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Abstract 
Finding optimal operating conditions fast with a scarce budget of experimental runs is a 
key problem to speed up the development and scaling up of innovative bioprocesses. A 
methodology for model-based design of dynamic experiments in modeling for 
optimization is proposed and successfully applied to the optimization of a fed-batch 
bioreactor related to the production of r-interleukin-11 whose DNA has been cloned in 
an E. coli strain. A library of tendency models is used to increasingly bias bioreactor 
operating conditions towards an optimum. Parametric uncertainty of tendency models is 
iteratively reduced using Global Sensitivity Analysis (GSA).  At each iteration, the 
‘most informative’ tendency model is used for designining the next dynamic 
experiment.  Model selection is based on minimizing an error measure which separates 
parametric uncertainty from structural errors to trade-off exploration with exploitation. 
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1. Introduction 
Findings in the 1950s that DNA is the molecule that encodes proteins, which in turn 
controls all the cellular processes including metabolic pathways, have provided the 
impetus for the biotechnology era (Walsh, 2007) in the development of high valued-
added pharmaceuticals such as insulin, humanized antibodies, interferons or interleukins 
along with biofuels (Fischer et al., 2008) and new materials (e.g. biodegradable 
polymers). The recombinant microorganism is typically grown in a fed-batch bioreactor 
to high cell concentration and then expression of the heterologous protein is triggered so 
as to obtain considerable quantities of the target product (Cooney, 1983). In a fed-batch 
culture, the feed rate of the carbon source, usually glucose, must be manipulated in 
order to restrict overflow metabolism and glucose repression. To this aim, model-based 
optimization of a bioreactor operating condition seems to be the safe and economic 
approach to resort with. Application of Pontryagin’s maximum principle for fed-batch 
bioreactor optimization has been studied by several researchers (Mahadevan and Doyle 
III, 2003). However, most of these optimization methodologies for bioprocess scaling 
up and productivity inprovement have not been widely adopted for industrial use since 
the perfect model assumption is far from realistic and bioreactor behavior is quite often 
deviant from model predictions. Also, relevant measurement are sparse and delayed. 
Considering the large uncertainty and poor reproducibility in novel bioprocesses along 
with metabolic regulation, the development of an accurate mathematical model of 
bioreactor dynamics is a costly and very difficult undertaking.  A better approach in 
innovative bioprocesses is to improve the operating policy by resorting to tendency 
models (Visser et al., 2000) for designing optimally informative experiments which 
iteratively reduce the performance prediction uncertainty (Martínez and Wilson, 2003). 
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2. Modeling for optimization 
At each iteration, the core idea of “modeling for optimization” is to select from a library 
of tendency models the one which allows computing inputs that increasingly improve 
the operating policy and bias data gathering accordingly. To this aim, a dynamic 
experiment is designed around the current policy, and optimal sampling times are 
calculated so as to maximize information content regarding performance improvement. 
The experiment is carried out and new data are collected. Based on incoming data the 
sub-set of model parameters for each tendency model are re-estimated which selectively 
reduces its parametric uncertainty. Based on total modeling errors a tendency model is 
selected for policy re-optimization. With the new input policy, a new iteration begins. 
The identification-optimization cycle is continued until no performance improvement is 
obtained and the input policy converges. Fig. 1 provides an overall picture of the 
proposed  methodology. 
 

 
 

Fig, 1. Modeling for optimization using designed dynamic experiments 

2.1. Problem statement 
In what follows let’s assume that the dynamic behavior of the bioreactor under study 
may be modeled alternatively by a library of  tendency models 
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and the optimization objective to be maximized iteratively via experimental runs  is 
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where x(t) is an ns-dimensional vector of time dependent state variables, w is an m-
dimensional vector of parameters for the input policy ,  is a p-dimensional vector of 
model parameters and  tf  is the final time of a batch run.  The function g is the 
instantaneous reward function along the state trajectory x(t) defined by a given policy 
parameterization whereas the function h is the specific reward for the final state of the 
batch run when using the input policy ),( tw . 
2.2. Model selection 
Model selection is based on distinguishing between parametric uncertainty and 
structural errors in performance prediction using tendency models (see Fig. 2 for 
details). For a given tendency model and a plausible realization of its parameters, the 
corresponding simulated trajectory of the process performance index spi niJ ,...,2,1,~ . 
At the ith sampling point, a sample average iJ  of n different model parameterizations 
can be used to characterize the parametric uncertainty for the tendency model as 
follows (Asprey and Machietto, 2002; Chen and Asprey, 2003): 
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As a measure of structural errors inherent to a given tendency model, the average 
performance trajectory iJ  is compared  to the actual (observed) trajectory iJ  
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where nsp  is the number of sampling points. The total error of a model is expressed as 
the sum of parametric uncertainty in Eq. (3) plus its structural error defined as it is 
shown in Eq. (4). For policy optimization, model selection in each iteration is based on 
choosing the tendency model from the model library whose total error is the lowest. 
More elaborated strategies for model selection can also be developed. For example, 
initially model selection may emphasize reducing parametric uncertainty and as more 
data are gathered model selection is more based on structural errors.  
 

 
Fig. 2. Model selection based on total error: (a) Parametric uncertainty; (b) structural errors. 

2.3. Optimal sampling 
For a given policy in the current policy iteration of Fig. 1 optimal sampling times opt  
along a batch run must be calculated so as to bring new information to selectively 
reduce parametric uncertainty which affect the most the value estimation of the 
performance index J  trajectory. Assuming model parameters are set to ˆ   and the 
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current version of the optimal policy is ),( tw , the issue of  optimal sampling is related 
to calculating at which sampling times  opt  in a dynamic experiment the values 
of measured process variables are most informative in modeling for optimization 
assuming that the policy evaluation step should narrow down the uncertainty about the 
optimal input. To this end, the following optimization problem is solved: 

ˆmax det ( , ( , ), )opt
nM w t , QQM T , 
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Si Si
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where each entry of the matrix Q , Siij, measures the sensitivity of the performance 
index J(w) at the i-th sampling time with respect to j-th parameter of the operating 
policy. To calculate Siij, Global Sensitivity Analysis (GSA) is proposed (Saltelli et al., 
2006).  GSA is a variance-based technique that decomposes model outputs variability as 
a combination of uncertainty intervals for each independent input factor and its 
interactions with other factors using Monte Carlo sampling techniques. 

3. Case study 
To illustrate the proposed methodology results obtained in the optimization of fed-batch 
fermentation process for the recombinant protein rIL-11 using a genetically modified E. 
coli strain are presented. Production of recombinant proteins in E. coli has been widely 
applied in both laboratory research and  bioproduct manufacturing since this 
microorganism is considered a reliable source of proteins. This method may achieve 
profitable mass productivity due to high density cell growth and fast product formation. 
A structured kinetic model proposed by Tang et al. (2007) which describes state 
variables trajectories such as: biomass (X), substrate (S), intracellular recombinant 
protein concentration (P) will be used as an in silico bioreactor to generate the required 
data in the modeling for optimization approach. Four unstructured (tendency) models 
which differ in their biomass growth kinetics are used as guidelines for policy 
optimization so that the mismatch between the “real” bioprocess and alternative models 
of the fed-batch bioreactor is accounted for by increasingly biasing data gathering. Also, 
the operation policy has been defined based on the substrate feeding rate and induction 
time tind  as the main components subject to optimization, including the initial culture 
condition. The performance index J(t) is related to the amount of recombinant protein 
obtained at the final time of production runs. Tendency model equations and their 
alternative biomass growth kinetics are: 
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Based on experimental data provided by Tang et al. (2007), a rather rough estimation of 
each tendency model parameters was made and referred to as “initial values” in Table 1. 
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Due to the significant level of parametric uncertainty a ±50% confidence interval 
around these initial values for each parameter is assumed in the first policy optimization 
iteration. A uniform distribution over its confidence interval is assumed initially for 
each model parameter.  Experimental data have been conveniently pre-treated to reduce 
significantly the signal-to-noise ratio and outliers are not present. 
 
Table 1. Initial parameterizations of tendency models based on experimental data 

Model 
Parameter Unit 

1st Order Monod Contois Maintenance 

max  h-1 0.2000 0.6301 0.5607 0.5261 

sK  g L-1 2.0184 1.4956 - 0.7190 

xsY  gbiomass gsubstrate
-1 0.3982 0.4506 0.4826 0.4464 

max
PK  g L-1 0.0759 0.0629 0.0557 0.0536 

pKI  g (L h)-1 0.0877 0.0609 0.0627 0.0600 

xK  gsubstrate gbiomass
-1 - - 1.7291 - 

m h-1 - - - 0.0100 
 
At any time t, the input policy is defined by a vector w of parameters corresponding to 
two different degrees of freedom for process optimization. A subset of the policy 
parameters corresponds to inputs that can be modified only from run-to-run but are 
time-invariant in a given run such as the substrate feeding concentration, run duration or 
induction time. The remaining entries are parameters which are used here for describing 
the profile of time-varying controls such as the feeding rate. In the latter case, a key 
issue is the mathematical description to be used so as to provide ample room for 
different variability patterns within economic and safety constraints with a minimum 
number of independent parameters.  Even though other profile functions (high-order 
polymonials, Gaussian Processes, etc.) can be used for shape flexibility with a small 
number of parameters, the following quadratic inverse polynomial is used hereafter: 
 
Table 2. Sequential optimization of a  E. coli culture for rIL-11 

Parameter Units 
Initial 

Condition 
1st iter 2nd iter 3rd iter 4th iter 5th iter 6th iter 

Z L h-1 1 - - - - - - 
A L h-2 0 0.0544 0.0121 0.0911 0.1431 0.2385 0.2389 
B h-1 - 3 10-4 3 10-4 3 10-4 3 10-4 3 10-4 3 10-4 
C h-2 - 3 10-4 4 10-4 8 10-4 0.0156 0.0222 0.0223 
Sf g L-1 10 30 30 30 30 30 30 

feedt  h 6 0 0 3.19 4.05 5 5 

indt  h 4 4 4 4 4 4 4 

ft  h 12 16 16 16 16 16 16 

V0 L 6 5.31 10 5 6.61 5 5 
X0 g L-1 0.05 0.1 0.1 0.1 0.1 0.1 0.1 
S0 g L-1 6 3.93 7 7 7 7 7 

J.Vf g  1.60 6.06 3.75 7.15 6.40 7.22 7.22 
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As it is shown in Table 2, despite the rough approximation of tendency models, they 
provide a very valuable guideline for fast optimization with a handfull of experiments. 
Based on their total errors, Monod and Contois kinetics are the most infomative for re-
calculating the input policy for dynamic experiments (see Table 3 and Table 4 below).  
 
Table 3. Total error in 1st iter.                                              Table 4.Total model errors in 4th iter 

Model 
ˆ ˆ
iJ J

E  
Ĵ J

E  totalE   ˆ ˆ
iJ J

E  
Ĵ J

E  totalE  

1st Order 0.0044 0.0209 0.0254  6.41 10-7 0.0279 0.0279 

Monod 7.13 10-12 6.23 10-5 6.23 10-5  6.92 10-6 0.0011 0.0011 

Contois 1 10-4 5.78 10-5 1.58 10-4  1.65 10-5 9.85 10-4 0.0010 

Manteinance 1.1403 6.35 10-5 1.1404  2.01 10-4 0.0045 0.0047 

4. Final remarks 
A systematic procedure is proposed for sequential design of dynamic experiments in 
modeling for optimization using a library of tendency models for safe exploration of 
alternative parameterizations of the input policy to improve operating conditions. At 
each iteration, model selection is based on the total model error which accounts 
separately for parametric uncertainty and structural errors. Since tendency models are 
initially plagued with uncertainty model selection using poorly estimated total errors 
makes possible to trade off exploitation with exploration which is instrumental for 
model-based optimization with imperfect models. Global sensitivity analysis has been 
used to formulate the optimal sampling in each experiment as an optimization problem. 
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