j (x) are obtained as the simplest
polynomial that satisfies all the geometric boundary
conditions of the kth span. Assume that

p(k)

i (x) =
5∑

i=1

ā(k)

i xi−1, k = 1, 2 (11)

where the arbitrary constants ā(k)

i are determined
by substituting equation (11) into the corresponding
boundary conditions. In the case of beams involving
free ends simpler starting members of order zero, one,
or two are used. The corresponding polynomials of
higher order are obtained as

p(k)

i = p(k)

1 xi−1, i = 2, . . . , M , k = 1, 2 (12)

The polynomials set {q(k)

j (x)} are also generated using
the same procedure, i.e.

q(k)

j = q(k)

1 xj−1, j = 2, . . . , N , k = 1, 2 (13)

Substituting equations (9) and (10) into equation
(8), and minimizing with respect to the unknown

coefficients a(k)

i , b(k)

j , and the Lagrangian multipliers λi,
leads to the following conditions

∂LL

∂a(k)

i

= 0, i = 1, 2, . . . , M , k = 1, 2 (14)

∂LL

∂b(k)

j

= 0, j = 1, 2, . . . , N , k = 1, 2 (15)

∂LL

∂λi
= 0, i = 1, 2 (16)

By using equations (14) to (16), a set of linear alge-
braic equations is obtained, which can be expressed in
the following matrix form

([K] − �2[M]){c̄} = {0} (17)

where

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎣

[K (1)
aa ] [K (1)

ab ] [0] [0] [L(1)

aλ1
] [0]

[K (1)

bb ] [0] [0] [0] [L(1)

bλ2
]

[K (2)
aa ] [K (2)

ab ] [L(2)

aλ1
] [0]

[K (2)

bb ] [0] [L(2)

bλ2
]

symm [0] [0]
[0]

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎣

[M (1)
aa ] [0] [0] [0] [0] [0]

[M (1)

bb ] [0] [0] [0] [0]
[M (2)

aa ] [0] [0] [0]
[M (2)

bb ] [0] [0]
symm [0] [0]

[0]

⎤
⎥⎥⎥⎥⎥⎥⎦
(19)

{c̄} = {{a(1)}, {b(1)}, {a(2)}, {b(2)}, {λ}}T (20)

with

{a(k)} = {a(k)

1 , a(k)

2 , . . . , a(k)

M }
{b(k)} = {b(k)

1 , b(k)

2 , . . . , b(k)

N }, k = 1, 2

{λ} = {λ1, λ2} (21)

The expressions for the various elements of the
stiffness matrix [K] and the mass matrix [M] are
given by

K (1)

aaim =
∫ cl

0

[
dp(1)

i (x)

dx
dp(1)

m (x)

dx
+γ

(
l
r

)2

p(1)

i (x)p(1)
m (x)

]
dx

+ R1p(1)

i (0)p(1)
m (0) + Rcp(1)

i (cl)p(1)
m (cl)

K (1)

abij = −
∫ cl

0
γ

(
l
r

)2

p(1)

i

dq(1)

j

dx
dx

K (1)

bbjn =
∫ cl

0
γ

(
l
r

)2 dq(1)

j (x)

dx
dq(1)

n (x)

dx
dx +T1q(1)

j (0)q(1)
n (0)

+ Tcq(1)

j (cl)q(1)
n (cl)

L(1)

aλ1i1 = p(1)

i (cl)
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L(1)

bλ2j1 = q(1)

j (cl)

K (2)

aaim =
∫ 1

cl

[
dp(2)

i (x)

dx
dp(2)

m (x)

dx
+γ

(
l
r

)2

p(2)

i (x)p(2)
m (x)

]
dx

+ R2p(2)

i (1)p(2)
m (1)

K (2)

abij = −
∫ 1

cl

γ

(
l
r

)2

p(2)

i

dq(2)

j

dx
dx

K (2)

bbjn =
∫ 1

cl

γ

(
l
r

)2 dq(2)

j (x)

dx
dq(2)

n (x)

dx
dx +T2q(2)

j (1)q(2)
n (1)

L(2)

aλ1i1 = −p(2)

i (cl)

L(2)

bλ2j1 = −q(2)

j (cl)

M (1)

aaim =
∫ cl

0

(r
l

)2

p(1)

i (x)p(1)
m (x) dx

M (1)

bbjn =
∫ cl

0
q(1)

j (x)q(1)
n (x) dx

M (2)

aaim =
∫ 1

cl

(r
l

)2

p(2)

i (x)p(2)
m (x) dx

M (2)

bbjn =
∫ 1

cl

q(2)

j (x)q(2)
n (x) dx

with i, m = 1, 2, . . . , M and j, n = 1, 2, . . . , N .
The eigenvalues �2 are found from the condition

that the determinant of the system of equations given
by equation (17) must vanish.

The starting polynomials used for several combina-
tions of classical boundary conditions are described in
Appendix 2, where the symbols F, C, and S denote free,
clamped, and simply supported ends, respectively.

Table 1 Convergence study of the first six values of the frequency parameter � = ωl2
√

(ρA/EI ) of a Timoshenko beam with
an intermediate support (Tc → ∞) located at cl = 0.4 for

√
12(r/l) = 0.1

Boundary
conditions N = M �1 �2 �3 �4 �5 �6

Ritz with the Lagrange multipliers method
S–S 6 31.3371 66.9615 104.3698 186.7780 205.4217 348.4253

7 31.3371 66.9553 103.9240 186.4887 204.5803 300.6391
8 31.3371 66.9551 103.9222 185.3377 203.2434 299.8346
9 31.3371 66.9551 103.9195 185.3363 203.2218 293.0323

10 31.3371 66.9551 103.9195 185.3183 203.1968 293.0078
11 31.3371 66.9551 103.9195 185.3183 203.1966 292.7685
12 31.3371 66.9551 103.9195 185.3182 203.1964 292.7682

Standard Ritz method
10 31.4665 67.9108 106.9151 185.8660 236.2251 334.1349
12 31.4282 67.6183 105.7391 185.3308 215.9283 304.4182
14 31.4088 67.4754 105.3104 185.3184 211.2248 298.2840
16 31.3982 67.3982 105.0949 185.3183 209.7171 296.7557
18 31.3915 67.3500 104.9635 185.3183 208.9424 296.1967
20 31.3864 67.3130 104.8637 185.3183 208.3807 295.8568
25 31.3751 67.2309 104.6442 185.3183 207.1680 295.1484
30 31.3682 67.1815 104.5131 185.3183 206.4515 294.7315
35 31.3639 67.1504 104.4308 185.3183 206.0023 294.4684
40 31.3609 67.1284 104.3730 185.3183 205.6866 294.2822
Reference [13]∗ 31.3370 66.9554 103.9200 185.3186 203.2250 292.8410

Ritz with the Lagrange multipliers method
C–C 6 44.8971 89.3768 120.3082 204.3584 221.9158 313.2971

7 44.8970 89.3751 120.3068 202.1147 220.3916 313.0603
8 44.8970 89.3750 120.2982 202.0986 220.3812 304.0233
9 44.8970 89.3750 120.2982 202.0523 220.3466 304.0080

10 44.8970 89.3750 120.2982 202.0522 220.3465 303.6564
11 44.8970 89.3750 120.2982 202.0519 220.3462 303.6561
12 44.8970 89.3750 120.2982 202.0519 220.3462 303.6512

Standard Ritz method
10 45.1259 90.2482 123.2656 202.3702 236.9757 319.6643
12 45.0729 90.0472 122.4846 202.2452 229.9998 310.7379
14 45.0433 89.9360 122.0961 202.2128 227.8754 308.4639
16 45.0256 89.8695 121.8714 202.1966 226.8682 307.6734
18 45.0133 89.8232 121.7179 202.1854 226.2146 307.2536
20 45.0029 89.7843 121.5898 202.1758 225.6790 306.9265
25 44.9793 89.6945 121.2983 202.1526 224.4701 306.1952
30 44.9646 89.6385 121.1193 202.1372 223.7345 305.7518
35 44.9554 89.6031 121.0069 202.1271 223.2729 305.4724
40 44.9501 89.5828 120.9429 202.1211 223.0090 305.3113
Reference [13]∗ 44.8968 89.3762 120.3006 202.0673 220.4041 303.7835

∗Rayleigh–Ritz method using static Timoshenko beam functions.

Proc. IMechE Vol. 224 Part K: J. Multi-body Dynamics JMBD189



Eigenfrequencies of generally restrained Timoshenko beams 121

2.2 Standard Ritz procedure

In order to apply the standard Ritz procedure, the
expressions for the transverse deflection W and nor-
mal rotation � are assumed

� =
M∑

i=1

aipi(x) (22a)

W =
N∑

j=1

bjqj(x) (22b)

where

pi(x) = p1(x)xi−1, i = 1, 2, . . . , M (23)

qj(x) = q1(x)xj−1, j = 1, 2, . . . , N (24)

First members p1(x) and q1(x) are obtained as the
ones stated in section 2.1. In this case the governing
eigenvalue equation is given by

([[Kaa] [Kab]
[Kab] [Kbb]

]
− �2

[[Maa] [0]
[0] [Mbb]

]) ({ā}
{b̄}

)
=

{
0
0

}
(25)

where

Kaaim =
∫ 1

0

[
dpi(x)

dx
dpm(x)

dx
+ γ

(
l
r

)2

pi(x)pm(x)

]
dx

+ R1pi(0)pm(0) + Rcpi(cl)pm(cl)

+ R2pi(1)pm(1)

Table 2 Values of the fundamental frequency parameter
√

�1 = 4
√

(ρA/EI )ω2
1l of a cantilever Timoshenko beam with an

intermediate point elastically restrained against rotation and translation located at cl = 0.6 for
√

12(r/l) = 0.0001

Tc

Rc 0 10 100 1000 10 000

0 RLMM 1.875 104 2.130 286 2.936 571 3.572 321 3.671 740
SRM 1.875 104 2.130 287 2.936 592 3.572 374 3.671 796
Reference [20]∗ 1.875 104 2.130 285 2.936 571 3.572 320 3.671 740

10 RLMM 2.608 757 2.746 179 3.377 897 4.033 222 4.136 166
SRM 2.622 658 2.758 980 3.389 049 4.046 734 4.150 045
Reference [20]∗ 2.608 757 2.746 178 3.377 896 4.033 222 4.136 165

100 RLMM 2.949 918 3.067 338 3.679 377 4.446 696 4.569 468
SRM 2.982 249 3.098 362 3.710 585 4.496 739 4.623 319
Reference [20]∗ 2.949 918 3.067 338 3.679 377 4.446 696 4.569 468

1000 RLMM 3.004 578 3.119 844 3.732 400 4.532 750 4.662 299
SRM 3.040 564 3.154 515 3.767 811 4.593 127 4.728 104
Reference [20]∗ 3.004 577 3.119 843 3.732 400 4.532 749 4.662 298

10 000 RLMM 3.010 371 3.125 421 3.738 080 4.542 271 4.672 637
SRM 3.046 754 3.160 488 3.773 944 4.603 837 4.739 838
Reference [20]∗ 3.010 371 3.125 421 3.738 079 4.542 270 4 672 637

∗Exact solution based on the Euler-Bernoulli beam theory.
RLMM, the Ritz with Lagrange multipliers method; SRM, the standard Ritz method

Table 3 First three values of the frequency parameter
√

� = 4
√

(ρA/EI )ω2l of a Timoshenko beam with ends elastically
restrained against rotation and translation (R1 = R, R2 = 0, T1 = 1 × 108, T2 = T , Tc = Rc = 0) for

√
12(r/l) = 0.005

T ∞ 1000 100 10 1

Mode Reference Reference Reference Reference Reference
R number RLMM [12]∗ RLMM [12]∗ RLMM [12]∗ RLMM [12]∗ RLMM [12]∗

∞ 1 3.926 40 3.926 41 3.897 60 3.897 61 3.640 41 3.640 42 2.638 90 2.638 90 2.010 00 2.009 99
2 7.067 60 7.067 61 6.875 45 6.875 46 5.615 66 5.615 67 4.793 44 4.793 45 4.703 46 4.703 47
3 10.207 40 10.207 44 9.550 73 9.550 74 8.082 80 8.082 81 7.874 34 7.874 35 7.855 51 7.855 52

1000 1 3.922 50 3.922 50 3.893 81 3.893 82 3.637 59 3.637 60 2.637 58 2.637 59 2.008 32 2.008 34
2 7.060 59 7.060 60 6.869 24 6.869 25 5.612 18 5.612 18 4.788 98 4.788 99 4.698 82 4.698 82
3 10.197 30 10.197 35 9.543 29 9.543 30 8.075 53 8.075 54 7.866 61 7.866 62 7.847 74 7.847 75

100 1 3.889 00 3.889 00 3.861 28 3.861 28 3.613 23 3.613 23 2.626 12 2.626 14 1.993 93 1.993 93
2 7.002 29 7.002 30 6.817 36 6.817 37 5.582 80 5.582 80 4.751 12 4.751 12 4.659 30 4.659 31
3 10.115 90 10.115 94 9.482 58 9.482 59 8.015 72 8.015 73 7.802 73 7.802 74 7.783 53 7.783 54

10 1 3.664 51 3.664 51 3.642 14 3.642 14 3.441 12 3.441 13 2.538 82 2.538 81 1.879 27 1.879 28
2 6.686 71 6.686 71 6.530 84 6.530 84 5.409 70 5.409 71 4.515 71 4.515 71 4.410 59 4.410 59
3 9.749 44 9.749 45 9.482 58 9.195 24 7.714 32 7.714 33 7.473 94 7.473 95 7.452 43 7.452 44

1 1 3.273 21 3.273 21 3.256 57 3.256 57 3.108 40 3.108 40 2.326 45 2.326 46 1.535 80 1.535 80
2 6.355 42 6.355 42 6.220 83 6.220 84 5.198 48 5.198 49 4.184 44 4.184 45 4.045 97 4.045 98
3 9.473 01 9.473 02 8.963 47 8.963 47 7.440 88 7.440 89 7.161 08 7.161 09 7.136 08 7.136 08

∗Lagrange equations using trial functions expressed in the power series form.
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Kabij = −
∫ 1

0
γ

(
l
r

)2

pi
dqj

dx
dx

Kbbjn =
∫ 1

0
γ

(
l
r

)2 dqj(x)

dx
dqn(x)

dx
dx + T1qj(0)qn(0)

+ Tcqj(cl)qn(cl) + T2qj(1)qn(1)

Maaim =
∫ 1

0

(r
l

)2

pi(x)pm(x) dx

Mbbjn =
∫ 1

0
qj(x)qn(x) dx

with i, m = 1, 2, . . . , M and j, n = 1, 2, . . . , N .
The eigenvalues �2 are found from the condition

that the determinant of the system of equations given
by equation (25) must vanish.

Table 4 Values of the fundamental frequency parameter �1 = ω1l2
√

(ρA/EI ) of a Timoshenko beam with ends elastically
restrained against rotation (T1 → ∞, T2 → ∞, k = 0.85, μ = 0.3, (r/l) = 0.08)

R2 10 1 0

R1 � Reference [9]∗ RLMM Reference [9]∗ RLMM Reference [9]∗ RLMM

0.01 1 11.632 11.188 9.227 9.469 8.845 8.922
2 30.702 30.255 28.699 28.861 28.465 28.511
3 52.825 52.557 51.645 51.736 51.511 51.528
4 76.019 75.873 75.502 75.503 75.426 75.383
5 91.751 91.501 89.768 90.036 89.345 89.436

10 1 14.644 13.5182 12.006 11.7836 11.637 11.1803
2 32.670 31.8575 30.907 30.6026 30.705 30.2507
3 54.093 53.5823 52.955 52.7832 52.826 52.5538
4 76.503 76.3022 76.081 75.9891 76.019 75.8716
5 97.771 96.2700 92.595 92.8000 91.762 91.4854

∗Result obtained using a finite-element model.

Table 5 Values of the fundamental frequency parameter
√

�1 = 4
√

(ρA/EI )ω2
1l of a Timoshenko beam with symmetric bound-

ary conditions and with an intermediate point elastically restrained against rotation and translation located at three
different positions

√
12(r/l)

cl = 0.1 cl = 0.3 cl = 0.5

Tc Rc 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

S–S 0 0 3.1416 3.1413 3.1157 3.1416 3.1413 3.1157 3.1416 3.1413 3.1157
10 3.7858 3.7852 3.7225 3.4497 3.4493 3.4075

100 4.2400 4.2389 4.1302 3.7740 3.7733 3.7006
10 0 3.1568 3.1565 3.1311 3.2409 3.2407 3.2164 3.2913 3.2911 3.2675

10 3.7897 3.7890 3.7267 3.5322 3.5318 3.4919
100 4.2404 4.2392 4.1309 3.8450 3.8442 3.7740

100 0 3.2756 3.2754 6.1612 3.8148 3.8145 3.7855 4.1315 4.1313 4.1063
10 3.8216 3.8210 3.7612 4.0415 4.0411 3.9998

100 4.2436 4.2424 4.1363 4.3071 4.3064 4.2385

C–C 0 0 4.7300 4.7284 4.5795 4.7300 4.7284 4.5795 4.7300 4.7284 4.5795
10 4.9115 4.9095 4.7338 5.0303 5.0280 4.8255

100 5.1643 5.1619 4.9435 5.4649 5.4612 5.1420
10 0 4.7309 4.7293 4.5807 4.7579 4.7563 4.6103 4.7884 4.7868 4.6419

10 4.9119 4.9099 4.7345 5.0548 5.0526 4.8535
100 5.1644 5.1619 4.9437 5.4859 5.4821 5.1675

100 0 4.7383 4.7367 4.5910 4.9733 4.9718 4.8395 5.2304 5.2290 5.1026
10 4.9154 4.9135 4.7408 5.2458 5.2438 5.0645

100 5.1648 5.1624 4.9460 5.6509 5.6475 5.3611

F–F 0 0 4.7300 4.7292 4.6485 4.7300 4.7292 4.6485 4.7300 4.7292 4.6485
10 2.3629 2.3628 2.3522 2.6968 2.6966 2.6805 2.9448 2.9446 2.9227

100 2.5178 2.5177 2.5048 3.0239 3.0236 2.9994 3.6131 3.6126 3.5641
10 0 2.3101 2.3100 2.3054 1.9558 1.9557 1.9534 1.7644 1.7644 1.7634

10 1.5891 1.5891 1.5868 1.7178 1.7178 1.7162
100 1.6416 1.6415 1.6391 1.7366 1.7366 1.7351

100 0 3.7974 3.7971 3.7692 3.3784 3.3783 3.3623 2.9265 2.9264 2.9123
10 1.8626 1.8625 1.8564 2.2995 2.2994 2.2887

100 2.0086 2.0085 2.0001 2.4900 2.4898 2.4757
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3 CONVERGENCE AND COMPARISON STUDIES

Through all the analysis, beams with shear correc-
tion factor k = (5/6) and Poisson’s ratio μ = 0.3 are
considered.

In order to illustrate the accuracy of solutions
obtained using the Ritz method with Lagrange mul-
tipliers and to demonstrate quantitatively the lack
of accuracy obtained from the use of the standard
Ritz procedure, several test problems are considered.
Results of a convergence study of the first six values of
the dimensionless frequency parameter � of simply–
simply supported and clamped–clamped beams with
an intermediate support located at cl = 0.4 are pre-
sented in Table 1. The convergence of the mentioned
eigenvalues is studied by gradually increasing the
number of trial functions. In this case, it has been
determined that it is convenient to use the Lagrange
multipliers method. It is well known that the Ritz
method gives upper bounds eigenvalues. A compar-
ison of values of the fundamental frequency with
those of reference [13] shows that N = M = 12 in the
Ritz with the Lagrange multipliers method is enough
to reach stable convergence in all cases and to give

results with the same precision. On the other hand,
one can see that the use of standard Ritz method
(SRM) requires more than 40 terms in the approx-
imate functions in order to obtain the numerical
results with the same accuracy. Table 2 depicts val-
ues of the fundamental frequency parameter

√
�1 of

a cantilever Timoshenko beam with an intermediate
point elastically restrained against rotation and trans-
lation located at cl = 0.6. In order to compare values of
the mentioned parameter with the classical solutions
based on the Euler–Bernoulli beam theory [20], the
ratio

√
12(r/l) = 0.0001 is taken. The numerical results

obtained by using the combination of the Ritz method
with the Lagrange multiplier method with N = M = 7
are in good agreement with those of Grossi and Albar-
racín [20]. The SRM was used with N = M = 30 and
small discrepancies appear as the values of Rc and Tc

increase.
Table 3 depicts the first three values of the fre-

quency parameter
√

� of a single-span Timoshenko
beam with ends elastically restrained against rotation
and translation (R1 = R, R2 = 0, T1 = 1 · 108, T2 = T ,
Tc = Rc = 0) for

√
12(r/l) = 0.005. The numerical

results were obtained by using the Ritz with the

Table 6 Values of the fundamental frequency parameter
√

�1 = 4
√

(ρA/EI )ω2
1l of a Timoshenko beam with

unsymmetrical boundary conditions and with an intermediate point elastically restrained against
rotation and translation located at three different positions

√
12(r/l)

cl = 0.25 cl = 0.50 cl = 0.75

Tc Rc 0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1

S–F 0 0 0 0 0 0 0 0 0 0 0
10 2.0175 2.0174 2.0075 1.9745 1.9744 1.9656 1.7016 1.7016 1.6970

100 2.3777 2.3774 2.3574 2.2882 2.2880 2.2709 1.8252 1.8251 1.8190
10 0 1.1524 1.1524 1.1507 1.6300 1.6300 1.6277 3.9270 2.0235 2.0215

10 2.0440 2.0439 2.0348 2.2179 2.2178 2.2108 2.2290 2.2290 2.2257
100 2.3827 2.3825 2.3631 2.4857 2.4856 2.4709 2.2815 2.2815 2.2773

100 0 1.8352 1.8351 1.8232 2.5643 2.5641 2.5480 3.5396 3.5394 3.5242
10 2.1755 2.1754 2.1661 2.9331 2.9330 2.9161 3.5469 3.5468 3.5306

100 2.4117 2.4115 2.3951 3.1856 3.1853 3.1620 3.5479 3.5477 3.5314

C–F 0 0 1.8751 1.8750 1.8677 1.8751 1.8750 1.8677 1.8751 1.8750 1.8677
10 2.2155 2.2154 2.2006 2.5983 2.5980 2.5674 2.4969 2.4967 2.4710

100 2.4398 2.4396 2.4176 3.0455 3.0448 2.9800 2.6729 2.6726 2.6370
10 0 1.8890 1.8889 1.8822 2.0238 2.0237 2.0183 2.3316 2.3316 2.3263

10 2.2190 2.2188 2.2046 2.6665 2.6662 2.6397 2.7488 2.7486 2.7282
100 2.4403 2.4400 2.4183 3.0955 3.0949 3.0357 2.8859 2.8856 2.8562

100 0 1.9831 1.9831 1.9763 2.5690 2.5688 2.5538 3.6290 3.6289 3.6133
10 2.2447 2.2446 2.2329 2.9936 2.9934 2.9731 3.8216 3.8214 3.8005

100 2.4439 2.4437 2.4239 3.3494 3.3489 3.3062 3.8777 3.8774 3.8510

C–S 0 0 3.9266 3.9258 3.8518 3.9266 3.9258 3.8518 3.9266 3.9258 3.8518
10 4.3230 4.3216 4.1961 3.9839 3.9830 3.8968 4.2088 4.2078 4.1198

100 4.8177 4.8153 4.5978 4.0437 4.0426 3.9413 4.5716 4.5702 4.4405
10 0 3.9438 3.9430 3.8710 4.0098 4.0091 3.9389 3.9863 3.9855 3.9130

10 4.3338 4.3324 4.2095 4.0655 4.0647 3.9826 4.2608 4.2599 4.1734
100 4.8227 4.8203 4.6059 4.1235 4.1225 4.0258 4.6170 4.6156 4.4877

100 0 4.0757 4.0750 4.0137 4.5776 4.5770 4.5197 4.3957 4.3949 4.3218
10 4.4182 4.4170 4.3104 4.6280 4.6273 4.5601 4.6292 4.6283 4.5420

100 4.8624 4.8602 4.6677 4.6791 4.6782 4.5986 4.9477 4.9464 4.8209
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Lagrange multipliers method. A comparison of values
of the fundamental frequency with those of refer-
ence [12] shows a very close agreement.

Table 4 depicts values of the fundamental frequency
parameter �1 = ω1l2

√
ρA/EI of a Timoshenko beam

with ends elastically restrained against rotation. Fol-
lowing Abbas [9], the shear correction factor k = 0.85,
the Poisson’s ratio μ = 0.3, and the ratio (r/l) = 0.08
are considered. It can be observed that several values
are not in good agreement. The article of Abbas does
not include details about the implementation of the
finite-element model; nevertheless, it can be observed
that one of the boundary conditions has an incorrect
sign.

4 NUMERICAL EXAMPLES

In order to investigate the influence of stiffness of
the intermediate elastic restraints on the free vibra-
tion characteristics of Timoshenko beams, numerical
results were computed by using the combination of
the Ritz method with the Lagrange multiplier method.
A great number of problems were solved and, since
the number of cases is extremely large, results are pre-
sented for only a few cases. All calculations have been
performed taking N = M = 12, k = (5/6), and μ = 0.3.

Tables 5 and 6 depict values of the fundamental fre-
quency parameter

√
�1 of a Timoshenko beam with

an intermediate point elastically restrained against
rotation and translation. Three different thickness
ratios:

√
12(r/l) = 0.001, 0.01, and 0.1 are considered

and the intermediate point is located at three dif-
ferent positions. In Table 5 three kinds of symmetric
boundary conditions are considered, while in Table 6
three kinds of unsymmetrical boundary conditions are
considered.

Figure 2 shows the variation of the first four values of
the frequency parameters

√
� with respect to the inter-

mediate rotational restraint Rc located at cl = 0.5 of

Fig. 2 Variation in the first four values of the frequency
parameters

√
� with respect to the intermediate

rotational restraint Rc located at cl = 0.5 of a C–F
Timoshenko beam for

√
12(r/l) = 0.1

a clamped-free Timoshenko beam for
√

12(r/l) = 0.1.
From this figure it appears that the major variations
of frequency parameters with the intermediate rota-
tional restraint Rc correspond to modes 1 and 3.

5 CONCLUSIONS

A simple, computationally efficient and accurate
approach has been developed for the determination of
natural frequencies of free vibration of a uniform Tim-
oshenko beam with intermediate elastic constraints
and ends elastically restrained against rotation and
translation. The algorithm is very general and it is
attractive regarding its versatility in handling any
boundary conditions and any transition conditions,
including ends and an intermediate point elastically
restrained against rotation and translation. A combi-
nation of the Ritz method and the Lagrange multiplier
method and also the SRM have been used. Close agree-
ment with results presented by previous investigators
is demonstrated for several examples.

It has been demonstrated that it is convenient to
use the mentioned combined method, since it is more
efficient than the SRM because of the higher rate of
convergence.

These results obtained may provide useful infor-
mation for structural designers and engineers. The
algorithms developed can be easily extended to a
beam with an arbitrary number of intermediate points
elastically restrained.
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APPENDIX 1

Notation

A cross-sectional area
cl = c/l geometrical parameter
E Young’s modulus
G transverse shear modulus
I moment of inertia
l length of the beam

M , N upper limits of summation
r = √

I/A radius of gyration of
cross-section

rc rotational stiffness at the point
x̄ = c

r1, r2 rotational stiffness at the left
and right ends, respectively

Rc , Ri, i = 1, 2 dimensionless rotational
parameters

t time
tc translational stiffness at the

point x̄ = c
t1, t2 translational stiffness at the left

and right ends, respectively
T kinetic energy
Tc , Ti, i = 1, 2 dimensionless translational

parameters
U strain energy
x dimensionless abscissa
x̄ abscissa

ρ mass density
ω radian frequency
� = ωl2

√
ρA/EI dimensionless natural

frequency parameter

APPENDIX 2

First members of the set of polynomials
{

p(k)

i (x)
}

and
{

q(k)

j (x)
}

for all possible combinations of classi-
cal boundary conditions and with intermediate elastic
restraints

Classical boundary
conditions and intermediate
elastic restraints at x = cl p(1)

l q(1)

l p(2)

l q(2)

l

S–S 1 x 1 x − 1
S–F 1 x 1 1
F–F 1 1 1 1
C–C x x x − 1 x − 1
C–S x x 1 x − 1
C–F x x 1 1

Classical boundary
conditions with intermediate
point support at x = cl

S–S 1 x − cl 1 (x − 1)(x − cl)

S–F 1 x − cl 1 x − cl

F–F 1 x − cl 1 x − cl

C–C x x(x − cl) x − 1 (x − 1)(x − cl)

C–S x x(x − cl) 1 x − 1
C–F x x(x − cl) 1 1
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