
A linear-time algorithm for the identifying code
problem on block graphs 1

Gabriela R. Argiroffo a,2 Silvia M. Bianchi a,3

Yanina Lucarini a,b,4 Annegret K. Wagler c,5

a Dept. de Matemática, Universidad Nacional de Rosario, Rosario, Argentina
b CONICET, Argentina

c LIMOS, University Clermont Auvergne, Clermont-Ferrand, France

Abstract

The identifying code problem is a special search problem, challenging both from a
theoretical and from a computational point of view, even for several graphs where
other usually hard problems are easy to solve, like bipartite graphs or chordal graphs.
Hence, a typical line of attack for this problem is to determine minimum identifying
codes of special graphs. In this work we study the problem of determining the cardi-
nality of a minimum identifying code in block graphs (that are diamond-free chordal
graphs). We present a linear-time algorithm for this problem, as a generalization of
a linear-time algorithm proposed by Auger in 2010 for the case of trees. Thereby,
we provide a subclass of chordal graphs for which the identifying code problem can
be solved in linear time.

Keywords: identifying codes, block graphs, computational complexity

1 This work was partially supported by PICT 2013-0586 ANPCyT Argentina.
2 Email: garua@fceia.unr.edu.ar
3 Email: sbianchi@fceia.unr.edu.ar
4 Email: lucarini@fceia.unr.edu.ar
5 Email: annegret.wagler@uca.fr

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 62 (2017) 249–254

1571-0653/© 2017 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

https://doi.org/10.1016/j.endm.2017.10.043

http://www.elsevier.com/locate/endm
https://doi.org/10.1016/j.endm.2017.10.043
https://doi.org/10.1016/j.endm.2017.10.043
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2017.10.043&domain=pdf

1 Introduction

Many search problems as, e.g., fault detection in networks or fire detection in
buildings, can be modeled by so-called identifying codes in graphs [10].

Consider a graph G = (V,E) and denote by N [i] = {i} ∪ N(i) the closed
neighborhood of a vertex i. A subset C ⊆ V is dominating (resp. identifying)
if N [i] ∩ C are non-empty (resp. distinct) sets for all i ∈ V . An identifying
code of G is a vertex subset which is dominating and identifying.

Not every graph G admits an identifying code, i.e. is identifiable: this
holds if and only if there are no true twins in G, i.e., there is no pair of
distinct vertices i, j ∈ V with N [i] = N [j] [10]. On the other hand, the whole
vertex set of every identifiable graph trivially forms an identifying code.

The identifying code number γID(G) of a graph G is the minimum cardi-
nality of an identifying code of G. Determining γID(G) is in general NP-hard
[6] and remains hard for several graph classes where other in general hard
problems are easy to solve, including bipartite graphs [6] and two classes of
chordal graphs, namely split graphs and interval graphs [7].

The identifying code problem has been actively studied during the last
decade, where typical lines of attack are to determine minimum identifying
codes of special graphs or to provide bounds on their size. Closed formulas
for the exact value of γID(G) have been found so far only for restricted graph
families (e.g. for paths and cycles [5], for stars [8], for complete multipartite
graphs [1] and some subclasses of split graphs [2]).

A linear-time algorithm to determine γID(G) if G is a tree was provided by
Auger [3]. In this paper, we determine the identifying code number of block
graphs (that are diamond-free chordal graphs [4]). We present a linear-time
algorithm for this problem, as a generalization of the linear-time algorithm by
Auger for trees. Thereby, we provide a subclass of chordal graphs for which
the identifying code problem can be solved in linear time.

A block graph is a graph in which every maximal 2-connected subgraph
(block) is a clique (see Fig. 1). Block graphs are precisely those chordal graphs
in which every two maximal cliques have at most one vertex in common [9].
Note that a block graph B is identifiable (i.e. has no true twins) if and only
if each maximal clique K of B satisfies that all vertices in K, except at most
one, have a neighbor that is not in V (K). Moreover, if we call V (K ′) such
neighbors then C is an identifying code of B if and only if V (K ′) ⊂ C.

G.R. Argiroffo et al. / Electronic Notes in Discrete Mathematics 62 (2017) 249–254250

Fig. 1. A block graph B (the black vertices form an identifying code of B).

2 The algorithm

In order to provide a linear-time algorithm which computes γID(B) of an
identifiable block graph B, we adopt the following notation from [3]. Let
G = (V,E) be a graph and v ∈ V . Then C ⊆ V is a {v}-almost identifying
code of G if the sets C ∩ N [u] are nonempty and pairwise distinct for all
u ∈ V − {v}. Moreover, we say that C satisfies the property

• ID (for identifying) if C is an identifying code in G,
• CO (for code) if v ∈ C,
• ADJ (for adjacent) if v has a neighbour in C,
• FN (for favoured neighbour) if v has a neighbour w with N [w] ∩ C = {v},
• P if C does not satisfy property P ∈ {ID,CO,ADJ, FN}.
Let us call Pi any of the above properties and denote by γP1,...,Pk

(v,G) the
function that returns the minimum size of a {v}-almost identifying code in G
satisfying Pi with i = 1, . . . , k or ∞ if no such code exists. We are particularly
interested in the ten functions listed in Table 1 since it can be shown that

γID(v,G) = min(f1(v,G), f2(v,G), f3(v,G), f4(v,G)). (1)

Our main algorithm ICB randomly selects a vertex v1 from a connected
block graph B and calls RICB(v1, B) that computes the values of all ten
functions in a recursive manner in smaller and smaller block graphs.

Algorithm ICB

Input: a connected block graph B and its list of maximal cliques.

Output: γID(B).

1: randomly select a vertex v1 and call RICB(v1, B);

2: return γID(v1, B) = min(f1(v1, B), f2(v1, B), f3(v1, B), f4(v1, B)).

Algorithm RICB chooses a maximal cliqueK with vertices {v1, . . . , vk} and
either returns the initial function values fj(v1, {v1}) if K = {v1} or deletes all
edges of K and calls recursively RICB(vi, Bi) for all so-obtained components
Bi of B − E(K) to compute the list Li for (vi, Bi) with i ∈ {1, . . . , k}.

G.R. Argiroffo et al. / Electronic Notes in Discrete Mathematics 62 (2017) 249–254 251

Name Function fj(v, {v}) Name Function fj(v, {v})
f1 γID,CO,ADJ,FN ∞ f6 γCO,ADJ,FN ∞
f2 γID,CO,ADJ,FN ∞ f7 γCO,ADJ,FN ∞
f3 γID,CO,ADJ 1 f8 γCO,ADJ,FN 1

f4 γID,CO,ADJ ∞ f9 γCO,ADJ ∞
f5 γCO,ADJ,FN ∞ f10 γCO,ADJ 0

Table 1
List L of functions fj together with their initial values fj(v, {v}).

Algorithm RICB

Input: a block graph B, its list of maximal cliques and v1 ∈ V (B).

Output: the list L of the values of the ten functions fj on (v1, B).

1: if v1 has degree 0 in B then

2: initialize L (Table 1);

3: else

4: let K be a maximal clique with V (K) = {v1, . . . , vk} and delete its edges;

5: let B1, . . . , Bk be the remaining block graphs, resp., containing v1, . . . , vk;

6: let Li = RICB(vi, Bi) for all i ∈ {1, . . . , k};
7: compute the ten functions on (v1, B) from Li for all i ∈ {1, . . . , k} (Theorem 2.1).

8: end if

9: return the list L of the values of the ten functions fj on (v1, B).

We can show:

Theorem 2.1 For each of the ten functions fj, we can compute fj(v1, B)
from Li(vi, Bi) for all i ∈ {1, . . . , k} in time O(k).

Algorithm RICB returns the values fj(v1, B) for j ∈ {1, . . . , 10} for the
original block graph B to ICB, so that the identifying code number of B is
obtained by computing the minimum among f1(v1, B), f2(v1, B), f3(v1, B) and
f4(v1, B) or ∞ if no such code exists.

Theorem 2.2 Algorithm ICB computes in linear time γID(B) for an identi-
fiable block graph B (or returns ∞ if no identifying code exists in B).

In fact, ICB has linear running time O(n) with n = |V (B)|. While execut-
ing ICB, the number nQ of maximal cliques of B determines the number of
decomposition steps (lines 4 and 5) and recomposition steps (line 7) that are
performed during the recursion. In addition, the size k of the maximal cliques

G.R. Argiroffo et al. / Electronic Notes in Discrete Mathematics 62 (2017) 249–254252

K determines the effort O(k) for the decomposition step and to calculate the
function values fj for the recomposition step. This leads to 2 · O(nQ) · O(k)
for the complexity of ICB.

In order to express O(nQ) and O(k) as functions of n, we note the following.
On the one hand, a block graph B has at most linearly many maximal cliques
(since two maximal cliques have at most one vertex in common by [9]), i.e.,
n − 1 such cliques if B is a tree. Thus, nQ is at most of order O(n). On the
other hand, the size ω(B) of a maximum clique equals n if B is a clique. Thus,
ω(B) is at most of order O(n), too.

However, it is clear that the two values nQ and ω(B) can never attain their
maximum value at the same time:

• If nQ attains its maximum value and thus it is of order O(n), then ω(B) is
necessarily small (in the extreme case, B is a tree and we have nQ = n− 1
and ω(B) = 2); hence there is a small fixed value p with ω(B) ≤ p, which
leads to 2 ·O(n) ·O(1) = O(n).

• If ω(B) attains its maximum value and thus it is of order O(n), then nQ is
necessarily small (in the extreme case, B is a clique and we have ω(B) = n
and nQ = 1); hence there is a small fixed value p with nQ ≤ p, which leads
to 2 ·O(1) ·O(n) = O(n).

• If both nQ and ω(B) have intermediate values, both are of order O(
√
n),

which leads to 2 ·O(
√
n) ·O(

√
n) = O(n).

Hence, in all cases we have O(n) as overall running time of ICB.

3 Concluding remarks

In this paper, we provide a subclass of chordal graphs for which the identifying
code problem can be solved in linear time by presenting a linear-time algorithm
that finds the identifying code number of a block graph. Our algorithm is a
generalization of the linear-time algorithm proposed by Auger [3] for trees and
works in a similar way, but it takes into account the identifiable condition for
block graphs that is not needed in the case of trees. Hence, the recomposition
step of our algorithm is built by defining distinct functions accordingly.

The recursively called algorithm RICB could be easily modified to detect
during its execution whether or not B is identifiable. Hence, RICB could test
whether K has two vertices vj, v� different from v1 with degree k − 1 and, if
yes, return ”not identifiable” and stop.

G.R. Argiroffo et al. / Electronic Notes in Discrete Mathematics 62 (2017) 249–254 253

Furthermore, note that our algorithm ICB could be modified in order to ob-
tain an identifying code of minimum size, just by keeping track of the functions
where the minimum values are attained. In addition, if B is a vertex-weighted
block graph, the ICB can be easily modified in order to return the minimum
weighted identifying code number by just changing in Table 1 the entry with
value 1 by the weight corresponding to the vertex.

Finally, it is interesting whether similar ideas could be adapted for graph
classes with a similar structure, e.g. for cacti (graphs in which every maximal
2-connected subgraph is an edge or a cycle) or for block-cacti (graphs in which
every maximal 2-connected subgraph is a clique or a cycle). In all these cases
the procedure should consider different functions in the recomposition step.

References

[1] G. Argiroffo, S. Bianchi, Y. Lucarini, A. Wagler, Polyhedra associated with
identifying codes in graphs, to appear in: Discrete Applied Mathematics.

[2] G. Argiroffo, S. Bianchi, A. Wagler, Study of identifying code polyhedra for some
families of split graphs, Lecture Notes in Computer Science 8596 (2014) 13–25.

[3] D. Auger, Minimal identifying codes in trees and planar graphs with large girth,
European Journal of Combinatorics 31 (2010) 1372–1384.

[4] H.J. Bandelt, H.M. Mulder, Distance-hereditary graphs, Journal of
Combinatorial Theory, Series B, 41 (1986) 182–208.

[5] N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying and locating
dominating codes on chains and cycles, Eur. J. Comb. 25 (2004) 969–987.

[6] I. Charon, O. Hudry, A. Lobstein, Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theor. Comp. Sc. 290 (2003)
2109–2120.

[7] F. Foucaud, The complexity of the identifying code problem in restricted graph
classes. Comb. Algorithms (IWOCA 2013), LNCS 8288 (2013) 150–163.

[8] S. Gravier, J. Moncel, On graphs having a V {x}-set as an identifying code,
Discrete Mathematics 307 (2007) 432–434.

[9] E. Howorka, On metric properties of certain clique graphs, Journal of
Combinatorial Theory, Series B, 27 (1979) 67–74.

[10] M.G. Karpovsky, K. Chakrabarty, L.B. Levitin, On a new class of codes for
identifying vertices in graphs. IEEE Trans. Inf. Theory 44 (1998) 599–611.

G.R. Argiroffo et al. / Electronic Notes in Discrete Mathematics 62 (2017) 249–254254

	Introduction
	The algorithm
	Concluding remarks
	References

