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bstract

In the present work, the planning and cutting problem for the corrugated board boxes industries is presented. This problem belongs to the category
f the trim-loss problem, which is essential in the paper-converting supply chain management. Bilinear terms in demand and stock constraints,
or instance, lead to a non-convex formulation. Two global convex models are formulated and tested. Results obtained in the problem solution are
hown. The most efficient model is implemented by means of Java programs and GAMS, a mathematical optimization program. The system is
inked to the company ERP (enterprise resource planning) system. Several issues are optimized and improved: waste generation, energy demand,

nvironmental impact and production costs. Paper reel stock management is improved due to more accurate and statistical information obtained
y the system. The planning system linked to the ERP connection allows the integration of customers and suppliers increasing the company
ompetitiveness.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

The scope of manufacturing logistics begins at the point
here end-item customer demands are determined, and extends

o the point where they are fulfilled (Wu & Golbasi, 2004).
ccording to these authors they distinguish narrow and a broader
iew of manufacturing logistics. The first one includes the plan-
ing, scheduling and control of all activities resulting in the
cquisition, processing, movement and storage of inventory.
hese activities include order acceptance, production planning
nd scheduling, inventory control, inventory distribution, and
he design of the corresponding decision processes and decision
upport systems. The second one considers the flow of mate-
ial, information, and services across enterprise, industry and
ational boundaries.
In this work, it will be described the planning models con-
idered for the carton corrugated industry, the implementation
f the selected model as a business intelligence module and its

∗ Corresponding author.
E-mail addresses: r analia@ceride.gov.ar (M.A. Rodrı́guez),

ldovec@ceride.gov.ar (A. Vecchietti).

g
i
(
N

i
(
t

098-1354/$ – see front matter © 2007 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2007.09.004
LP; MILP

ink to the company’s ERP in order to share the information
ith customers and suppliers of the supply chain to increase the

ervices across the company limits.
Competition between single companies changes into com-

etition between supply chains. Therefore, it can be expected
hat the importance of methods for management and produc-
ion process optimization will increase with companies seeking
lobal instead of local optimums (Trkman, Indihar Štemberger,

Jaklic, 2005). Particularly, waste generation is one impor-
ant issue in today’s supply chain management. In first place,
aste means increasing costs, with no positive effects in cus-

omer satisfaction; and environmental impact, also an objective
f increasing interest. Consequently, in the cutting process waste
hould be minimized to be competitive in the global market
nd friendly to the environment. There are some industries that
enerate waste during its cutting process such as the wood
ndustry (Venkateswarlu, 2001), the paper-converting industry
Westerlund & Isaksson, 1998) and the steel industry (Vasko,
ewhart, & Stott, 1999).

Grossmann and Westerberg (2000) pointed out that chem-

cal engineering in the context of process system engineering
PSE) has evolved in the past decades from being rooted in
he concept of unit operations to one based on engineering sci-
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Fig. 1. The pulp and paper supply chain.

nce and mathematics. They have proposed a new definition of
SE where the discipline is concerned with the improvement of
ecision-making processes for the creation and operation of the
hemical supply chain. It deals with the discovery, design, man-
facture, and distribution of chemical products in the context of
any conflicting goals. Although this work does not deal with
chemical process, the theoretical issues and the goal pursued

orresponds to models generation for the prediction of perfor-
ance, and decision making for an engineered system, which is

lso a main concern for PSE area.
In this work a real-world industrial problem of production

lanning and cutting optimization for corrugated board boxes is
resented. However, as shown in Fig. 1 (adapted from Carlsson,
’Amours, Martel, & Rönnqvist, 2006), the cutting stock is a

ommon problem in almost every link on pulp and paper sup-
ly chain. Additionally, packaging production industry is also
nvolved in almost all manufacturing supply chains. As a con-
equence, the industry studied performs their activities in a very
ompetitive market. An efficient production plan improves com-
any competitiveness providing convenient product prices and
ust in time order deliveries.

In many articles, the cutting stock problem has been
tudied with different goals such as minimal trim-loss
Harjunkoski, Westerlund, Isaksson, & Skrifvars, 1996;
arjunkoski, Westerlund, & Pörn, 1999; Trkman & Gradisar,
007), minimal production costs (Harjunkoski, Westerlund,
örn, & Skrifvars, 1998; Harjunkoski et al., 1999), minimal
umber of patterns (Johnston & Sadinlija, 2004), minimal total
ength and overproduction (Correia, Oliveira, & Ferreira, 2004),
tc. In some cases, mathematical optimization cannot achieve

o optimal solution in reasonable execution time and heuris-
ic techniques are also approached (Beasley, 2004; Riehme,
cheithauer, & Terno, 1996). Often rough simplifications are
ade when formulating the trim-loss problem. These simpli-

T
s
s
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cations have a great influence on the result and many times
euristic procedure may give better results in practice than an
ptimized solution (Westerlund & Isaksson, 1998). Those sim-
lifications refer to some important practical issues connected
o the problem. In fact, stock constraint is usually disregarded,
ormulations assume a unique reel length and width and differ-
nt paper types are not considered. In this case, simplifications
re avoided in order to find a proper solution for a real industrial
roblem.

Although the trim-loss costs objective is here considered the
ost representative function to define a “real-world” optimal

olution, some other objective functions are also used in order
o compare models behavior and solution strategies. The first

odel developed is a non-convex MINLP which is transformed
y two different methods to obtain a global solution. Besides
lobal optimization, in this work some other targets are pursued
uch as computational efficiency, detailed problem representa-
ion, planner intervention in the problem inputs and constraints
nd integration to the company information system.

In the following section, some issues related to the production
rocess and product characteristics are considered to under-
tand the problem formulation. The third section contains the
roblem statements and background. The next section refers
o models formulation and convexification techniques. In the
ollowing section, different objective functions are presented.
ome examples were analyzed in section six to illustrate models
omputational performance for the proposed objective functions
nd compare models results. Critical considerations concerning
mplementation features, as models integration to ERP systems
nd its influence on paper supply chain are considered in section
even. In the last section, conclusions refer to final discussion
nd outlines future research goals.

. Process description

The raw material to produce board boxes is usually a set of
aper reels which correspond to different paper types depending
n the board characteristics needed on the final product. Paper
eels of different width and lengths provided by different sup-
liers can be used to produce the corrugated board and cut the
heets. The assignment of paper width to cut patterns accord-
ng to the paper stock available is an important consideration in
roblem formulation.

The corrugated board is produced using several paper layers.
here are two main kinds of layers: liner layer and fluted layer.
he board structure is mainly influenced by the number of layers
ssigned and the paper type in each layer. The most used boards
n the industry are the single wall, that it is a rigid structure, which
as two external liner layers and one middle fluted one and the
ouble wall board, which is also a rigid structure, formed by
hree liner layers, two external and one central, and two fluting
ayers located between the central liner and one of the externals,
espectively.
The production of corrugated sheets is a continuous process.
he first step is to place the paper reels in the corrugator. Next,
ome layers are corrugated to form the required flute where adhe-
ive is then added to glue the liner layers. Once corrugated board
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Fig. 2. Board boxes production process.

s formed, it goes through the cutting section where board sheets
re finally obtained. Fig. 2 shows the process main stages.

The cutting machine has Nlong knives to cut the boards

engthwise and Ntrans knives for the transversal cuts. Those
haracteristics limit the number of different sheets to cut per
ime. Using Nlong knives Nlong + 1 board parts could be
btained; the two external ones must be discarded because the

Fig. 3. Cutting process.

(

Fig. 4. Patterns with same order sheets.

ayers are not perfectly glued. This allows the cutting of at most
long − 1 sheets per board wide and gives a minimum trim-

oss Permin (see Fig. 3). The Ntrans knives limit to Ntrans the
ifferent lengths to cut.

In Section 4, a general problem formulation is presented to
olve the trim-loss problem in the corrugated board boxes indus-
ry independently of the corrugating and cutting machine to be
sed. However, a machine with five longitudinal knives and two
ransversal ones is considered as an example, in order to illustrate
he different type of cutting patterns, which are as follows:

1) Patterns corresponding to a single sheet order: the possible
number of sheets to cut varies from one to four; the final
value depends on the order width and the paper reels width
used in each layer. A sketch of this pattern type can be
observed in Fig. 4.

2) Pattern 1-1: corresponds to two sheet orders with different
width and length. When combining sheets of different orders
both of them must have the same board and paper types in
each layer. In this case, only three of the slitting knives and
two transversal ones are used. A scheme of this pattern type

is illustrated in Fig. 5.

3) Pattern 2-2: these patterns have two sheets of one order and
other two of a different one; it is shown in Fig. 6.

Fig. 5. Pattern type 1-1.
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Fig. 6. Pattern type 2-2.

Fig. 7. Pattern type 1-2.
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Fig. 8. Pattern type 1-3.

4) Pattern 1-2: these patterns cut a sheet of one order and two
of another one, which is illustrated in Fig. 7.

5) Pattern 1-3: these patterns cut a sheet of one order and three
of another one. A representative scheme of this pattern type
is shown in Fig. 8.
. Problem statement, background

The board boxes process includes two main steps. First, the
oard must be produced from single layers involving an assign-

s

∀
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ent problem and then the board is cut into smaller pieces to
roduce the sheets that form the boxes. Assignment decisions
sually implicate binary variables in problem formulation leav-
ng more difficult models and time-consuming solutions. The
econd step is related to the cutting stock problem. There are
any articles dealing with the cutting stock problem where the

aw paper reels are cut into smaller ones (Sweeney & Haessler,
990; Valério de Carvalho, 2002; Westerlund, Harjunkoski, &
saksson, 1998). Generally, the solution strategy defines optimal
utting patterns, and then determines the number of patterns to
roduce in order to minimize a cost function. The cutting process
enerates the trim-loss because raw paper widths are not exact
ultiples of customer orders widths, and so larger paper reels

re needed to form feasible patterns. However, the production
f corrugated board boxes problem has not been considered yet.
n this case, not only trim-loss problem is crucial but also board
tructural definition (the number of layers, paper weight and
olor), the assignment of the paper width for each layer and also
he combination of orders according to their board type, among
thers. It must be also taken into account that reels of different
idths and lengths are available in stock and as a result, the prob-

em complexity is very high due to the huge number of product
ombinations and variables to handle. Discrete decisions and
on-convex relationships are also involved. In fact, due to its
P-hard and non-convex nature, solution strategies and problem

epresentations have an important influence on computational
fficiency. Fig. 9 shows some orders combination constraints
nd paper assignment characteristics.

. Model formulation

.1. The original model

The problem formulation produces a non-convex MINLP
odel where global optimality cannot be guaranteed. A group of

rders i must be satisfied considering an accepted overproduc-
ion ηi. Stock constraint is also considered. The cutting machine
as Nlong longitudinal knives and Ntrans transversal ones. Max-
mum and minimum trim-loss are given and must be satisfied
hen assigning orders i and paper widths ap to pattern p. Each

ustomer order has a board type which is defined by the num-
er of layers k and the paper type tp corresponding to each one.
nother constraint is that orders assigned to pattern p cannot
ave different board type. The Not combii′ set includes all pair
f orders that cannot be assigned to the same pattern. Fig. 9 fur-
her clarifies these concepts. The run length xp for each pattern p
as upper and lower bounds, both related to the feasible produc-
ion time. Thus, the problem of minimizing the total trim-loss
ost can be formulated follows:

in Z =
∑

∀p ∈ P

∑
∀k ∈ K

cppk (1)
.t.
∑
i ∈ I

ni p ≤ Nlong − 1 ∀p ∈ P (2)
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∑
i ∈ I

yi p ≤ Ntrans ∀p ∈ P (3)

apk ≥
∑

∀ap ∈ AP

wap k p · Wapap · xp ∀p ∈ P, ∀k ∈ K (4)

∑
ap ∈ AP

wap k p ≤ 1 ∀p ∈ P, ∀k ∈ K (5)

apk =
∑
∀i ∈ I

ni p · Wii.xp ∀p ∈ P, ∀k ∈ K (6)

pp k ≥ Cop k · (tap k − uap k) ∀p ∈ P, ∀k ∈ K (7)

i p + yi′ p ≤ 1 ∀i /= i′|(i, i′) ∈ Not combi i′ , ∀p ∈ P (8)
⎛
⎝ ∑

∀ap ∈ AP

wap k p · Wapap

⎞
⎠ −

∑
i

ni p · Wii ≥ Per min · yrp

∀p ∈ P (9)⎛
⎝ ∑

∀ap ∈ AP

wap k p · Wapap

⎞
⎠ −

∑
i

ni p · Wii ≤ Per max · yrp

∀p ∈ P (10)
∑

ap ∈ AP

wap k p ≥ yrp ∀p ∈ P, ∀k ∈ K (11)

∑
∀p ∈ Rp k tp

∑
∀k ∈ Rp k tp

xp · αk · wap k p ≤ Stp ap ∀tp ∈ TP,
∀ap ∈ AP (12)
∑

p ∈ POp i

ni p · xp/Lii ≥ Di ∀i ∈ I (13)

l

c
o

and pattern structure.

∑
p ∈ POp i

ni p · xp/Lii ≤ Di · (1 + ηi) ∀i ∈ I (14)

p ≥ CRminp · yrp ∀p ∈ P (15)

p ≤ CRmaxp · yrp ∀p ∈ P (16)
∑
p ∈ P

yi p ≥ 1 ∀i ∈ I (17)

i p − ni p ≤ 0 ∀i ∈ I, ∀p ∈ P (18)

i p − Nlong · yi p ≤ 0 ∀i ∈ I, ∀p ∈ P (19)

ri p ≥ yi p ∀i ∈ I, ∀p ∈ P (20)

rp ≤ 1 ∀p ∈ P (21)

rp ≤
∑
∀i ∈ I

yi p ∀p ∈ P (22)

rp, xp, cppk, tapk, uapk ∈ R+

i p ∈ N

i p, wap k p ∈ {0; 1}
he objective function presented in Eq. (1) is the cost of the

rim-loss, represented by the sum of cppk which is the cost of
he trim-loss for pattern p on layer k. Note that cppk is a positive
ariable that depends on the conformation of the pattern in each

ayer and the length xp.

Eq. (2) defines that the number of sheet to be cut per pattern p
ould be at most Nlong − 1, where Nlong represents the number
f longitudinal knives in the cutting machine, and nip is an integer
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ariable that indicates the number of units of the order i assigned
o pattern p.

Eq. (3) defines that the number of different orders assigned
o each pattern could be at most Ntrans, where yip is a binary
ariable representing the fact that order i is assigned to pattern
or not.
Eq. (4) defines the total area assigned to each layer k of pattern

, tapk, where wap k p is a binary variable that is one if the paper
idth ap is used in the layer k of the pattern p and zero otherwise

see Fig. 9), Wapap is a parameter that represents the paper width
nd xp is the variable that determines the pattern length. Eq. (5)
onstrains the number of widths ap assigned to each layer k of
attern p to one.

In Eq. (6), the used area in each layer k of pattern p is defined
s uapk, which depends on the number of orders i assigned to p,
ip, their widths Wii and the pattern length xp.

Eq. (7) defines the pattern trim-loss cost for each layer k,
ppk, where Copk is a parameter that indicates the paper cost in
ayer k of pattern p. The trim-loss area in each layer k of pattern
is calculated as the difference between variables tapk and uapk
efined in Eqs. (4) and (6), respectively.

Eq. (8) establishes that orders i cannot be combined in the
ame pattern with order i′ because they have different type of
oard, as was set-up in set Not combii′ .

Eqs. (9) and (10) define a minimum and maximum trim-loss
er width of pattern p, respectively. Eq. (9) establishes that the
ifference between the width of the paper used in each layer k of
attern p and the pattern width, which depends on the number
f orders i assigned to p and their widths, must be greater than
ermin. Note that only one width ap can be selected for each

ayer k of pattern p1, so
∑

∀ap ∈ APwap k p is at most one. In fact,
f no width ap is assigned to pattern p, it means that the pattern p
s not used and consequently, the pattern width will be also zero.
imilarly, Eq. (10) determines that the width of each pattern p
ould have at most a maximum waste, Permax, corresponding
o business rules reasons.

Eq. (11) establishes that if pattern p exists (yrp = 1), then some
aper width ap must be assigned to each layer k of the pattern
. Note that yrp is not a binary variable, it only takes the values
f 0 or 1 constrained by Eqs. (20)–(22).

In Eq. (12) the parameter Stp ap represents the stock of the
aper (m) of type tp and width ap. This constraint establishes
hat if the width ap was assigned to the layer k of pattern p, the
ength used in all layers of all patterns can be at most Stp ap.
arameter αk is a coefficient for the paper consumption in layer
(greater than 1 for flute papers). The set Rpk tp determines the
aper type tp associated to each layer k of pattern p.

Eqs. (13) and (14) are the demand constraints, where POpi

ssociates orders i to the same type of board patterns p where
hey can be assigned. Eq. (13) defines that the number of sheets
roduced for one order i in the patterns p must be greater than the

emand Di. The Eq. (14) establishes an over-production upper
ound ηi which gives flexibility to the cutting plan.

1 See Eq. (5).

∀

n
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Eqs. (15) and (16) give a minimal and maximum run length
or pattern p CRminp and CRmaxp, respectively. Both constrains
re related to the production time limits.

Eq. (17) determines that every order i must be assigned to
ome pattern p.

Eqs. (18) and (19) are logical constraints relating variables
ip and yip. The first one determines that if nip is zero, yip must
e zero too. The second one defines that if nip is greater than
ero, yip must be one.

Eqs. (20)–(22) represent lower and upper bounds to the pos-
tive variable yrp. Eq. (20) is a lower bound and establishes that
f some order i is assigned to pattern p, then yrp must be at least
ne. In Eq. (21) yrp is limited to one. By Eq. (22) yrp must be
ero if no order i is assigned to pattern p.

To assure a global solution, this first model must be reformu-
ated. For that purpose, two different strategies are selected. In
he first one, some transformation techniques are applied in order
o eliminate bilinearities. The resulting MILP model is bigger
han the original one in terms of constraints and variables. The
econd strategy is a two-step procedure. The initial step gener-
tes feasible cutting patterns for a set of orders. The algorithm
enerating the patterns of different orders must combine only
orrugated sheets having the same characteristics: same number
f layers, same flute type and paper class for each layer. Then
MILP optimization model is solved selecting a subset of the
atterns and the length to cut to satisfy the demand and stock
onstraints.

.2. Convexification techniques

The non-convexities in problem (1)–(22) arise from Eqs. (4),
5) and (12)–(14), where some bilinear term appears. Tradi-
ionally, in cutting stock problems, bilinearity comes from the
emand constraints as presented in Eqs. (13) and (14), by the
roduct nip·xp. However, in the formulation considered this term
lso appears in Eq. (5) to calculate the used area in pattern p.
nother bilinear term corresponds to the paper width assign-
ent in each layer k of pattern p. The product wap k p. xp is used

o calculate the total area of pattern p in Eq. (4) as well as the
aper consumption in the stock constraint (12), which is usually
isregarded.

A number of transformation techniques to overcome bilinear
erms have been studied in Harjunkoski et al. (1999) and Pörn,
arjunkoski, and Westerlund (1999). Any method supposes an

xpansion in terms of number of variables and constraints. In
his work a well known linear transformation is considered. The
trategy redefines variables and constraints of the initial model.
he first transformation adds a binary variable βipj to define nip

s follows:

i p =
∑

∀j ∈ J

j · βi p j ∀i ∈ I (23)

∑

j ∈ J

βi p j ≤ 1 ∀i ∈ I, ∀p ∈ P (24)

i p ∈ R+, βi p j ∈ {0, 1}
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Then, a slack variable sipj is also introduced, and the following
ransformation constraints must be added:

i p j − xp ≤ 0 ∀i ∈ I, ∀p ∈ P, ∀j ∈ J (25)

−si p j + xp − CRmaxp(1 − βi p j) ≤ 0

∀i ∈ I, ∀p ∈ P, ∀j ∈ J (26)

si p j − CR maxp · βi p j ≤ 0 ∀i ∈ I, ∀p ∈ P,

∀j ∈ J (27)

i p j ∈ R+

Note that with this transformation, Eqs. (5), (13) and (14) can
e rewritten as follows, respectively:

ap k =
∑

∀j ∈ J

∑
∀i ∈ I

si p k · Wii ∀p ∈ P, ∀k ∈ K (28)

∑
j ∈ J

∑
∀p ∈ P

j · si p j/Lii ≥ Di ∀i ∈ I (29)

∑
j ∈ J

∑
∀p ∈ P

j · si p j/Lii ≤ Di (1 + ηi) ∀i ∈ I (30)

Considering the bilinear term wap k p · xp another similar
ransformation is defined introducing a positive slack variable
ap k p and using wap k p:

ap k p − xp ≤ 0 ∀ap ∈ AP, ∀p ∈ P, ∀j ∈ J (31)

−lap k p + xp − CR maxp(1 − wap k p) ≤ 0

∀ap ∈ AP, ∀p ∈ P, ∀j ∈ J (32)

lap k p − CRmaxp · wap k p ≤ 0 ∀ap ∈ AP, ∀p ∈ P,

∀j ∈ J (33)

ap k p ∈ R+

he constraints (4) and (12) can now be written as shown in Eqs.
34) and (35), respectively:

ap k ≥
∑

∀ap ∈ AP

lap k p.Wapap ∀p ∈ P, ∀k ∈ K (34)

∑
∀p ∈ Rp k tp

∑
∀k ∈ Rp k tp

lap k p · αk ≤ Stp ap ∀tp ∈ TP,
∀ap ∈ AP (35)

The solution procedure is mainly improved if binary vari-
ble yip is eliminated from the initial model (Eqs. (1)–(22)) and

∀

∀
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eplaced by
∑

∀j ∈ Jβi p j . Instead of using Eqs. (7), (17), (20)
nd (22); Eqs. (36)–(39) are introduced.
∑
j ∈ J

βi p j + βi′ p j ≤ 1 ∀i /= i′|(i, i′) ∈ Non combii′∀P

(36)
∑
p ∈ P

∑
∀j ∈ J

βi p j ≥ 1 ∀i ∈ I (37)

rp ≥
∑

∀j ∈ J

βi p j ∀i ∈ I, ∀p ∈ P (38)

rp ≤
∑
∀i ∈ I

∑
∀j ∈ J

βi p j ∀p ∈ P (39)

qs. (18) and (19) are not needed in this formulation because
ip has been eliminated and nip is now defined by Eq. (23).

Consequently, the final model is now redefined by Eqs.
1)–(3), (6), (8)–(11), (15), (16) and (28)–(39).

.3. Two steps formulation

Another strategy to transform the problem formulation into a
inear one is to separate decisions into two stages. This method is
enerally used because it is simple and efficient (Westerlund et
l., 1998; Westerlund & Isaksson, 1998). First, a pre-generation
odel defines all feasible cutting patterns which are then part of

he input data in a MILP optimization model. Neither additional
onstraints nor variables are introduced in this formulation. As
result not only optimal solution is guaranteed but also better

olution performance.
The equations presented in this section consider that cus-

omer’s pending orders, paper reels stock and its cost are known
n order to define a set of feasible patterns. If the following con-
traints are satisfied then a feasible cutting pattern is generated.
he procedure is recursively repeated until all pending orders i
re analyzed and feasible patterns p defined.

fp =
∑
∀i ∈ I

Ni pWi ∀p ∈ P, ∀k ∈ K (40)

er max ≥ Per min (41)

WTPp k − Per max ≤ Wfp ≤ WTPp k − Per min

∀p ∈ P, ∀k ∈ K (42)

mp k = Cok · (WTPp k − Wfp k ) ∀p ∈ P, ∀k ∈ K

(43)

i p + Yi′p ≤ 1 ∀i /= i′|(i, i′) ∈ Not combi i′ , ∀p ∈ P

(44)

∑
N ≤ Nlong − 1 ∀p ∈ P (45)
i ∈ I

i p

∑
i ∈ I

Yi p ≤ Ntrans ∀p ∈ P, ∀i ∈ I (46)
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The generation process is defined by Eqs. (40)–(46), where
fp is the pattern width, calculated in Eq. (40) as the sum of

he number of sheets Nip of order i in the pattern p per Wi

hat represents the sheet width of order i. Note that Nip is used
ith the same purpose as nip in the previous MINLP model

Eqs. (1)–(22)). However, in the present formulation this value
s calculated by the pre-generation model trying all the possible
onformations of the patterns. The parameter Permax is defined
y the planner corresponding to the maximum trim-loss allowed
or the pattern p. The parameter WTPpk corresponds to the paper
idth used for layer k. Eq. (42) assures that the width of each
attern p has at most a maximum waste of Permax and at least
minimum Permin in each layer k.

In Eq. (43), the parameter Cmpk, which corresponds to the
ost of the trim-loss per meter of pattern p, is calculated multi-
lying the paper cost in each layer k, Cok, and the trim-loss per
eter in layer k, denoted by (WTPk − Wfp).
When combining different orders they must have the same

oard which means that the paper type must be the same on
ach layer k, and also the number of layers. Eq. (44) means that
f two different orders i and i′ are assigned to pattern p they
annot belong to set Not combii′ .

Eq. (45) establishes that the number of sheets cut per pattern
could be at most Nlong − 1. The sum of Yip determines the

umber of different orders assigned to pattern p, which is limited
o Ntrans by Eq. (46). Note that Yip is a parameter but plays the
ame function of the variable yip in the initial MINLP.

The MILP optimization model is formulated as follows:

in Z =
∑

∀p ∈ P

∑
∀k ∈ K

cpp k (47)

.t.

pp k = Cmp k · xp ∀p ∈ P, ∀k ∈ K (48)

∑
p ∈ Rp k tp

∑
∀k ∈ Rp k tp

xp · αk ≤ Stp ap ∀tp ∈ TP, ∀ap ∈ AP

(49)
∑

p ∈ POp i

Ni p · xp/Lii ≥ Di ∀i ∈ I (50)

∑
p ∈ POp i

Ni p · xp/Lii ≤ Di · (1 + ηi) ∀i ∈ I (51)

p ≥ CRminp · yrp ∀p ∈ P (52)

p ≤ CRmaxp · yrp ∀p ∈ P (53)

p, cpp k ∈ R+

rp ∈ {0; 1}
n Eq. (47) the objective function is defined, representing the
aper trim-loss cost, where the variable cppk is the cost of the

rim-loss of pattern p. This variable is calculated in Eq. (48) mul-
iplying the parameter cost Cmpk defined in the pre-generation

odel and the pattern length xp. Eq. (49) determines that sum
f the length of each paper layer k in all patterns p must not

a
s
e
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xceed the paper length in stock, Stp ap. Eqs. (50) and (51) are
he demand constraints.

In Eqs. (52) and (53) if a pattern p is executed (yrp = 1), it
ust be longer than or equal to a minimal and maximum run

ength CRminp and CRmaxp, respectively.
Note that the objective function, Eq. (47), is equal to Eq. (1)

n the first formulation. However, it is repeated to facilitate the
odel reading at this point. The same criterion was used with
qs. (52) and (53) which are the same than Eqs. (15) and (16)
ith the difference that in the MINLP model yrp is a positive
ariable not binary like in this last model (Eqs. (47)–(53)).

The initial model (Eqs. (1)–(22)) is really simplified by this
trategy with no additional variables nor constraints. The main
ifference in this model is that the cutting patterns pre-generation
rocess avoids assignment decisions in the optimization model
hich strongly affect computational performance.

. Different objective functions

Besides solution strategies, the objective function may also
ave influence on the solution quality and efficiency. Choosing
suitable objective function should not disregard economical

r environmental considerations. In real cases, usually the trim-
oss costs (Eq. (1)) results one of the most appropriate, however
thers can be used depending on the goals pursued.

The first alternative objective considered is given by the fol-
owing equation:

in TPC =
∑

∀p ∈ P

∑
∀k ∈ K

cpp k +
∑

∀p ∈ P

CY · yrp (54)

q. (54) adds to the trim-loss cost the changing pattern cost. The
arameter CY indicates the cost of changing a pattern. Usually,
he pattern change results in some paper trim-loss because of
he paper reels remotion, parts of the machine changed and the
et-up time to place the knives.

Another goal is the total production cost defined by Eq. (55).

in PC =
∑

∀p ∈ P

∑
∀k ∈ K

Cop k · tap k (55)

his objective could be useful when global enterprise costs must
e minimized.

When environmental issues are pursued the weight of the
rim-loss may be considered as an objective function.

in TW =
∑

∀p ∈ P

∑
∀k ∈ K

Vp k · (tap k − uap k) (56)

he parameter Vpk represents the paper grammage in each layer
of pattern p.

. Results
In order to illustrate models performance three examples
re solved. Models have also been executed in real productive
cenarios. The objective functions discussed are considered in
xamples one and two.
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Table 1
Models main characteristics and results, example 1

Strategy Single
equations

Discrete
variables

Total
variables

f(x): Z
(Eq. (1))

f(x): TPC
(Eq. (54))

f(x): PC
(Eq. (55))

f(x): TW
(Eq. (56))

OV ($) ST (s) OV ($) ST (s) OV ($) ST (s) OV (kg) ST (s)

Applying linearization techniques:
Eqs. (2), (3), (6), (8)–(11), (15),
(16) and (28)–(39)

2064 380 931 107.9 33.52 157.9 10.84 2631 7.83 90.22 13.81

Two-steps formulation: Eqs.
(40)–(46), (48)–(53)

49 13 27 107.9 0.187 157.9 0.234 2631 0.046 90.22 0.109

f(x): objective function; OV: objective value; ST: solution time (s) (GAP 0%).

Table 2
Results obtained with five orders example, minimizing Z

p i ni,p i′ ni′ ,p k1 k2 k3

∑
∀i ∈ I

ni p · Wii (mm) xp (m)
∑
∀k ∈ K

cppk ($/pattern)

tp ap (mm) tp ap (mm) tp ap (mm)

1 Ord 1 2 Ord 2 2 O1 1200 O1 1200 O1 1200 1180 500 4.50
2 Ord 1 3 Ord 2 1 O1 1300 O1 1300 O1 1300 1250 500 11.25
3 Ord 3 3 – – K1 1000 O2 1000 O2 1000 960 787.5 17.40
4 Ord 4 2 Ord 3 1 K1 1400 O2 1400 O2 1400 1360 755 16.69
5 Ord 5 2 – – O2 1500 O1 1500 O2 1500 1422 1496.25 58.05

Table 3
Models main characteristics and results, example 2

Strategy Single
equations

Discrete
variables

Total
variables

f(x): Z
(Eq. (1))

f(x): TPC
(Eq. (54))

f(x): PC
(Eq. (55))

f(x): TW
(Eq. (56))

OV ($) ST (s) OV ($) ST (s) OV ($) ST (s) OV (kg) ST (s)

Applying linearization techniques:
Eqs. (2), (3), (6), (8)–(11), (15),
(16) and (28)–(39)

1944 368 889 131.7 2585 191.7 1924 3351 4164 110.6 1841
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wo-steps formulation: Eqs.
(40)–(46), (48)–(53)

85 28 57

(x): objective function; OV: objective value; ST: solution time (s) (GAP 0%).

Because of the problem complexity, the approach used to
olve the corrugation and cutting problem has key influence on
he execution time. The strategy selected for the implementation

ust guarantee not only an optimal solution but also reasonable
esource consumption.

The models were posed in GAMS system. CPLEX 9.0 was
sed to solve the MILP formulations, they have been executed
ver a PC having an Intel Pentium D 2.8 GHz processor.

.1. Example 1

The first example is small, with five customer orders and ten
atterns available to use. In Table 1, models main characteristics
nd results are presented.

As shown in Table 1, although the first model2 has short

xecution time for every objective function considered, two-
teps formulation runs are much faster because of the reduced
umber of equations and variables.

2 Eqs. (1)–(3), (6), (8)–(11), (15), (16) and (28)–(39).

6

w
a

1.7 0.39 191.7 0.140 3351 0.406 110.6 0.312

When minimizing the trim-loss cost (f(x): Z), patterns con-
guration in the final solution is shown in Table 2.

.2. Example 2

The second case considered has seven customer orders to be
atisfied in seven available patterns p. Models characteristics and
ajor results are shown in Table 3.
In this example, there is a great difference between

odels performances. This still small case shows how
he second alternative is much better in terms of compu-
ational efficiency. Consequently, the first alternative will
nlikely solve a real productive problem as presented in
xample 3.

.3. Example 3
This last example represents an industrial case with 26 orders
hich was run using Eq. (54) as the objective function. Results

nd models configuration are shown in Table 4.
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Table 4
Models main characteristics and results, example 3

Strategya Single equations Discrete variables Total variables f(x): TPC – (Eq. (54))

OV ($) GAP ST (s)

Applying linearization techniques: Eqs. (2), (3), (6),
(8)–(11), (15), (16), (28)–(39) and (54)

14,697 2440 5641 – – >75,000
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1
1
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1
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1
1
1
1
1
2

wo-steps formulation: Eqs. (40)–(46), (48)–(53) 579

(x): objective function; OV: objective value; ST: solution time (s).
a These characteristics are also valid if instead of trim-loss cost any other obj

Reaching a solution in one step is a very difficult task because
he techniques applied to get a linear formulation from the
riginal model expands the integer space. The combinatorial
omplexity resultant, as shown in Table 4, makes the problem
mpossible to solve by this strategy.

On the contrary, the two-steps method reduces the number
f variables and constraints in comparison to the original for-
ulation which leads to extremely short execution time even in

ndustrial scenarios.
Patterns configuration in the final solution is shown in Table 5.

he pattern generation procedure creates 254 feasible patterns.
hese patterns are input data of the MILP model which chooses

o use 20 of them in the final solution. Variable yrp are set to
when pattern p is selected, to satisfy customer orders and
inimize trim-loss and changing pattern costs (TPC).

. Model implementation

In the previous section, some examples were solved to com-

are the computational efficiency of the models. The two-steps
lgorithm was chosen to implement in the company. Besides
he execution time, this model has the advantage that the plan-
er can handle some problem parameters allowing the analysis

a
G
a
n

able 5
esults obtained with 26 orders example, minimizing TPC

i ni,p i′ ni′ ,p k1 k2

tp ap (mm) tp ap (mm)

1 Ord 14 2 K1 1100 O2 1100
2 Ord 1 2 Ord 2 2 O1 1200 O1 1200
3 Ord 4 2 Ord 24 1 K1 1400 O2 1400
4 Ord 5 1 Ord 10 1 O2 1100 O1 1100
5 Ord 5 1 Ord 11 1 O2 1100 O1 1100
6 Ord 1 1 Ord 6 3 O1 1400 O1 1400
7 Ord 7 3 Ord 18 1 O1 1200 O1 1200
8 Ord 3 1 Ord 8 2 K1 1400 O2 1400
9 Ord 8 1 Ord 25 1 K1 1200 O2 1200
0 Ord 3 1 Ord 9 2 K1 1400 O2 1400
1 Ord 10 2 Ord 17 2 O2 1300 O1 1300
2 Ord 5 1 Ord 11 2 O2 1500 O1 1500
3 Ord 12 2 Ord 21 2 O1 1500 O1 1500
4 Ord 13 1 Ord 15 1 K1 1200 O2 1200
5 Ord 13 1 Ord 23 1 K1 1200 O2 1200
6 Ord 13 1 Ord 25 1 K1 1300 O2 1300
7 Ord 15 1 Ord 23 1 K1 1300 O2 1300
8 Ord 16 2 Ord 19 2 O2 1200 O1 1200
9 Ord 20 2 Ord 26 1 O1 1300 O1 1300
0 Ord 18 1 Ord 22 2 O1 1500 O1 1500
254 2155 473.67 0% 0.703

function is used, such as Eqs. (1), (55) or (56).

f several scenarios. The planner can manipulate the following
arameters: maximum waste allowed Permax, maximum and
inimum number of patterns per order, the number of longitu-

inal and transversal knives in the cutting machine, minimum
un length CRminP and the mandatory and optional orders to
onsider, while the plan for mandatory orders must be solved,
ptional are used to combine and produce a best set of pat-
erns. Smithin and Harrison (1982) suggested that there is an
qually important dimension concerned with practical and inter-
ersonal issues which is often overlooked in tackling cutting
tock problems. Human expertise should not be disregarded
ecause it can provide a competitive advantage over the system
olution.

An interface written in Java has been implemented such that
he planning and cutting system can be linked to the company
RP (an Oracle E-Business Solution). The model takes the input
alues from the ERP: customer orders and paper reels stock
nformation. Then the planner selects the orders to produce and
he plan parameters, executes the optimization MILP problem,

n automatic data transference is performed from the ERP to a
AMS model, then an intermediate HTML results file is gener-

ted so that the planner can analyze it. He can change the input if
eeded and run again the optimization problem, this process can

k3

∑
∀i ∈ I

ni p · Wii (mm) xp (m)
∑
∀k ∈ K

cpp k ($/pattern)

tp ap (mm)

O2 1100 1066 705.5 13.26
O1 1200 1180 562.5 5.06
O2 1400 1380 1066.8 11.84
O2 1100 1061 1092.5 21.19
O2 1100 1080 1400 13.86
O1 1400 1380 900 8.1
O1 1200 1170 708.33 9.56
O2 1400 1380 1400 15.54
O2 1200 1154 800 20.32
O2 1400 1380 930 10.32
O2 1300 1280 753.75 7.46
O2 1500 1449 500 12.7
O1 1500 1450 862.5 19.41
O2 1200 1178 1345 16.41
O2 1200 1167 1366 24.86
O2 1300 1267 622.4 11.33
O2 1300 1219 500 22.4
O2 1200 1170 985 14.68
O1 1300 1276 889 9.60
O1 1500 1478 577.85 5.72
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neous solution of trim-loss and scheduling problems in the paper-converting
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e repeated until the plan is accepted. At this point, the results
enerated are automatically transferred to the ERP system. This
nformation includes patterns to produce and theoretical paper
onsumptions (paper stock reservation). This system has been a
reat evolution for the company-supply chain integration. The
revious version was a Visual-Basic ad hoc program used by the
ompany planner, inputs and outputs were made by means of
preadsheets not integrated to the company system. Plan results
ere loaded by hand, control of the production plan (theoretical
ersus real) was not followed, people in the company did not
rust in the information loaded. By this system, the production
lan control is made by the ERP system, all the data is automat-
cally read and loaded, several terminals were distributed on the
lant floor so that an automatic caption of the plan progress is
ade. Information system data are now reliable, statistics data

an be generated, and it is possible to integrate customers and
uppliers to exchange information, company managers are now
nvolved in this process to be more competitive in the market.

. Discussion and conclusions

In this work, enterprise optimization related to an assign-
ent and trim-loss problem was presented. The cutting stock

roblem is one of the major issues in paper converting sup-
ly chain. Additionally, lower costs in boxes production will
mprove competitiveness in almost every supply chain because
ackaging industry has a great influence in transportation and
ogistic cost. The first model developed is a MINLP formula-
ion which presents two different bilinearities in some equations.
o obtain global solution, two transformation techniques were
pplied. One of the methods corresponds to linearization tech-
iques, as presented by Harjunkoski et al. (1999). This strategy
olves the problem in one step. However, some additional integer
nd positive variables and constraints are introduced increas-
ng the combinatorial complexity. Consequently, it cannot be
pplied to real enterprise optimization problems due to long
omputational time.

A two-stages model has also been developed to avoid origi-
al non-convexities. A similar procedure has also been applied
y Westerlund et al. (1998) and by Westerlund and Isaksson
1998). The formulation developed is much simpler than the first
ethod, eliminating some decisions in the optimization model

ue to a pattern pre-generation procedure. It also provides a
ore robust and faster problem solution. One important feature

f this mathematical model is the reduced time spent to reach the
olution which allows the planner to evaluate in a few minutes
everal scenarios by manipulating the parameter values, com-
aring with the old system where the planner spent around 4 h
o generate the first valid solution.

Comparing plans generated by the old and new system, the
atter approach reduces up to 30% the trim-loss cost. No sim-
lifications were done to represent the real productive context.
he system is now in production and has been used for several

f months giving very good results. Having linked the system to
he company ERP besides of the advantages of the integration,
ia the ERP the control of the production plan generated by the
odel is facilitated giving an extra feature to the whole system.

W

hemical Engineering 32 (2008) 2812–2822

Some discrete decisions connected to this problem could be
reated as disjunctions. Disjunctive formulation usually facil-
tates the problem understanding. Future work includes the
eneration of a disjunctive formulation of this problem. Some
f this work is already in progress.
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