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AUTOMORPHISMS AND ISOMORPHISM OF QUANTUM

GENERALIZED WEYL ALGEBRAS

MARIANO SUÁREZ-ALVAREZ AND QUIMEY VIVAS

Abstract. We classify up to isomorphism the quantum generalized Weyl al-
gebras and determine their automorphism groups in all cases in a uniform way,
including where the parameter q is a root of unity, thereby completing the re-
sults obtained by [Bavula, V. V.; Jordan, D. A. Isomorphism problems and
groups of automorphisms for generalized Weyl algebras. Trans. Amer. Math.
Soc. 353 (2001), no. 2, 769–794] and [Richard, L.; Solotar, A. Isomorphisms
between quantum generalized Weyl algebras. J. Algebra Appl. 5 (2006), no.
3, 271–285]

Introduction

If k is a field, q ∈ k\{0, 1}, D is one of k[h] or k[h±1] and a ∈ D\0, the quantum
generalized Weyl algebra A = A(D, q, a) is the k-algebra freely generated by letters
y, x, h (and its inverse h−1 when D = k[h±1]) subject to the relations

hy = qyh, xh = qhx, yx = a(h), xy = a(qh).

This construction, a special case of a general one introduced by V.V. Bavula in [3],
provides an interesting class of algebras containing the quantum plane, the quan-
tum Weyl algebra, certain well-known quotients of the quantum enveloping algebra
Uq(sl2) related to the primitive quotients of the classical enveloping algebra U(sl2),
studied by J.Alev and F. Dumas in [2], some invariant subalgebras of these under
finite group actions, the so-called ambiskew polynomial rings, and several other
examples. They have notably appeared also under the name of non-commutative
deformations of Kleinian singularities of type A in work of T.J. Hodges [9] and are,
in fact, somewhat ubiquitous.

It is the purpose of this paper to present a solution to the problem —initially
posed by Hodges in [9] in general— of determining which pairs of quantum gener-
alized Weyl algebras are isomorphic, and to describe the automorphism groups of
these algebras. Our first result solves the isomorphism problem:

Theorem A. The two algebras A1 = A(D, q1, a1) and A2 = A(D, q2, a2), with a1
and a2 non-units, are isomorphic if and only if q2 ∈ {q1, q

−1
1 } and there exist a

unit α ∈ D, a non-zero scalar β ∈ k and ε ∈ {±1} such that a2(h) = αa1(βh
ε).

If D = k[h] then necessarily ε = 1 and α ∈ k×.
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Let us single out two interesting special cases of this theorem. If q ∈ k \ {0, 1},
the quantum plane is the algebra Mq = k〈x, y : yx = qxy〉 and the quantum Weyl

algebra is the algebra A1
q(k) = k〈x, y : yx − qxy = 1〉. As Mq

∼= A(k[h], q, h) and

A1
q(k)

∼= A(k[h], q, h − 1), Theorem A tells us that for all q1, q2 ∈ k \ {0, 1} we

have Mq1
∼= Mq2 iff A1

q1
(k) ∼= A2

q2
(k) iff q2 ∈ {q1, q

−1
1 }. This characterization of

isomorphisms between quantum planes and between quantum Weyl algebras had
been established when the parameters are not roots of unity by Alev and Dumas
in [1].

Theorem B. Let A = A(k[h], q, a) be a quantum generalized Weyl algebra with a

not a unit, let N = deg a and write a =
∑N

i=0 aih
i, and let g = gcd{i−j : aiaj 6= 0}

and Cg ⊆ k× be the subgroup of gth roots of unity; if a is a monomial, we make the

convention that g = 0 and Cg = k×. If (γ, µ) ∈ Cg × k×, there is an automorphism

ηγ,µ : A → A such that ηγ,µ(y) = µy, ηγ,µ(h) = γh and ηγ,µ(x) = µ−1γNx. The set

G = {ηγ,µ : (γ, µ) ∈ Cg × k×} is a subgroup of Aut(A) isomorphic to Cg × k×.
(i) If q 6= −1, we in fact have Aut(A) = G, and

(ii) if q = −1, there is a right split short exact sequence of groups

1 // G
�

�

// Aut(A) // Z/2Z // 1

The cyclic group Z/2Z appearing here is generated by the image of the

involutory automorphism Ω : A → A such that Ω(y) = x, Ω(h) = −h
and Ω(x) = y.

To state the analog of this theorem for the case where D = k[h±1], we need a
definition. We say that a Laurent polynomial f ∈ k[h±1] is symmetric if there exist
l ∈ N, γ ∈ k and δ ∈ k such that δf(h) = hlf(γh−1).

Theorem C. Let A = A(k[h±1], q, a) be a quantum generalized Weyl algebra,

with a =
∑

i∈I aih
i a non-unit in k[h±1], and let g = gcd{i − j : aiaj 6= 0} and

Cg ⊆ k× be the subgroup of gth roots of unity; fix i0 ∈ I. If (γ, µ) ∈ Cg × k×,
there is an automorphism ηγ,µ : A → A such that ηγ,µ(y) = µy, ηγ,µ(h) = γh and

ηγ,µ(x) = µ−1γi0x. The set G = {ηγ,µ : (γ, µ) ∈ Cg × k×} is a subgroup of Aut(A)
isomorphic to Cg × k×. Consider the subgroup K of AutA of all automorphisms η
such that η(h) is a scalar multiple of h.

(i) If a is symmetric then AutA ∼= K ⋉ Z/2Z and, if not, Aut(A) = K.

(ii) If q = −1 then K ∼= G⋉ Z/2Z and otherwise K = G.

To avoid complicating statements and proofs, we have chosen to postpone to the
end of the paper the results in the line of these three theorems for the case in which
the polynomial a is invertible in the ring D.

The results corresponding to these theorems for the case of classical generalized
Weyl algebras —in which “there is no q”— have been given by Bavula and Jordan
in [4] and the quantum case as above but with q not a root of unity has been solved
for D = k[h] by L.Richard and A. Solotar in [12] and for D = k[h±1] by Bavula
and Jordan also in [4].

Our approach makes no hypothesis on the scalar parameter, and it is interesting
to remark one key point which makes the difference. In [1], Alev and Dumas
attached to a k-algebra Λ the subgroup G(Λ) = (Λ×)′ ∩ k× ⊆ k× —where (Λ×)′

is the derived subgroup of the group of units of Λ— and showed that if kq(x, y)
denotes the quantum Weyl field we have G(kq(x, y)) = 〈q〉, the cyclic subgroup
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generated by q. Richard and Solotar prove that the fraction field of a quantum
generalized Weyl algebra A = A(q, a) is isomorphic to kq(x, y) and, since in their
situation q is not a root of unity, notice that one can recover q from A, up to
inversion, as one of the two generators of G(FracA). If instead q has finite order
in k×, the subgroup 〈q〉 has many generators and their approach cannot get started.
We replace below their consideration of G(FracA) by a detailed study of certain
derivations of A and their eigenvalues, and this avoids that difficulty: in a very
loose sense, this is like “taking the logarithm” of G(FracA). Similar difficulties with
parameters of finite order appear when trying to classify other classes of algebras,
like that of down-up algebras introduced by G.Benkart and T.Roby in [5], and one
can hope that similar ideas may possibly overcome these too.

In [13], together with A. Solotar, we computed the Hochschild cohomology of
quantum generalized Weyl algebras defined over k[h]. The results of the present
paper arose in the process of studying the algebraic structure of the cohomology
—the cup product and the Gerstenhaber bracket.

We finish by emphasizing that the theorems stated above, as well as all the
related work we referred to, exclude the case where q = 1, which is precisely that in
which the algebras are commutative. When D = k[h], the problem of determining
the automorphisms is that of finding the automorphism group of the affine surface
Spec k[x, y, h]/(xy − a(h)). L.Makar-Limanov gave in [10] explicit generators for
these groups and recently J. Blanc and A.Dubouloz showed in [6] that they have
an amalgamated product structure similar to that of Aut(k[x, y]) described by the
classical theorems of L.Makar-Limanov, H.W.E. Jung and W. van der Kulk, and
that the surfaces are classified under isomorphism exactly as in Theorem A. While
Makar-Limanov deals systematically with locally nilpotent derivations, as we do,
the methods with which these commutative results are obtained are quite different
from ours —the work [6], for example, is a paper on algebraic geometry.

1. Preliminaries

We fix a field k of characteristic zero and identify Q with its prime field. If
q ∈ k, D is one of k[h] or k[h±1] and a ∈ D, the quantum generalized Weyl algebra

A = A(D, q, a) is the k-algebra freely generated by letters y, x, h (and h−1 when
D = k[h±1]) subject to the relations;

hy = qyh, xh = qhx, yx = a(h), xy = a(qh).

The set {yihjxk : ik = 0} is a k-basis of A; we call its elements standard monomials.
The algebra is a domain iff q 6= 0 and a 6= 0: we will always assume this is the
case. We will moreover suppose throughout that q 6= 1, thereby excluding all the
commutative examples and no other.

We write a =
∑N

i=M aih
i with aMaN 6= 0. Notice that if a is a unit, that is, if

M = N = 0 when D = k[h] or M = N when D = k[h±1], then A is isomorphic to
the Ore extension D[x±1, σ]. As the results and methods needed to deal with this
case are different, we will do this separately at the end of this paper.

The algebra A is Z-graded in a unique way so that the degrees of y, h and x are
1, 0, and −1, respectively; we refer to the degree |a| of an homogeneous element
a ∈ A in this grading as its weight, and extend this convention to related contexts.
For r ∈ Z, we let A(r) be the homogeneous component of A of degree r; we have
A(0) = k[h] and, for each r ∈ N, A(r) = yrk[h] and A(−r) = k[h]xr.
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Let V =
⊕

i∈Z
Vi be a graded vector space and let d : V → V a not necessarily

homogeneous linear endomorphism. We say that d is locally finite if for each v ∈ V
the cyclic subspace 〈v〉d of V generated by d and v is finite-dimensional, and that
d is locally nilpotent if for each v ∈ V we have di(v) = 0 for i ≫ 0. It is enough to
check these conditions on homogeneous elements of V .

Lemma 1.1. Suppose d = d1 + · · · + dl with d1, . . . , dl : V → V homogeneous
endomorphisms of V of degrees α1, . . . , αl such that α1 < · · · < αl. If d is locally-

finite then d1 and dl are locally-finite. �

An homogeneous endomorphism of V of non-zero degree is locally finite iff it is
locally nilpotent. It follows that if in the lemma we have αl 6= 0 then in fact dl is
locally nilpotent, and similarly for d1.

Let now A be a graded algebra. If d : A → A is a homogeneous derivation of
positive degree which is locally nilpotent, there is a function degd : A \ 0 → N

such that for each u ∈ A \ 0 we have degd(u) = max{r ∈ N0 : dr(u) 6= 0}. It is
straightforward to check that degd is such that for all u, v ∈ A we have

degd(u + v) ≤ max{degd(u), degd(v)},

degd(uv) = degd(u) + degd(v).

It follows from this that the subalgebra ker d is factorially closed : if u, v ∈ A \ 0
then d(uv) = 0 =⇒ d(u) = d(v) = 0. In particular, d vanishes on the units of A.

In contexts where this makes sense, we will write x
.
= y to mean that y is a

non-zero scalar multiple of y.

2. Derivations

Let A = A(D, q, a) be a quantum generalized Weyl algebra. If u1, u2, u3 ∈ A,
we write u1

∂
∂y

+ u2
∂
∂h

+ u3
∂
∂x

the unique derivation A → A whose values at y, h

and x are u1, u2 and u3, respectively, assuming there is one.

Lemma 2.1. The algebra A has no non-zero locally nilpotent homogeneous deriva-

tions.

Proof. Let d : A → A be a locally nilpotent homogeneous derivation. Suppose first
that D = k[h±1]. As we observed above, d vanishes on h and h−1 because they are
units, so d(yx) = d(a) = 0 and therefore d(y) = d(x) = 0: we see that d = 0.

Let now D be k[h] and r be the weight of d. We will assume that r > 0; if
we had r < 0 the same reasoning would apply, and the situation is even simpler if
r = 0. There are homogeneous elements of positive weight in ker d, so there exist
s ∈ N and u ∈ k[h] such that d(ysu) = 0. Since ker d is factorially closed, this
implies that in fact d(y) = 0. On the other hand, there is a polynomial p ∈ k[h]
such that d(h) = yrp, and from the relation hy = qyh we see that yrpy = qyr+1p,
so that σ(p) = qp: it follows from this that we can write p = p1h for some p1 ∈ k[h].
If k ≥ 0, then d(Akh) ⊆ Ak+rh: indeed, if f ∈ k[h] we have

d(ykfh) = ykd(f)h+ ykfd(h) = ykd(f)h+ ykfyrp1h ∈ Ak+rh

because d(f) ∈ Ar. This tells us that di(h) ∈ Airh for all i ≥ 0. If i0 = degd(h),
then 0 6= di0(h) ∈ Ai0rh ∩ ker d and, since ker d is factorially closed, d(h) = 0. An
immediate consequence of this is that yd(x) = d(yx) = d(a) = 0, so also d(x) = 0,
and we see that d = 0, as we wanted. �
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That D is k[h] or k[h±1] is important in this lemma, for these two algebras have
very few locally nilpotent derivations. Let us exhibit an example with D = k[h1, h2]
where its conclusion does not hold. We take q ∈ k \ {0, 1} a root of unity of
order e > 1, σ : D → D the automorphism such that σ(hi) = qhi for i ∈ {1, 2},
an arbitrary a ∈ D and consider the algebra A = A(k[h1, h2], σ, a). There is a

unique derivation d̃ : D → D such that d̃(h1) = h2 and d̃(h2) = 0, and it is locally
nilpotent, and using this it is easy to check that for each r > 0 there is a locally
nilpotent derivation dr : A → A with dr(y) = 0, dr(h1) = yreh2, dr(h2) = 0 and

dr(x) = yre−1d̃(a). Since dr is clearly homogeneous, we see that the conclusion of
the lemma does not apply to A.

Corollary 2.2. The locally finite derivations of A are homogeneous of weight zero.

Proof. Let d : A → A be a locally finite derivation. Since A is finitely generated,
there are non-zero homogeneous derivations d1, . . . , dl : A → A of strictly increasing
weights such that d = d1 + · · · + dl. The weight of dl cannot be positive, for then
dl would be locally nilpotent —because d is locally finite— and the lemma would
imply that dl = 0; similarly, the weight of d1 cannot be negative. It follows that d
itself is homogeneous of weight zero. �

Proposition 2.3. Let d : A → A be a locally finite derivation, and consider the

derivation ξ = y ∂
∂y

− x ∂
∂x

.

(i) If a is not a monomial then d is a scalar multiple of ξ.
(ii) If a is a monomial then d is a linear combination of ξ and τ = h ∂

∂h
+Nx ∂

∂x
.

All locally finite derivations are diagonalizable with the standard monomials as

eigenvectors and, in particular, they commute.

We will refer to ξ : A → A in what follows as the Eulerian derivation of A.
It is easy to check that its eigenvalues are exactly the integers, and that for each
r ∈ Z the eigenspace of ξ corresponding to r is precisely A(r), the homogeneous
component of A of weight r.

Proof. According to Corollary 2.2 the derivation d is of weight zero, so there are
polynomials p1, p2, p3 ∈ D such that d = yp1

∂
∂y

+ p2
∂
∂h

+ p3x
∂
∂x

. In particular

d restricts to a locally finite derivation D → D, and therefore this restriction has
to be of the form (αh + β) ∂

∂h
, with α, β ∈ k. Looking at the coefficients of y in

both sides of the equality d(hy) = qd(yh), we see that in fact β = 0.
There is a sequence (gi)i≥0 in D such that g0 = 1, di(y) = ygi and gi+1 =

p1gi + αg′ih for all i ≥ 0. If D = k[h] we have deg gi = i deg p1 and the local
finiteness of d implies that p1 ∈ k; if D = k[h±1] we reach the same conclusion by
considering the degree of the first or last monomials of the gi.

Applying d to both sides of the equality yx = a, we see that aσ−1(p1+p3) = αa′h,
which is possible only if p3 ∈ k. If we now solve this equation for the three scalars
p1, α and p3 we obtain the claims (i) and (ii) of the statement. The last claim,
finally, can be proved directly by inspection. �

Since the dimension of the vector space of locally finite derivations of an alge-
bra is invariant under isomorphisms, the above Proposition 2.3 has the following
consequence:
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Λi

Figure 1. The semigroup Λi.

Corollary 2.4. If A1 = A(D, q1, a1) and A2 = A(D, q2, a2) are two isomorphic

quantum generalized Weyl algebras, then either both a1 and a2 are monomials or

neither of them are. Moreover if one of them is a unit the other one also.

Proof. The first claim is an immediate consequence of the proposition. On the other
hand, it is easy to see that a1 is a unit if and only if A×

1 /k
× is a non-trivial group;

in that case, it is isomorphic to Z when D = k[h] and to Z2 when D = k[h±1].
As this quotient is invariant under isomorphisms of k-algebras, the second claim
follows. �

We are now in position to establish the key fact that will allow us to describe
the isomorphisms and automorphisms of our algebras in the next section:

Proposition 2.5. Let A1 = A(D, q1, a1) and A2 = A(D, q2, a2) two quantum

generalized Weyl algebras with a1 and a2 not units, and let ξ1 and ξ2 be their

respective Eulerian derivations. If η : A1 → A2 is an isomorphism, then η ◦ ξ1 ◦η
−1

is a scalar multiple of ξ2.

Proof. Let us write ξ′2 = η ◦ ξ1 ◦ η
−1, which is a locally finite derivation of A2. If a2

is not a monomial, then the first part of Proposition 2.3 immediately implies that
ξ′2 must be a scalar multiple of ξ2. We need only consider, then, the case where
a2 = hN2 is a monomial and therefore, by our assumption that a2 is not a unit,
that N2 > 0 and D = k[h]. We have, then, a derivation τ ′2 = η ◦ τ1 ◦ η

−1 with the
notation of Proposition 2.3. The second part of that proposition implies that there
is a matrix M =

(m1,1 m1,2

m2,1 m2,2

)

∈ GL2(k) such that

(2.1)

(

ξ′2
τ ′2

)

= M

(

ξ2
τ2

)

.

If i ∈ {1, 2}, the derivations ξi and τi are simultaneously diagonalizable with
integer eigenvalues, so there is a direct sum decomposition Ai =

⊕

λ∈Z2 Aλ
i with

Aλ
i = {u ∈ Ai : ξi(u) = λ1u, τi(u) = λ2u} for all λ = (λ1, λ2) ∈ Z2, which is a Z2-

grading. The set Λi = {λ ∈ Z2 : Aλ
i 6= 0} is a submonoid of Z2, and it is generated

as such by (1, 0), (0, 1) and (−1, Ni) because y, h and x are, respectively, of those
degrees. Morover, the vectors (1, 0) and (−1, Ni) are the unique indecomposable
elements of Λi which are not interior to the convex hull of Λi; see Figure 1.

If λ ∈ Z2 and u ∈ Aλ
2 , we see from (2.1) that η−1(u) ∈ AMλ

1 : it follows that
η−1 restricts to an isomorphism Aλ

2 → AMλ
1 and, therefore, the linear map λ ∈

Z2 7→ Mλ ∈ Z2 induced by M restricts to an isomorphism φ : Λ2 → Λ1. As (1, 0)
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and (0, 1) are in Λ2 and their images under this map are in Z2, we see that M has
integral coefficients; considering the inverse map η−1 we see that the same applies to
M−1, so that M ∈ GL2(Z). Since the restriction φ must preserve indecomposable
non-interior points, it maps the vectors (1, 0) and (−1, N2) to (1, 0) and (−1, N1)
in some order. Exploring the two possibilities shows that N1 = N2 and that M is
either the identity matrix or

(

−1 0
N1 1

)

. In any case, we see that ξ′2
.
= ξ2. �

We remark that the result of this proposition is false when a1 (and then a2) is a
unit. For example, there is an automorphism η : A(D, q, 1) → A(D, q, 1) such that
η(x) = x, η(h) = hx, η(y) = y, and it does not preserve the Eulerian derivation.
This fact is what forces us to consider this case separately.

3. Automorphisms and isomorphisms

We have shown that isomorphisms of quantum generalized Weyl algebras pre-
serve, up to scalars, their Eulerian derivations. This fact evinces a non-trivial
rigidity of these algebras which strongly restricts the form of isomorphisms between
them:

Proposition 3.1. If η : A1(D, q1, a1) → A2(D, q2, a2) is an isomorphism of quan-

tum generalized Weyl algebras with a1 and a2 not units, then there exist γ ∈ k,
ε ∈ {±1} and µ, ν ∈ D× such that η(h) = γhε and

(♣) either η(y) = yµ and η(x) = νx
(♠) or η(y) = µx and η(x) = yν.

If D = k[h] then necessarily ε = 1 and µ, ν ∈ k×.

Proof. According to Proposition 2.5, there exists a non-zero scalar λ ∈ k such that

(3.1) η ◦ ξ1 = λ ξ2 ◦ η

and, therefore, for each r ∈ Z the subspace η(A
(r)
1 ) is the eigenspace of ξ2 corre-

sponding to the eigenvalue r/λ; in particular, D = ker ξ2 = η(ker ξ1) = η(D) and
η restricts to an algebra isomorphism D → D. As ξ2 has integer eigenvalues, we
must have λ ∈ {±1}.

Let us suppose that λ = 1; the other possibility can be handled similarly and
will lead to the second possibility (♠) in the statement. There exists an f ∈ D
such that y = η(yf) = η(y)η(f): since η(f) ∈ D, this implies that η(y) generates

A
(1)
2 as a right D-module. This module is free of rank one and y and η(y) are two

generators: it follows that there is an unit µ ∈ D such that η(y) = yµ. The same
argument applied to x shows that there is also an unit ν ∈ D such that η(x) = νx.

Consider the case D = k[h]. As the restriction η : D → D is an isomorphism,
we have η(h) = γh + δ for some γ ∈ k \ 0 and δ ∈ k. Since hy = q1yh in A1, we
have (γh+ δ)µy = q1µy(γh+ δ) in A2. We conclude that δ = 0 and the proposition
follows. In the case D = k[h±1] we must have η(h) = γhε for some ε ∈ {±1} since
h generates D×/k× ∼= Z. �

From the locally nilpotent derivation d of the algebra A = A(k[h1, h2], σ, a)
considered in the example given in Section 2, we obtain, by exponentiation, a
1-parameter family of automorphisms ηt : A → A such that

ηt(y) = y, ηt(h1) = h1 + tyreh2,

ηt(x) = y−1a(h1 + tyreh2, h2) ηt(h2) = h2,
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which is neither homogeneous not linear. This shows that the conclusion of the
proposition above does not hold when D = k[h1, h2] and, in fact, as this construc-
tion can be carried out starting from any locally nilpotent derivation of D —in this
case the group of automorphisms is much larger.

At this point, we have everything we need to prove the theorems from the intro-
duction.

Proof of Theorem A. The sufficiency of the condition can be checked by a straight-
forward verification, which we omit, so we only prove the necessity.

Let η : A1 → A2 be an isomorphism. From Proposition 3.1 we know there is
γ ∈ k, ε ∈ {±1} and µ, ν ∈ D× such that η(h) = γhε and (♣) either η(y) = yµ and
η(x) = νx (♠) or η(y) = µx and η(x) = yν; if D = k[h] then moreover ε = 1 and
µ, ν ∈ k×. If we are in the first case, we have

σ−1(µν)a2(h) = yµνx = η(yx) = η(a1(h)) = a1(γh
ε)

and

γqε2yh
εµ = γhεyµ = η(hy) = q1η(yh) = γq1yµh

ε.

As σ−1(µν) ∈ D×, the necessity of the conditions is clear. �

Proof of Theorem B. The verification that the set G is indeed a subgroup of Aut(A)
is routine, so we only check (i) and (ii). Let η : A → A be an automorphism.
According to Proposition 3.1, there are γ, µ, ν ∈ D× = k \ 0 such that η(h) = γh
and either (♣) η(y) = yµ and η(x) = νx, or (♠) η(y) = µx and η(x) = yν. If
(♣) holds, applying η to both sides of the equality yx = a(h) shows that

(3.2) ai 6= 0 =⇒ γi = µν,

so that γi−j = 1 whenever aiaj 6= 0 and, in consequence, γ ∈ Cg. Additionally,
(3.2) tells us that ν = µ−1γN and then we see that η = ηγ,µ ∈ G.

If instead (♠) holds, applying η to the equality hy = qyh shows that q2 =
1 so that in fact q = −1. This means that when q = −1 the alternative (♠)
does not occur, and Aut(A) = G. On the other hand, if q = −1 there is indeed
an automorphism Ω as described in the statement, and η ◦ Ω ∈ G because this
composition falls in the case (♣) with which we have already dealt. The subgroup G
together with Ω thus generate Aut(A) in this situation and all the claims in (ii)
now follow at once. �

We need two lemmas for the proof of Theorem C; the notation is as in the
statement of that theorem.

Lemma 3.2. The Laurent polynomial a is symmetric if and only if there exists an

automorphism Ωsym : A → A such that Ωsym(h)
.
= h−1.

Proof. If a is symmetric then there exist l ∈ N and γ, δ ∈ k such that δa(h) =
hla(γh−1). The automorphism Ωsym is defined by

Ωsym(y) = x, Ωsym(h) = q−1γh−1, Ωsym(x) = δq−lyh−l.

Conversely, if exists such an automorphism Ωsym then

Ωsym(y)Ωsym(x) = Ωsym(yx) = Ωsym(a) = a(γh−1),

and it is easy to see, applying Proposition 3.1, that the left hand side of this equation
is equal to δa(h)h−l for some δ ∈ k and l ∈ Z. �
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Lemma 3.3. The parameter q is equal to −1 if and only if there exists an auto-

morphism Ω−1 : A → A such that Ω−1(y)
.
= x, Ω−1(x)

.
= y and Ω−1(h)

.
= h.

Proof. If q = −1 then Ω−1 is defined by

Ω−1(y) = x, Ω−1(h) = qh, Ω−1(x) = y.

If there exists an automorphism as in the statement then

hx
.
= Ω−1(h)Ω−1(y) = Ω−1(hy) = qΩ−1(yh) = qΩ−1(y)Ω−1(h)

.
= qxh,

so that q = q−1. �

Proof of Theorem C. Let η ∈ Aut(A). From Proposition 3.1, we know that η(h)
.
=

h±1. If η(h)
.
= h−1 then the first lemma above shows that a is symmetric and,

moreover, that η ◦ Ωsym ∈ K. If a is not symmetric then we must have η(h)
.
= h

and therefore η ∈ K. This proves part (i) of the theorem.
Assume now that η ∈ K. In this case, if η(y)

.
= x we must have q = −1 and in

this case η ◦ Ω−1 ∈ G. Conversely, if q 6= −1 then necessarily η(y)
.
= y, so that K

is as in (ii). �

The theorems stated in the introduction leave untouched the case in which the
parameter a of the generalized Weyl algebras A(D, a, q) is a unit in D. As promised
there, we now state and prove the corresponding results for this case.

Theorem D. (i) Let A = A(k[h], a, q) with a ∈ k×. If q 6= −1, let H be the

subgroup {( 1 z
0 1 ) : z ∈ Z} and let H be {

(

±1 z
0 1

)

: z ∈ Z} otherwise. There is

then a right-split short exact sequence of groups

0 // (k×)2 // Aut(A) // H // 1

(ii) Let A = A(k[h±1], a, q) with a = αhN and N ∈ Z. If q 6= −1, let H be

SL2(Z) if q 6= −1 and GL2(Z) otherwise. There is then a right-split short

exact sequence of groups

0 // (k×)2 // Aut(A) // H // 1

Proof. In both cases the algebra A is generated by x and h, because a is a unit.
(i) We proceed exactly as in the beginning of the proof of Proposition 2.5. Given

an automorphism η : A → A, this constructs a matrix M ∈ GL2(Z) such that for
all λ ∈ Z2 and u ∈ Aλ, we have that η−1(u) ∈ AMλ and which therefore preserves
the subsemigroup Λ ⊆ Z2 which, in this case, is generated by (±1, 0) and (0, 1);
we remark that in this situation the semigroup Λ does not have indecomposable
elements, so that the argument given in the proof of Proposition 2.5 cannot be
continued. In any case, as M preserves Λ, we must have M = ( ε ℓ

0 1 ) for some

ε ∈ {±1} and ℓ ∈ Z. Since Aλ is one-dimensional for all λ ∈ Λ, this implies that

η−1(x)
.
= xε, η−1(h)

.
= hxℓ.(3.3)

From the relation xh = qhx we see that if q 6= −1 we must have ε = 1, so that
M ∈ H . In this way we obtain a morphism of groups π : Aut(A) → H , and it
is easy to see that it is surjective and right-split —one can use formulas (3.3) to
construct a section. The kernel of π, isomorphic to (k×)2, can be identified at once.

(ii) There an obvious group homomorphism π : Aut(A) → Aut(A×/k×). Since
A is generated by x and h, which are units, the kernel of π is easily seen to be the
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group of automorphisms which multiply those generators by non-zero scalars and
therefore isomorphic to (k×)2.

It is easy to see that A×/k× is an abelian group freely generated by the classes
of h and x, so we can identify it with Z2. If η : A → A is an automorphism and
M = π(η) =

(m1,1 m1,2

m2,1 m2,2

)

, we must have

η(h)
.
= hm1,1xm2,1 , η(x)

.
= hm1,2xm2,2 .(3.4)

From the q-commutation relation between h and x, we see that necessarily detM =
1 if q 6= 1; this means that, in any case, M is in the subgroup H and π can be
corestricted to a morphism Aut(A) → H . Using formulas (3.4) we can easily
construct a section for this map, thereby finishing the proof of the theorem. �

An argument completely parallel to that of this proof establishes the following
final result. We omit the details.

Theorem E. Let D be k[h] or k[h±1], let a1, a2 ∈ D be two units, and let

q1, q2 ∈ k \ {0, 1}. The algebras A(D, a1, q1) and A(D, a2, q2) are isomorphic

iff q2 ∈ {q1, q
−1
1 }. �
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