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Abstract

In the present work, the planning and cutting problem for the corrugated board boxes industries is presented. This problem belongs to the category
of the trim-loss problem, which is essential in the paper-converting supply chain management. Bilinear terms in demand and stock constraints,
for instance, lead to a non-convex formulation. Two global convex models are formulated and tested. Results obtained in the problem solution are
shown. The most efficient model is implemented by means of Java programs and GAMS, a mathematical optimization program. The system is
linked to the company ERP (enterprise resource planning) system. Several issues are optimized and improved: waste generation, energy demand,
environmental impact and production costs. Paper reel stock management is improved due to more accurate and statistical information obtained
by the system. The planning system linked to the ERP connection allows the integration of customers and suppliers increasing the company

competitiveness.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The scope of manufacturing logistics begins at the point
where end-item customer demands are determined, and extends
to the point where they are fulfilled (Wu & Golbasi, 2004).
According to these authors they distinguish narrow and a broader
view of manufacturing logistics. The first one includes the plan-
ning, scheduling and control of all activities resulting in the
acquisition, processing, movement and storage of inventory.
These activities include order acceptance, production planning
and scheduling, inventory control, inventory distribution, and
the design of the corresponding decision processes and decision
support systems. The second one considers the flow of mate-
rial, information, and services across enterprise, industry and
national boundaries.

In this work, it will be described the planning models con-
sidered for the carton corrugated industry, the implementation
of the selected model as a business intelligence module and its
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link to the company’s ERP in order to share the information
with customers and suppliers of the supply chain to increase the
services across the company limits.

Competition between single companies changes into com-
petition between supply chains. Therefore, it can be expected
that the importance of methods for management and produc-
tion process optimization will increase with companies seeking
global instead of local optimums (Trkman, Indihar Stemberger,
& Jaklic, 2005). Particularly, waste generation is one impor-
tant issue in today’s supply chain management. In first place,
waste means increasing costs, with no positive effects in cus-
tomer satisfaction; and environmental impact, also an objective
of increasing interest. Consequently, in the cutting process waste
should be minimized to be competitive in the global market
and friendly to the environment. There are some industries that
generate waste during its cutting process such as the wood
industry (Venkateswarlu, 2001), the paper-converting industry
(Westerlund & Isaksson, 1998) and the steel industry (Vasko,
Newhart, & Stott, 1999).

Grossmann and Westerberg (2000) pointed out that chem-
ical engineering in the context of process system engineering
(PSE) has evolved in the past decades from being rooted in
the concept of unit operations to one based on engineering sci-
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Fig. 1. The pulp and paper supply chain.

ence and mathematics. They have proposed a new definition of
PSE where the discipline is concerned with the improvement of
decision-making processes for the creation and operation of the
chemical supply chain. It deals with the discovery, design, man-
ufacture, and distribution of chemical products in the context of
many conflicting goals. Although this work does not deal with
a chemical process, the theoretical issues and the goal pursued
corresponds to models generation for the prediction of perfor-
mance, and decision making for an engineered system, which is
also a main concern for PSE area.

In this work a real-world industrial problem of production
planning and cutting optimization for corrugated board boxes is
presented. However, as shown in Fig. 1 (adapted from Carlsson,
D’ Amours, Martel, & Ronnqvist, 2006), the cutting stock is a
common problem in almost every link on pulp and paper sup-
ply chain. Additionally, packaging production industry is also
involved in almost all manufacturing supply chains. As a con-
sequence, the industry studied performs their activities in a very
competitive market. An efficient production plan improves com-
pany competitiveness providing convenient product prices and
just in time order deliveries.

In many articles, the cutting stock problem has been
studied with different goals such as minimal trim-loss
(Harjunkoski, Westerlund, Isaksson, & Skrifvars, 1996;
Harjunkoski, Westerlund, & Porn, 1999; Trkman & Gradisar,
2007), minimal production costs (Harjunkoski, Westerlund,
Porn, & Skrifvars, 1998; Harjunkoski et al., 1999), minimal
number of patterns (Johnston & Sadinlija, 2004), minimal total
length and overproduction (Correia, Oliveira, & Ferreira, 2004),
etc. In some cases, mathematical optimization cannot achieve
to optimal solution in reasonable execution time and heuris-
tic techniques are also approached (Beasley, 2004; Riehme,
Scheithauer, & Terno, 1996). Often rough simplifications are
made when formulating the trim-loss problem. These simpli-

fications have a great influence on the result and many times
heuristic procedure may give better results in practice than an
optimized solution (Westerlund & Isaksson, 1998). Those sim-
plifications refer to some important practical issues connected
to the problem. In fact, stock constraint is usually disregarded,
formulations assume a unique reel length and width and differ-
ent paper types are not considered. In this case, simplifications
are avoided in order to find a proper solution for a real industrial
problem.

Although the trim-loss costs objective is here considered the
most representative function to define a “real-world” optimal
solution, some other objective functions are also used in order
to compare models behavior and solution strategies. The first
model developed is a non-convex MINLP which is transformed
by two different methods to obtain a global solution. Besides
global optimization, in this work some other targets are pursued
such as computational efficiency, detailed problem representa-
tion, planner intervention in the problem inputs and constraints
and integration to the company information system.

In the following section, some issues related to the production
process and product characteristics are considered to under-
stand the problem formulation. The third section contains the
problem statements and background. The next section refers
to models formulation and convexification techniques. In the
following section, different objective functions are presented.
Some examples were analyzed in section six to illustrate models
computational performance for the proposed objective functions
and compare models results. Critical considerations concerning
implementation features, as models integration to ERP systems
and its influence on paper supply chain are considered in section
seven. In the last section, conclusions refer to final discussion
and outlines future research goals.

2. Process description

The raw material to produce board boxes is usually a set of
paper reels which correspond to different paper types depending
on the board characteristics needed on the final product. Paper
reels of different width and lengths provided by different sup-
pliers can be used to produce the corrugated board and cut the
sheets. The assignment of paper width to cut patterns accord-
ing to the paper stock available is an important consideration in
problem formulation.

The corrugated board is produced using several paper layers.
There are two main kinds of layers: liner layer and fluted layer.
The board structure is mainly influenced by the number of layers
assigned and the paper type in each layer. The most used boards
in the industry are the single wall, thatitis arigid structure, which
has two external liner layers and one middle fluted one and the
double wall board, which is also a rigid structure, formed by
three liner layers, two external and one central, and two fluting
layers located between the central liner and one of the externals,
respectively.

The production of corrugated sheets is a continuous process.
The first step is to place the paper reels in the corrugator. Next,
some layers are corrugated to form the required flute where adhe-
sive is then added to glue the liner layers. Once corrugated board
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is formed, it goes through the cutting section where board sheets
are finally obtained. Fig. 2 shows the process main stages.

The cutting machine has Nlong knives to cut the boards
lengthwise and Ntrans knives for the transversal cuts. Those
characteristics limit the number of different sheets to cut per
time. Using Nlong knives Nlong+1 board parts could be
obtained; the two external ones must be discarded because the
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layers are not perfectly glued. This allows the cutting of at most
Nlong — 1 sheets per board wide and gives a minimum trim-
loss Permin (see Fig. 3). The Ntrans knives limit to Ntrans the
different lengths to cut.

In Section 4, a general problem formulation is presented to
solve the trim-loss problem in the corrugated board boxes indus-
try independently of the corrugating and cutting machine to be
used. However, a machine with five longitudinal knives and two
transversal ones is considered as an example, in order to illustrate
the different type of cutting patterns, which are as follows:

(1) Patterns corresponding to a single sheet order: the possible
number of sheets to cut varies from one to four; the final
value depends on the order width and the paper reels width
used in each layer. A sketch of this pattern type can be
observed in Fig. 4.

(2) Pattern 1-1: corresponds to two sheet orders with different
width and length. When combining sheets of different orders
both of them must have the same board and paper types in
each layer. In this case, only three of the slitting knives and
two transversal ones are used. A scheme of this pattern type
is illustrated in Fig. 5.

(3) Pattern 2-2: these patterns have two sheets of one order and
other two of a different one; it is shown in Fig. 6.
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(4) Pattern 1-2: these patterns cut a sheet of one order and two
of another one, which is illustrated in Fig. 7.

(5) Pattern 1-3: these patterns cut a sheet of one order and three
of another one. A representative scheme of this pattern type
is shown in Fig. 8.

3. Problem statement, background

The board boxes process includes two main steps. First, the
board must be produced from single layers involving an assign-

ment problem and then the board is cut into smaller pieces to
produce the sheets that form the boxes. Assignment decisions
usually implicate binary variables in problem formulation leav-
ing more difficult models and time-consuming solutions. The
second step is related to the cutting stock problem. There are
many articles dealing with the cutting stock problem where the
raw paper reels are cut into smaller ones (Sweeney & Haessler,
1990; Valério de Carvalho, 2002; Westerlund, Harjunkoski, &
Isaksson, 1998). Generally, the solution strategy defines optimal
cutting patterns, and then determines the number of patterns to
produce in order to minimize a cost function. The cutting process
generates the trim-loss because raw paper widths are not exact
multiples of customer orders widths, and so larger paper reels
are needed to form feasible patterns. However, the production
of corrugated board boxes problem has not been considered yet.
In this case, not only trim-loss problem is crucial but also board
structural definition (the number of layers, paper weight and
color), the assignment of the paper width for each layer and also
the combination of orders according to their board type, among
others. It must be also taken into account that reels of different
widths and lengths are available in stock and as a result, the prob-
lem complexity is very high due to the huge number of product
combinations and variables to handle. Discrete decisions and
non-convex relationships are also involved. In fact, due to its
NP-hard and non-convex nature, solution strategies and problem
representations have an important influence on computational
efficiency. Fig. 9 shows some orders combination constraints
and paper assignment characteristics.

4. Model formulation
4.1. The original model

The problem formulation produces a non-convex MINLP
model where global optimality cannot be guaranteed. A group of
orders i must be satisfied considering an accepted overproduc-
tion 7;. Stock constraint is also considered. The cutting machine
has Nlong longitudinal knives and Ntrans transversal ones. Max-
imum and minimum trim-loss are given and must be satisfied
when assigning orders i and paper widths ap to pattern p. Each
customer order has a board type which is defined by the num-
ber of layers k and the paper type #p corresponding to each one.
Another constraint is that orders assigned to pattern p cannot
have different board type. The Not_comb;; set includes all pair
of orders that cannot be assigned to the same pattern. Fig. 9 fur-
ther clarifies these concepts. The run length x;, for each pattern p
has upper and lower bounds, both related to the feasible produc-
tion time. Thus, the problem of minimizing the total trim-loss
cost can be formulated follows:

MinZ= Y Y cppu 1)

Vpe PVke K
S.L.
Zniprlong—l VpeP 2)
Viel
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Zyip < Ntrans VpeP 3) S° nipexplLii<Di- (L) Viel (14)
Viel Vpe POy;
fapk = Z Wapk p - Wapap - xp VpeP, VkeK (4) xp > CRminy - yr, VpeP (15)
Vap € AP
xp < CRmax,-yr, VpeP (16)
Z wapkp <1 VpeP, VkekK 5)
Vap e AP S yipz1 Viel 17)
VpeP
uapk = » nip-Wizx, VpeP, VkeK (©6)
viel Yip—nip <0 Viel, VpeP (18)
cppk = Copy - (tapr — uapg) VpeP, Vkek () njp— Nlong - yi, <0 Viel, VpeP (19)
Yipt+yip =1 Vi#i|Gi)€Notcombiy, VpeP (8)  y, >y, Viel VpeP (20)
yrp<1 VpeP 1)
Z Wapk p - Wapap | — Znil’ - Wi; > Permin - yr,
Yape AP i yrp < Zyi,, VpeP (22)
Viel

VpeP &)

Z Wapk p - Wapap | — Znip - Wi; < Permax - yrp

Yape AP i
VpeP (10)
Z Wapkp Z Yp VpeP, VkekK (11)
Yape AP
Z Z Xp - Ok Wapk p < Sipap Vip e TP,

VPE€Rpkp YK€ Rpkyp

Yape AP (12)

Z nip-xplLi; > D; Viel (13)
Vpe PO,

Yrp, Xp, CPpk,tapk, Uapk € RT
nip €N

Yips Wapkp € {0; 1}

The objective function presented in Eq. (1) is the cost of the
trim-loss, represented by the sum of c¢p,, which is the cost of
the trim-loss for pattern p on layer k. Note that cpy is a positive
variable that depends on the conformation of the pattern in each
layer and the length x,,.

Eq. (2) defines that the number of sheet to be cut per pattern p
could be at most Nlong — 1, where Nlong represents the number
of longitudinal knives in the cutting machine, and n;, is an integer
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variable that indicates the number of units of the order i assigned
to pattern p.

Eq. (3) defines that the number of different orders assigned
to each pattern could be at most Ntrans, where yj, is a binary
variable representing the fact that order i is assigned to pattern
p or not.

Eq. (4) defines the total area assigned to each layer & of pattern
D, tapj, Where wgp k p is a binary variable that is one if the paper
width ap is used in the layer k of the pattern p and zero otherwise
(see Fig. 9), Wap,p, is a parameter that represents the paper width
and x,, is the variable that determines the pattern length. Eq. (5)
constrains the number of widths ap assigned to each layer k of
pattern p to one.

In Eq. (6), the used area in each layer & of pattern p is defined
as uayy, which depends on the number of orders i assigned to p,
njp, their widths Wi; and the pattern length x;,.

Eq. (7) defines the pattern trim-loss cost for each layer k,
cppk, wWhere Copy is a parameter that indicates the paper cost in
layer k of pattern p. The trim-loss area in each layer k of pattern
p is calculated as the difference between variables tay; and ua,
defined in Egs. (4) and (6), respectively.

Eq. (8) establishes that orders i cannot be combined in the
same pattern with order i because they have different type of
board, as was set-up in set Not_comb;; .

Egs. (9) and (10) define a minimum and maximum trim-loss
per width of pattern p, respectively. Eq. (9) establishes that the
difference between the width of the paper used in each layer k of
pattern p and the pattern width, which depends on the number
of orders i assigned to p and their widths, must be greater than
Permin. Note that only one width ap can be selected for each
layer k of patternpl , SO ZVap c ApWapk p 1s at most one. In fact,
if no width ap is assigned to pattern p, it means that the pattern p
is not used and consequently, the pattern width will be also zero.
Similarly, Eq. (10) determines that the width of each pattern p
could have at most a maximum waste, Permax, corresponding
to business rules reasons.

Eq. (11) establishes that if pattern p exists (yr, = 1), then some
paper width ap must be assigned to each layer & of the pattern
p- Note that yr, is not a binary variable, it only takes the values
of 0 or 1 constrained by Eqgs. (20)—(22).

In Eq. (12) the parameter Sy, 4p represents the stock of the
paper (m) of type tp and width ap. This constraint establishes
that if the width ap was assigned to the layer k of pattern p, the
length used in all layers of all patterns can be at most Sy gp.
Parameter oy is a coefficient for the paper consumption in layer
k (greater than 1 for flute papers). The set Ry ;, determines the
paper type tp associated to each layer k of pattern p.

Egs. (13) and (14) are the demand constraints, where POp;
associates orders i to the same type of board patterns p where
they can be assigned. Eq. (13) defines that the number of sheets
produced for one order i in the patterns p must be greater than the
demand D;. The Eq. (14) establishes an over-production upper
bound 7n; which gives flexibility to the cutting plan.

! See Eq. (5).

Egs. (15) and (16) give a minimal and maximum run length
for pattern p CRmin,, and CRmaxy,, respectively. Both constrains
are related to the production time limits.

Eq. (17) determines that every order i must be assigned to
some pattern p.

Eqgs. (18) and (19) are logical constraints relating variables
njp and y;,. The first one determines that if n;, is zero, y;, must
be zero too. The second one defines that if n;, is greater than
zero, y;, must be one.

Egs. (20)—(22) represent lower and upper bounds to the pos-
itive variable yr,. Eq. (20) is a lower bound and establishes that
if some order i is assigned to pattern p, then yr,, must be at least
one. In Eq. (21) yr, is limited to one. By Eq. (22) yr, must be
zero if no order i is assigned to pattern p.

To assure a global solution, this first model must be reformu-
lated. For that purpose, two different strategies are selected. In
the first one, some transformation techniques are applied in order
to eliminate bilinearities. The resulting MILP model is bigger
than the original one in terms of constraints and variables. The
second strategy is a two-step procedure. The initial step gener-
ates feasible cutting patterns for a set of orders. The algorithm
generating the patterns of different orders must combine only
corrugated sheets having the same characteristics: same number
of layers, same flute type and paper class for each layer. Then
a MILP optimization model is solved selecting a subset of the
patterns and the length to cut to satisfy the demand and stock
constraints.

4.2. Convexification techniques

The non-convexities in problem (1)—(22) arise from Egs. (4),
(5) and (12)—(14), where some bilinear term appears. Tradi-
tionally, in cutting stock problems, bilinearity comes from the
demand constraints as presented in Eqgs. (13) and (14), by the
product n;,-x,. However, in the formulation considered this term
also appears in Eq. (5) to calculate the used area in pattern p.
Another bilinear term corresponds to the paper width assign-
ment in each layer & of pattern p. The product wgp« p. X is used
to calculate the total area of pattern p in Eq. (4) as well as the
paper consumption in the stock constraint (12), which is usually
disregarded.

A number of transformation techniques to overcome bilinear
terms have been studied in Harjunkoski et al. (1999) and Porn,
Harjunkoski, and Westerlund (1999). Any method supposes an
expansion in terms of number of variables and constraints. In
this work a well known linear transformation is considered. The
strategy redefines variables and constraints of the initial model.
The first transformation adds a binary variable B;,; to define n;,
as follows:

nip= Y j-Bipj Viel (23)
Vjeld

Zﬂ,-pjgl Viel, VpeP (24)

Vjeld

. + ..

nip€R", Bip;j€{0,1}
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Then, aslack variable s;,; is also introduced, and the following
transformation constraints must be added:

sipj—Xxp <0 Viel, YpeP, Vjel (25)

—Sipj+xp— CRmaxp(1 —Bip) <0

Viel, VpeP, VYjel (26)

sipj— CRmax,-Bi,; <0  Viel VpeP,

Vjel Q7

Sipj€R+

Note that with this transformation, Egs. (5), (13) and (14) can
be rewritten as follows, respectively:

uapk = » > sipk-Wi;  VpeP, Vkek (28)
VjieldViel

>N jesipjlLis= D Vel (29)

VjeJVpeP

SN jesipiLii <D (1+n) Viel (30)

VjeJVpeP

Considering the bilinear term wgp p - X, another similar
transformation is defined introducing a positive slack variable
lap kp and using wap i p:

lapkp —xp <0 Yape AP, VpeP, VjelJ 31D

~lapk p +xp — CRmaxp(1 — wapk p) <0

Yape AP, VpeP, Vjel 32)

Yape AP, VpelP,
viedJ (33)

lapkp — CRmaxp - wapip <0

lapip € R

The constraints (4) and (12) can now be written as shown in Egs.
(34) and (35), respectively:

tapk > Y lopkp-Wapsy — VpeP, VkeK (34)

VYap e AP

Z Z lapkp Cog = Stpap

VpeRpkp YK€ Ry yp

Vipe TP,
Yape AP (35)

The solution procedure is mainly improved if binary vari-
able y;, is eliminated from the initial model (Egs. (1)-(22)) and

replaced by ZWE 7Bi p j- Instead of using Egs. (7), (17), (20)
and (22); Eqgs. (36)—(39) are introduced.

> BipitBip; <1 Vis#i|i') € Non_comb;¥P

Vjiel
(36)
S Bipjz1 Viel (37)
VpePVjel
yp= Y Bipj Vi€l VpeP (38)
Vjield
yp< > Y Bipj VpeP (39)
VielVjel

Egs. (18) and (19) are not needed in this formulation because
yip has been eliminated and 7;, is now defined by Eq. (23).

Consequently, the final model is now redefined by Eqgs.
(1H)—(3), (6), (8)—(11), (15), (16) and (28)—(39).

4.3. Two steps formulation

Another strategy to transform the problem formulation into a
linear one is to separate decisions into two stages. This method is
generally used because it is simple and efficient (Westerlund et
al., 1998; Westerlund & Isaksson, 1998). First, a pre-generation
model defines all feasible cutting patterns which are then part of
the input data in a MILP optimization model. Neither additional
constraints nor variables are introduced in this formulation. As
a result not only optimal solution is guaranteed but also better
solution performance.

The equations presented in this section consider that cus-
tomer’s pending orders, paper reels stock and its cost are known
in order to define a set of feasible patterns. If the following con-
straints are satisfied then a feasible cutting pattern is generated.
The procedure is recursively repeated until all pending orders i
are analyzed and feasible patterns p defined.

Wfy= > Ni,W; VpeP. Vkek (40)
Viel
Per max > Per min (41)

WTPy,y — Permax < Wf, < WI'P, — Per min
VpeP, YkekK (42)

Cmpp = Cop - (WIPy — Wfpi) VpeP, Vkek

(43)
Yip+ Y, <1 Vi #+i'|(i, i) € Not_comb;y, VYpeP
(44)
ZNil,leong—l VpeP (45)
Viel
> Yip < Nwans ~ VpeP, Viel (46)
Viel
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The generation process is defined by Eqgs. (40)—(46), where
WY, is the pattern width, calculated in Eq. (40) as the sum of
the number of sheets N;, of order i in the pattern p per W;
that represents the sheet width of order i. Note that Nj, is used
with the same purpose as n;, in the previous MINLP model
(Egs. (1)-(22)). However, in the present formulation this value
is calculated by the pre-generation model trying all the possible
conformations of the patterns. The parameter Permax is defined
by the planner corresponding to the maximum trim-loss allowed
for the pattern p. The parameter WT'Py, corresponds to the paper
width used for layer k. Eq. (42) assures that the width of each
pattern p has at most a maximum waste of Permax and at least
a minimum Permin in each layer k.

In Eq. (43), the parameter Cny,y, which corresponds to the
cost of the trim-loss per meter of pattern p, is calculated multi-
plying the paper cost in each layer k, Cog, and the trim-loss per
meter in layer k, denoted by (WTP — Wfp).

When combining different orders they must have the same
board which means that the paper type must be the same on
each layer k, and also the number of layers. Eq. (44) means that
if two different orders i and i’ are assigned to pattern p they
cannot belong to set Not_comb;; .

Eq. (45) establishes that the number of sheets cut per pattern
p could be at most Nlong — 1. The sum of Y, determines the
number of different orders assigned to pattern p, which is limited
to Ntrans by Eq. (46). Note that Y;, is a parameter but plays the
same function of the variable y;, in the initial MINLP.

The MILP optimization model is formulated as follows:

Min Z = Z Z CPpk (47)
Vpe PVke K
s.t.

cppk = Cmpg - xp VpeP, VkeKkK (48)

> > xprax=Spyp VipeTP, Vape AP

VpeRpkipVk € Rprp
(49)

> Nip-xplLi; > D; Viel (50)
Vpe POy;

> Nip-xplLiz < Di-(1+n) Yiel (51)
Vpe POp;
xp > CRminy - yr, VpeP (52)
xp < CRmax,-yr, VpeP (53)

+
Xp, CPpk€ER

yrp €{0; 1}

In Eq. (47) the objective function is defined, representing the
paper trim-loss cost, where the variable cpy is the cost of the
trim-loss of pattern p. This variable is calculated in Eq. (48) mul-
tiplying the parameter cost Cm,y defined in the pre-generation
model and the pattern length x;,. Eq. (49) determines that sum
of the length of each paper layer k in all patterns p must not

exceed the paper length in stock, Sy, 4p. Egs. (50) and (51) are
the demand constraints.

In Egs. (52) and (53) if a pattern p is executed (yr, =1), it
must be longer than or equal to a minimal and maximum run
length CRmin,, and CRmax,,, respectively.

Note that the objective function, Eq. (47), is equal to Eq. (1)
in the first formulation. However, it is repeated to facilitate the
model reading at this point. The same criterion was used with
Egs. (52) and (53) which are the same than Egs. (15) and (16)
with the difference that in the MINLP model yr, is a positive
variable not binary like in this last model (Eqs. (47)—(53)).

The initial model (Eqgs. (1)—(22)) is really simplified by this
strategy with no additional variables nor constraints. The main
difference in this model is that the cutting patterns pre-generation
process avoids assignment decisions in the optimization model
which strongly affect computational performance.

5. Different objective functions

Besides solution strategies, the objective function may also
have influence on the solution quality and efficiency. Choosing
a suitable objective function should not disregard economical
or environmental considerations. In real cases, usually the trim-
loss costs (Eq. (1)) results one of the most appropriate, however
others can be used depending on the goals pursued.

The first alternative objective considered is given by the fol-
lowing equation:

Min TPC= > > cppe+ »_ CY-yr, (54)

Vpe PYke K VpeP

Eq. (54) adds to the trim-loss cost the changing pattern cost. The
parameter CY indicates the cost of changing a pattern. Usually,
the pattern change results in some paper trim-loss because of
the paper reels remotion, parts of the machine changed and the
set-up time to place the knives.

Another goal is the total production cost defined by Eq. (55).

Min PC= Y > Copi-tap (55)

Vpe PYke K

This objective could be useful when global enterprise costs must
be minimized.

When environmental issues are pursued the weight of the
trim-loss may be considered as an objective function.

Min TW = > " Vyi - (tapr — uap) (56)
Vpe PVke K

The parameter V), represents the paper grammage in each layer
k of pattern p.

6. Results

In order to illustrate models performance three examples
are solved. Models have also been executed in real productive
scenarios. The objective functions discussed are considered in
examples one and two.
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Table 1
Models main characteristics and results, example 1
Strategy Single Discrete Total fx):Z fix): TPC flx): PC flx): TW
equations  variables variables  (Eq. (1)) (Eq. (54)) (Eq. (55)) (Eq. (56))
OV(@$) ST(s) OV() ST(s) OV($) ST(s) OV(kg) ST(s)
Applying linearization techniques: 2064 380 931 107.9 33.52 157.9 10.84 2631 7.83 90.22 13.81
Egs. (2), (3), (6), (8)—(11), (15),
(16) and (28)—(39)
Two-steps formulation: Eqs. 49 13 27 107.9 0.187 1579 0.234 2631 0.046  90.22 0.109
(40)-(46), (48)—(53)
fx): objective function; OV: objective value; ST: solution time (s) (GAP 0%).
Table 2
Results obtained with five orders example, minimizing Z
p i nip i ny, ki ky k3 Zn,- p - Wi; (mm) X, (m) Z cppk ($/pattern)
Viel Vke K
tpp ap(mm) p  ap(mm) fp  ap(mm)
1 Ord 1 2 Ord2 2 0Ol 1200 6] 1200 O1 1200 1180 500 4.50
2 Ord 1 3 Ord 2 1 01 1300 01 1300 01 1300 1250 500 11.25
3 Ord 3 3 - - K1 1000 02 1000 02 1000 960 787.5 17.40
4 Ord4 2 Ord 3 1 K1 1400 02 1400 02 1400 1360 755 16.69
5 Ord 5 2 - - 02 1500 [e]] 1500 02 1500 1422 1496.25 58.05
Table 3
Models main characteristics and results, example 2
Strategy Single Discrete Total fx):Z fx): TPC fix): PC fx): TW
equations variables variables (Eq. (1)) (Eq. (54)) (Eq. (55)) (Eq. (56))
OV() ST(s) OV ST(s) OV ST(s) OV(kg) ST()
Applying linearization techniques: 1944 368 889 131.7 2585 191.7 1924 3351 4164 110.6 1841
Egs. (2), 3), (6), (8)—(11), (15),
(16) and (28)—(39)
Two-steps formulation: Eqgs. 85 28 57 131.7 0.39 191.7 0.140 3351 0.406 110.6 0.312

(40)—(46), (48)—(53)

fx): objective function; OV: objective value; ST: solution time (s) (GAP 0%).

Because of the problem complexity, the approach used to
solve the corrugation and cutting problem has key influence on
the execution time. The strategy selected for the implementation
must guarantee not only an optimal solution but also reasonable
resource consumption.

The models were posed in GAMS system. CPLEX 9.0 was
used to solve the MILP formulations, they have been executed
over a PC having an Intel Pentium D 2.8 GHz processor.

6.1. Example 1

The first example is small, with five customer orders and ten
patterns available to use. In Table 1, models main characteristics
and results are presented.

As shown in Table 1, although the first model® has short
execution time for every objective function considered, two-
steps formulation runs are much faster because of the reduced
number of equations and variables.

2 Egs. (D—(3), (6), (8)—(11), (15), (16) and (28)—(39).

When minimizing the trim-loss cost (f(x): Z), patterns con-
figuration in the final solution is shown in Table 2.

6.2. Example 2

The second case considered has seven customer orders to be
satisfied in seven available patterns p. Models characteristics and
major results are shown in Table 3.

In this example, there is a great difference between
models performances. This still small case shows how
the second alternative is much better in terms of compu-
tational efficiency. Consequently, the first alternative will
unlikely solve a real productive problem as presented in
example 3.

6.3. Example 3

This last example represents an industrial case with 26 orders
which was run using Eq. (54) as the objective function. Results
and models configuration are shown in Table 4.
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Table 4
Models main characteristics and results, example 3

Strategy® Single equations Discrete variables Total variables fix): TPC — (Eq. (54))
OV ($) GAP ST (s)
Applying linearization techniques: Egs. (2), (3), (6), 14,697 2440 5641 - - >75,000
(8)—(11), (15), (16), (28)—(39) and (54)
Two-steps formulation: Egs. (40)—-(46), (48)—(53) 579 254 2155 473.67 0% 0.703

Jfx): objective function; OV: objective value; ST: solution time (s).

2 These characteristics are also valid if instead of trim-loss cost any other objective function is used, such as Egs. (1), (55) or (56).

Reaching a solution in one step is a very difficult task because
the techniques applied to get a linear formulation from the
original model expands the integer space. The combinatorial
complexity resultant, as shown in Table 4, makes the problem
impossible to solve by this strategy.

On the contrary, the two-steps method reduces the number
of variables and constraints in comparison to the original for-
mulation which leads to extremely short execution time even in
industrial scenarios.

Patterns configuration in the final solution is shown in Table 5.
The pattern generation procedure creates 254 feasible patterns.
These patterns are input data of the MILP model which chooses
to use 20 of them in the final solution. Variable yr, are set to
1 when pattern p is selected, to satisfy customer orders and
minimize trim-loss and changing pattern costs (7PC).

7. Model implementation

In the previous section, some examples were solved to com-
pare the computational efficiency of the models. The two-steps
algorithm was chosen to implement in the company. Besides
the execution time, this model has the advantage that the plan-
ner can handle some problem parameters allowing the analysis

of several scenarios. The planner can manipulate the following
parameters: maximum waste allowed Permax, maximum and
minimum number of patterns per order, the number of longitu-
dinal and transversal knives in the cutting machine, minimum
run length CRminp and the mandatory and optional orders to
consider, while the plan for mandatory orders must be solved,
optional are used to combine and produce a best set of pat-
terns. Smithin and Harrison (1982) suggested that there is an
equally important dimension concerned with practical and inter-
personal issues which is often overlooked in tackling cutting
stock problems. Human expertise should not be disregarded
because it can provide a competitive advantage over the system
solution.

An interface written in Java has been implemented such that
the planning and cutting system can be linked to the company
ERP (an Oracle E-Business Solution). The model takes the input
values from the ERP: customer orders and paper reels stock
information. Then the planner selects the orders to produce and
the plan parameters, executes the optimization MILP problem,
an automatic data transference is performed from the ERP to a
GAMS model, then an intermediate HTML results file is gener-
ated so that the planner can analyze it. He can change the input if
needed and run again the optimization problem, this process can

Table 5
Results obtained with 26 orders example, minimizing TPC
p i nip i ny, ki k> k3 Zn”’ - Wi; (mm)  x, (m) Z cppk ($/pattern)
viel Vke K
tp ap (mm)  1p ap (mm)  1p ap (mm)
1 Ord 14 2 K1 1100 02 1100 02 1100 1066 705.5 13.26
2 Ord 1 2 Ord 2 2 O1 1200 0Ol 1200 (6] 1200 1180 562.5 5.06
3 Ord 4 2 Ord24 1 K1 1400 02 1400 02 1400 1380 1066.8 11.84
4 Ord 5 1 Ord10 1 02 1100 0Ol 1100 02 1100 1061 1092.5 21.19
5 Ord 5 1 Ord 11 1 02 1100 0Ol 1100 02 1100 1080 1400 13.86
6 Ord 1 1 Ord 6 3 O1 1400 0Ol 1400 0Ol 1400 1380 900 8.1
7 Ord 7 3 Ord 18 1 o1 1200 0Ol 1200 0Ol 1200 1170 708.33 9.56
8 Ord 3 1 Ord 8 2 K1 1400 02 1400 02 1400 1380 1400 15.54
9 Ord 8 1 Ord 25 1 K1 1200 02 1200 02 1200 1154 800 20.32
10 Ord 3 1 Ord 9 2 K1 1400 02 1400 02 1400 1380 930 10.32
11 Ord 10 2 Ord 17 2 02 1300 o1 1300 02 1300 1280 753.75 7.46
12 Ord 5 1 Ord1l 2 02 1500 01 1500 02 1500 1449 500 12.7
13 Ord 12 2 Ord21 2 o1 1500 Ol 1500 o1 1500 1450 862.5 19.41
14 Ord13 1 Ord 15 1 K1 1200 02 1200 02 1200 1178 1345 16.41
15 Ord 13 1 Ord 23 1 K1 1200 02 1200 02 1200 1167 1366 24.86
16 Ord13 1 Ord 25 1 K1 1300 02 1300 02 1300 1267 622.4 11.33
17 Ord 15 1 Ord 23 1 K1 1300 02 1300 02 1300 1219 500 22.4
18 Ord16 2 Ord19 2 02 1200 01 1200 02 1200 1170 985 14.68
19 Ord20 2 Ord26 1 O1 1300 0Ol 1300 o1 1300 1276 889 9.60
20 Ord 18 1 Ord22 2 01 1500 01 1500 01 1500 1478 577.85 5.72
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be repeated until the plan is accepted. At this point, the results
generated are automatically transferred to the ERP system. This
information includes patterns to produce and theoretical paper
consumptions (paper stock reservation). This system has been a
great evolution for the company-supply chain integration. The
previous version was a Visual-Basic ad hoc program used by the
company planner, inputs and outputs were made by means of
spreadsheets not integrated to the company system. Plan results
were loaded by hand, control of the production plan (theoretical
versus real) was not followed, people in the company did not
trust in the information loaded. By this system, the production
plan control is made by the ERP system, all the data is automat-
ically read and loaded, several terminals were distributed on the
plant floor so that an automatic caption of the plan progress is
made. Information system data are now reliable, statistics data
can be generated, and it is possible to integrate customers and
suppliers to exchange information, company managers are now
involved in this process to be more competitive in the market.

8. Discussion and conclusions

In this work, enterprise optimization related to an assign-
ment and trim-loss problem was presented. The cutting stock
problem is one of the major issues in paper converting sup-
ply chain. Additionally, lower costs in boxes production will
improve competitiveness in almost every supply chain because
packaging industry has a great influence in transportation and
logistic cost. The first model developed is a MINLP formula-
tion which presents two different bilinearities in some equations.
To obtain global solution, two transformation techniques were
applied. One of the methods corresponds to linearization tech-
niques, as presented by Harjunkoski et al. (1999). This strategy
solves the problem in one step. However, some additional integer
and positive variables and constraints are introduced increas-
ing the combinatorial complexity. Consequently, it cannot be
applied to real enterprise optimization problems due to long
computational time.

A two-stages model has also been developed to avoid origi-
nal non-convexities. A similar procedure has also been applied
by Westerlund et al. (1998) and by Westerlund and Isaksson
(1998). The formulation developed is much simpler than the first
method, eliminating some decisions in the optimization model
due to a pattern pre-generation procedure. It also provides a
more robust and faster problem solution. One important feature
of this mathematical model is the reduced time spent to reach the
solution which allows the planner to evaluate in a few minutes
several scenarios by manipulating the parameter values, com-
paring with the old system where the planner spent around 4 h
to generate the first valid solution.

Comparing plans generated by the old and new system, the
latter approach reduces up to 30% the trim-loss cost. No sim-
plifications were done to represent the real productive context.
The system is now in production and has been used for several
of months giving very good results. Having linked the system to
the company ERP besides of the advantages of the integration,
via the ERP the control of the production plan generated by the
model is facilitated giving an extra feature to the whole system.

Some discrete decisions connected to this problem could be
treated as disjunctions. Disjunctive formulation usually facil-
itates the problem understanding. Future work includes the
generation of a disjunctive formulation of this problem. Some
of this work is already in progress.
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