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A B S T R A C T

Soil organic carbon (SOC) is the main terrestrial carbon (C) reservoir. Land use change has depleted SOC stocks
and released large amounts of C dioxide (CO2). Thus, the development of reliable tools for SOC stock monitoring
at large scale is fundamental to face climate change. Argentinean Semiarid Chaco (ASC) is a deforestation
hotspot, but CO2 emissions from soil has been barely assessed. Deforested area was converted into cropland or
grassland. We used empirical data to model SOC stocks under native forest (SOCref) and the RothC model to
estimate SOC stock change factors under cropland (Fc) and grasslands (Fg) in the ASC. These SOCref's and stock
change factors were applied in a Tier 2 (T2) C inventory, following the Intergovernmental Panel on Climate
Change (IPCC) proposal. We used SOC vertical distribution models to estimate SOC stock at 0–100 cm soil depth
from estimated SOC stocks at 0–30 cm, the default soil depth of IPCC C inventory method. The T2 was run for
1976 through 2012 and under three hypothetical land use change scenarios for 2012 through 2032. The sce-
narios were: i) land use change ceases, ii) land use change rate is the half of 1996–2012 land use change rate, and
iii) land use change rate remains as in 1996–2012. Estimated average SOCref stock at 0–30 cm soil depth was
40Mg C ha−1 and varied between 35 and 51Mg C ha−1. Cropland was the main fate of deforested area and the
land use with lower SOC stocks. Stock change factors and SOC stocks estimated with T2 were within the range of
the empirical data reported in the ASC. However, research about SOC dynamics and land use change is incipient
in the ASC and more empirical information is needed to validate T2 estimations. Deforestation in the ASC leads
to high CO2 emissions from soil and the only scenario in which those emissions would be reduced is with
deforestation cessation. Soil depth considered in greenhouse gas inventories is 0–30 cm, and this strongly un-
derestimates CO2 emissions. We demonstrated that this limitation could be overcome by using SOC vertical
distribution models to estimate deep SOC stock (up to 1m) from estimated surface SOC stock. Hence, these
models could be used to improve CO2 estimations from SOC inventories.

1. Introduction

The warming of the climate system is unequivocal. Earth's 2016
surface temperatures were the warmest since 1880, and 2016 was the
third consecutive year to set a new record for global average surface
temperatures (NASA, 2017). Climate change is among the main en-
vironmental crisis that faces humankind, and human activities are
promoting it by increasing greenhouse gas (GHG) emissions (IPCC,
2013). The most important anthropogenic GHG is carbon (C) dioxide
(CO2), and its main sources due to human activity are primarily fossil
fuel emissions and secondarily, net land use change emissions (IPCC,
2013). Soil organic C (SOC) stock is the main terrestrial C reservoir
(Janzen, 2004) and land use change affects environmental processes

that generate CO2 fluxes from soil to atmosphere (emission) or from
atmosphere to soil (sequestration) (Stockmann et al., 2013). Besides,
SOC correlates positively with most of soil functions that support re-
levant ecosystem services to societies (Palm et al., 2007; Powlson et al.,
2011; Banwart et al., 2015). Thus, in the context of international policy
agendas on GHG emission mitigation, the development of reliable tools
for SOC stock monitoring at large scale is fundamental (Lal, 2011;
Stockmann et al., 2013).

The Intergovernmental Panel on Climate Change (IPCC) developed
the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, in
which it is described a C inventory method (IPCC-CIM) to estimate
anthropogenic GHG emission, including CO2 emission from SOC
changes (IPCC, 2006). The IPCC-CIM is based on three tiers. The higher
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the tier, the greater the accuracy of the outputs, but also the need for
knowledge and information (IPCC, 2006). Tier 1 (T1) is easily applic-
able but, unfortunately, its estimates showed a very poor match with
observed data at regional scale (Berhongaray and Álvarez, 2013;
Villarino et al., 2014). On the other hand, Tier 2 (T2) and Tier 3 (T3)
development require the availability of much more information re-
sources. Therefore, they would be feasible only in special and limited
cases. At present, most of the developed countries that are listed in the
Annex 1 of the United Nations Framework Convention on Climate
Change (UNFCCC, 1992) have used T1 to report their agricultural soil
GHG emissions (Lokupitiya and Paustian, 2006) and its uncertain ac-
curacy could have led to severe misestimations.

In response to T1 limitation, Villarino et al. (2014) proposed the
development of a T2 based on a slight modification of Eq. (1) and SOC
stock change factor derivation using a data base obtained by simula-
tions performed with the RothC model (Coleman and Jenkinson, 1996).
Briefly, this approach has four steps: i) defining main land uses of the
target region, ii) RothC model running to simulate SOC changes under a
wide spectrum of land use, management practices and crop yield
combinations, iii) calculating SOC stock change factors (i.e. SOC change
ratios) from the results of RothC simulations, and iv) fitting linear
models to predict the simulated stock change factors from simple
variables obtainable at the regional scale. Using this approach, a sig-
nificant improvement was obtained over T1 for the Argentinean Pampa
Region with very little demand of additional information (Villarino
et al., 2014). In regions where information about SOC stock relations
with land use changes is scarce, the development of a T2 based on that
proposed estimation mechanism, could be a good option to improve
SOC stock estimations using the IPCC-CIM. However, until now this
approach to develop a T2 has only been done and validated in the
Argentinean Humid-Subhumid Pampa Region (Villarino et al., 2014).

Agriculture expansion has led to the clearance or radical transfor-
mation of 70% of grasslands, 50% of savannas, 45% of temperate de-
ciduous forests, and 25% of tropical forests in the whole world (Foley,
2011). Land use change, and particularly deforestation, produced
strong environmental impacts, such as biodiversity loss, climate
change, and soil degradation (Lal, 2001; Foley et al., 2007; Don et al.,
2011; Smith et al., 2016). In South American Semiarid Chaco the
highest rate of subtropical forest loss in the 21st century has occurred
(Hansen et al., 2013), and approximately 62% of this region is within
Argentina (Argentinean Semiarid Chaco, ASC) (Vallejos et al., 2014).
The ASC region is a vast plain of about 29Mha located at north-central
Argentina (Fig. 1). Soils in this region are dominated by Mollisols
(mainly Haplustolls and Argiustolls) and Alfisols (mainly Natracualfs
and Haplustalfs), with loam and loam-silty textures (INTA, 1990). Na-
tive vegetation of this region is mainly a xerophytic forest (Morello
et al., 2005). Deforestation rates in the ASC have increased ex-
ponentially since 1976, reaching a maximum value (2.5% yr−1) be-
tween 2006 and 2012 (Vallejos et al., 2014). For the same period, Latin
American and world deforestation rates were 0.51% yr−1 and
0.20% yr−1, respectively (Seghezzo et al., 2011). Main drive forces of
this land use change in the ASC were the high international prices of
soybean (Glycine max (L.) Merr), the simplification and cost reduction
of soybean cropping due to genetically-modified varieties (expanded
over the whole Argentina) and no-till adoption (Gasparri and Grau,
2009; Gasparri et al., 2013), and the mean annual rainfall increase in
the region (Barros, 2006).

Native forest clearance in the ASC modified C cycle by reducing and
switching the aboveground net primary production to a more season-
concentrated pattern. This ecosystem function change is associated with
a decrease in ecosystem services provision (Volante et al., 2012) but
also with an increase in CO2 emissions (Gasparri et al., 2008). The
impact of land use change on CO2 emissions was estimated at regional
scale in the South American Semiarid Chaco (Gasparri et al., 2008; De
Sy et al., 2015; Baumann et al., 2016). However, SOC pool was scarcely
assessed and remains as a black box in this region.

Most of SOC dynamics research had primarily been focused on the
surface soil layers, around the top 30 cm of soil (IPCC, 2006; Don et al.,
2011). This may be due to surface SOC stocks are key to define soil
productivity and because deep soil sampling demands much more effort
and resources. However, it has been reported that many land use
changes clearly affect deep SOC stocks (Lorenz and Lal, 2005; Knops
and Bradley, 2009; Poeplau et al., 2011; Villarino et al., 2017). Soil
organic C balances in ecosystems should take into account the
40–100 cm soil depth, because this soil layer holds, on the average, 35%
of total SOC in the first meter of soil (Jobbágy and Jackson, 2000). On
the other hand, SOC turnover and microbial activity diminishes with
soil depth (Fontaine et al., 2007). Thus, SOC stock in deep layers
change slowly (Arai et al., 2007) which, in other words, means that C
remains sequestered for longer periods.

The inherent variability of SOC stocks in the landscape (which is
higher in natural ecosystems) hampers the detection of changes. Thus,
high soil samples number are required for SOC changes detection
within short periods (~ 10 yr) (Schrumpf et al., 2011). In order to
improve the soil carbon auditing at farm scale, more cost-effective
methods for direct SOC measurements were developed (De Gruijter
et al., 2016). These findings are promising because they help to reduce
cost and increase precision of SOC stocks estimations, among other
advantages associated to field measurements (e.g. the site-specific
knowledge feedback to farmers, (De Gruijter et al., 2016)). However, in
developing countries such as Argentina, direct measurement methods
for regional scale are economically unfeasible. Therefore, a more pre-
cise model approach to estimate SOC changes is needed. Simulation/
prediction methods would help policy makers and enforcement agen-
cies to control, recommend and/or enforce management practices to
reduce SOC loss and soil degradation. Therefore, the main goals of this
work were to i) test the suitability of the IPCC T2 based on RothC si-
mulations to estimate SOC stock change factors (Villarino et al., 2014)
to estimate CO2 emission from soil linked to land use change in the ASC
and ii) assess the relevance of soil depth in CO2 emissions estimations.

2. Materials and methods

2.1. Land use change

Deforestation became a relevant factor of landscape transformation
in the ASC between 1940 and 1950 (Morello et al., 2005). Therefore,
we assumed that significant land use change within the study region
started in 1945. Evaluation years for the IPCC-CIM were 1976, 1996
and 2012. These years were chosen because 1976–1996 and 1996–2012
represent two contrasting periods of the ASC's land use history.

The area of each unit of study of the ASC in each year was divided
and classified into three land use categories: forest, cropland and
grassland. The decrease in forest area (hereafter deforested area) was
obtained from remote sensing estimations (Vallejos et al., 2014).
Cropland area was taken from the Argentinean Integrated Agricultural
Information System (SIIA, 2015).

To estimate the conversions among land use categories, the fol-
lowing assumptions were done: i) deforested area was due to conver-
sion of forest into cropland or grassland (Baumann et al., 2016), ii) if in
a given period cropland area increase was lower than deforested area,
the difference was assigned to the conversion of forest into grassland,
iii) if in a given period cropland area increase was higher than defor-
ested area, the deforested area was assumed as conversion of forest into
cropland and the difference as conversion of grassland into cropland,
iv) if in a given period cropland area decreased, it was assumed it was
due to the conversion of cropland into grassland, because we assumed
that neither cropland nor grassland were converted back into forest
(Baumann et al., 2016), and v) the area that is not either cropland nor
grassland, is forest. With these assumptions, the study area was con-
stant among evaluation years (Fig. 2), that is an explicit requirement of
the IPCC-CIM (IPCC, 2006). Data describing cropland use (crops, yields,
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and tillage systems) was taken from the Argentinean Integrated Agri-
cultural Information System (SIIA, 2015) and the Argentinean National
Agricultural Census (INDEC, 2004). Given the county is the minimum
spatial unit at which this information is available in Argentina, we se-
lected this scale level for T2 estimations. Forty ASC counties were se-
lected by overlapping the region and the politic division maps, and
considering that a county integrated the ASC when 50% or more of its

area fitted within the ASC.

2.2. Carbon inventory method Tier 1

Tier 1 and T2 are based on two simple equations to estimate SOC
stocks (Eq. (1)) and C fluxes (Eq. (2)) (IPCC, 2006):

Fig. 1. Counties of Argentinean Semiarid Chaco. Black points indicate the location of 21 sampling sites used for model fitting. Eighteen out of those 21 sites were
taken from Villarino et al. (2017) and the three others were located in Natural Reserves: Parque Nacional Copo (sampling coordinates: 25° 55′ 17″ S, 61° 43′ 7″ W),
Parque Provincial Pampa del Indio (sampling coordinates: 26° 16′ 8″ S, 59° 58′ 16″W), and Campo Experimental La María (sampling coordinates: 28° 1′ 16″ S, 64° 20′
19″ W).
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= × × × ×SOC SOCref Flu Fmg Fi Ac,s,i c,s,i c,s,i c,s,i c,s,i c,s,i (1)

= −ΔC (SOC SOC )/D2 1 (2)

where SOCc,s,i is the estimated SOC stock (Mg C ha−1) for the c-th
climate zone, the s-th soil type, and the i-th management systems;
SOCref is SOC stock under native vegetation (Mg C ha−1); Flu is SOC
stock change factor due to land use (dimensionless); Fmg is SOC stock
change factor due to management regime (dimensionless); Fi is SOC
stock change factor due to C input level to soil (dimensionless); A is
land area (ha); ΔC is the annual change in SOC stock (Mg C ha−1 yr−1);
SOC1 is SOC stock at the beginning of the inventory time period (Mg C
ha−1); SOC2 is SOC stock in the last year of an inventory time period
(Mg C ha−1) (SOC1 and SOC2 are calculated using Eq. (1)); and D is
time dependence of stock change factors (yr) (20 yr for T1 SOC stock
change factors) (IPCC, 2006). According to the IPCC (2006), the in-
formation necessary to run T1 is based on climate, soil type and land
use change of the target region. With this information, SOCref and stock
change factors (Eq. (1)) could be obtained from default tables. For T2,
SOCref and stock change factors (Eq. (1)) are not obtained from the
global values estimated by the IPCC (IPCC, 2006) and have to be based
on country- or region-specific data. On the other hand, to perform T3,
more complex models and inventory measurement systems driven by
high-resolution activity data that better capture variability for local

conditions, should be taken into account (IPCC, 2006).
According to the T1 approach, SOC stock change in each county was

estimated using Eq. (1) and Eq. (2). Counties were classified according
to climate and soil types following IPCC (2006) guidelines using climate
(Bianchi and Cravero, 2010) and soil (INTA, 1990) maps. All counties
fell within “Tropical Dry” climate classification and 95% of the counties
were classified as “high activity clay” soil and 5% of the counties as
“low activity clay” soil (IPCC, 2006). Therefore, estimated SOCref with
T1 was 38Mg ha−1 for the counties classified as “high activity clay”
and 35Mg ha−1 for the counties classified as “low activity clay” (IPCC,
2006). Land use factor (Flu, Eq. (1)) was 0.58 for croplands and 1 for
grassland (Table 1). Management factors (Fmg, Eq. (1)) associated to
croplands were 1 for “Full tillage” and 1.17 for “No-till” (Table 1). Both
management factor values were aggregated into only one Fmg for each
county, through averaging both Fmg weighed by the area of the county
corresponding to each tillage system. In 1976, the assigned input factor
(Fi, Eq. (1)) for cropland corresponded to “low” category given that
crops had low yields (Table 2). Starting from 1996, the assigned Fi for
cropland corresponded to “medium” category due to crop yields in-
crease (Table 2). For grassland, the assigned Fmg corresponded to
“moderately degraded” category and the Fi corresponded to “medium”
category. Grasslands had been degraded due to overgrazing (Abril and
Bucher, 2001; Morello et al., 2005), but the degradation degree is hard

Fig. 2. Estimated land use area in 1976–2012 and in the three land use change scenarios for 2012–2032 (scenario without land use change (a), scenario with half of
1996–2012 land use change rate (b), and scenario with the same land use change rate as between 1996 and 2012 (c)).
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to estimate. Therefore, we assumed the moderately degraded as the
average condition.

2.3. Carbon inventory method Tier 2

The T2 method was applied as proposed in Villarino et al. (2014).
Therefore, SOC stock in each county was estimated as the average SOC
stock of each land use category (forest, grassland, and cropland)
weighted by the area (Eq. (3)):

∑= ×
=

SOC SOC A /Ait j 1

3
ijt ijt i (3)

where SOCit is the estimated SOC stock (Mg C ha−1) of the i-th county
at time t (yr); SOCijt is SOC stock (Mg C ha−1) of the i-th county, under
the j-th land use (j= 1,2,3, where 1 is for forest, 2 is for grassland and 3
is for cropland) at time t (yr); Aijt is the area of the i-th county (ha),
under the j-th land use at time t (yr); and Ai is the area (ha) of the i-th
county within the ASC. The SOCijt was estimated through Eq. (4) and
Eq. (5):

= × × + × ×

+ × ×

− −

−

SOC SOC Fc A /A SOC Fc A /A

SOC Fc A /A
iCt iG(t 1) iGC iC iF(t 1) iFC iC

iC(t 1) iCC iC (4)

= × × + × ×

+ × ×

− −

−

SOC SOC Fg A /A SOC Fg A /A

SOC Fg A /A
iGt C(t 1) iCG iG F(t 1) iFG iG

G(t 1) iGG iG (5)

where SOCiCt is SOC stock (Mg C ha−1) of the i-th county under crop-
land land use at time t (yr); SOCiGt is SOC stock (Mg C ha−1) of the i-th
county under grassland land use at time t (yr); SOCiG(t-1) is SOC stock
(Mg C ha−1) of the i-th county under grassland land use at time t-1 (yr)
(i.e. at the previous inventory year); SOCiF(t-1) is SOC stock (Mg C ha−1)
of the i-th county under forest land use at time t-1 (yr); SOCiC(t-1) is SOC
stock (Mg C ha−1) of the i-th county under cropland land use at time t-1
(yr); Fc is the stock change factor for cropland (dimensionless); Fg is the

stock change factor for grassland (Fig. 3) (dimensionless); AiGC is the
area of grassland to cropland land use change (ha) for the i-th county;
AiFC is the area of forest to cropland land use change (ha) for the i-th
county; AiCC is the area of cropland remaining cropland (ha) for the i-th
county; AiCG is the area of cropland to grassland land use change (ha)
for the i-th county; AiFG is the area of forest to grassland land use
change (ha) for the i-th county; AiGG is the area of grassland remaining
grassland (ha) for the i-th county; AiC is the area of the i-th county for
cropland land use (ha); and AiG is the area of the i-th county for
grassland land use (ha). Soil organic C stock under forest was assumed
constant along the estimation period. Carbon fluxes were estimated
with Eq. (2) and C mass was multiplied by 44/12 to convert C into CO2,
based on the ratio of molecular weights (IPCC, 2006).

Table 1
Land use factor (Flu), management factor (Fmg) and carbon (C) input factor (Fi) of Tier 1 (T1) for Argentinean Semiarid Chaco (“tropical dry” climate category and
“high clay activity” mineral soil category, IPCC, 2006).

Land use Flu Flu Errora Management category Fmg Fmg Errora C Input level Fi Fi Errora Final factorb

Cropland 0.58 ± 61% Full-tillage 1.00 NA Low 0.95 ± 13% 0.55
Full-tillage Medium 1.00 NA 0.58
Full-tillage High 1.04 ± 13% 0.60
No-till 1.17 ± 8% Low 0.95 ± 13% 0.64
No-till Medium 1.00 NA 0.68
No-till High 1.04 ± 13% 0.71

Grassland 1.00 NA Non-degraded 1.00 NA Medium 1.00 NA 1.00
Non-degraded High 1.11 ± 7% 1.11
Moderately degraded 0.97 ± 11% Medium 1.00 NA 0.97
Moderately degraded High 1.11 ± 7% 1.08
Severely degraded 0.70 ± 40% Medium 1.00 NA 0.70
Severely degraded High 1.11 ± 7% 0.78
Improved 1.17 ± 9% Medium 1.00 NA 1.17
Improved High 1.11 ± 7% 1.30

a + two standard deviations, expressed as a percent of the mean. NA denotes ‘Not Applicable’ (IPCC, 2006).
b Final stock factor was calculated as the product between Flu, Fmg and Fi, and represents the quotient between soil organic C (SOC) stock in the new land use at

equilibrium and SOC stock under native condition. The default time period for stock changes factors is 20 yr and influence SOC stocks to a depth of 30 cm (IPCC,
2006).

Table 2
Average and standard deviations (between brackets) of crop yields and crop areas in each inventory year.

Inventory year Cotton Maize Soybean Sunflower Wheat

Yield (Mg ha−1) Area (%) Yield (Mg ha−1) Area (%) Yield (Mg ha−1) Area (%) Yield (Mg ha−1) Area (%) Yield (Mg ha−1) Area (%)

1976 0.8 (0.3) 19.3 (27.8) 1.1 (0.7) 51.9 (32.9) 0.7 (0.8) 12.2 (25.5) 0.3 (0.4) 2.8 (6.1) 0.8 (0.6) 13.9 (15.9)
1996 1.2 (0.5) 27.7 (36.4) 3.0 (0.7) 43.8 (35.2) 1.3 (1.0) 23.0 (25.1) 0.6 (0.7) 1.1 (3.3) 0.7 (0.8) 4.4 (8.8)
2012 1.6 (0.8) 13.7 (19.4) 3.5 (1.3) 26.7 (19.9) 1.4 (0.7) 47.4 (24.9) 0.6 (0.6) 1.7 (3.9) 1.0 (0.7) 10.4 (8.1)

Fig. 3. Stock change factors for croplands (Fc) and for grasslands (Fg) used to
estimate soil organic carbon under grassland (SOCg) and cropland (SOCc) in
each land use change (Eq. (4) and Eq. (5)). Circular arrows indicate grassland
remaining grassland (solid) and cropland remaining cropland categories (da-
shed). SOCref: soil organic carbon under forest. We assumed that neither
cropland nor grassland were converted into forest for the studied periods.
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Soil depth considered by the IPCC-CIM to estimate SOC stock
change due land use change is 0–30 cm (IPCC, 2006). However, recent
studies show that forest to cropland conversion could affect SOC stocks
up to 1m soil depth (Ciuffoli, 2013; Osinaga et al., 2016; Villarino
et al., 2017). Therefore, we used SOC vertical distribution models (Eq.
(6) and Eq. (7), Villarino et al., 2017) to estimate SOC stock under
forest and cropland at 0–100 cm soil depth from estimated SOC stocks
at 0–30 cm.

= −y 1 0.975C
x (6)

=y 0.048 xF
0.67 (7)

where yC is accumulated SOC proportion in soil under cropland, yF is
accumulated SOC proportion in soil under forest and x is the soil depth
(cm). We could not find SOC vertical distribution models for ASC
grasslands. Therefore, to estimate SOC stock at 0–100 cm soil depth
from estimated SOC stocks at 0–30 cm of grasslands, we used the SOC
vertical distribution for the “tropical grassland/savanna” land use ca-
tegory reported by Jobbágy and Jackson (2000).

To assess SOC changes in the near future, T2 was also run under
three hypothetical land use change scenarios for the period 2012–2032.
Land use change scenarios were: a) land use change ceases and the area
of each land use category in 2032 is the same as in 2012, b) land use
change rate in 2012–2032 is reduced to the half of 1996–2012 land use
change rate for all categories (i.e. forest to cropland, forest to grassland,
grassland to cropland and cropland to grassland), and c) land use
change rate in 2012–2032 is the same as 1996–2012 land use change
rate for all land use change categories (Fig. 2). In all hypothetical
scenarios crop yields and crop proportions were assumed to remain as
in 2012 (Table 2).

2.4. Soil organic C under native forest (SOCref)

Linear models to predict SOC under native forest (SOCref) as a
function of soil sand content and mean annual precipitation were fitted,
since it is well known that these predictor variables strongly determine
SOC stocks (Post et al., 1982; Álvarez and Lavado, 1998; Jobbágy and
Jackson, 2000). Linear models were fitted with the lm function from
stats package, version 3.4.3 (R Core Team, 2017). The best model was
selected through graphical analysis of the residuals and the highest
determination coefficient (R2) criterion. Soil organic C stock data for
model fitting was obtained from soil samples from 21 sites under native
forest. Eighteen out of those 21 sites were taken from Villarino et al.
(2017) and the three other sites were sampled for this work (Fig. 1). In
each site, composite soil samples (15–20 subsamples) at 0–30 cm soil
depth were collected using a 2 cm diameter soil corer. The 0–30 cm soil
depth was selected due to two reasons: 1) it is the recommended soil
depth by the IPCC, and we wanted to compare T1 against T2, and 2) the
RothC model was developed for topsoil and we wanted to use SOCref
stocks to initialize cropland and grassland simulations (see Sections 2.5
and 2.6). Total wet weight of each sample was recorded. After homo-
genization, an aliquot was taken from each fresh soil sample and then
oven dried at 105 °C to determine soil moisture content. Total dry
weight was divided by the total volume (volume of each soil
core ∗ number of subsamples in the composite sample) to estimate soil
bulk density. The rest of the sample was oven dried at 30 °C, ground and
then sieved through 2mm mesh, identifiable plant material was
eliminated manually. Soil organic C concentration was determined by
wet combustion, maintaining reaction temperature at 120 °C for 90min
(Schlichting et al., 1995). Bulk density was used to convert SOC con-
centration into SOC stocks at 0–30 soil depth (Mg ha−1).

Mean annual precipitation of each sampling site was determined
using climate maps (Bianchi and Cravero, 2010). The best model was
selected through graphical residual analyses to check model assump-
tions and with the highest R2 criterion. The best model was utilized to
estimate SOCref of each county. Mean annual precipitation and soil

sand content of each county were obtained from climate (Bianchi and
Cravero, 2010) and soil maps (INTA, 1990; Angueira et al., 2007).

2.5. Stock change factor for croplands (Fc)

Main crops in the ASC for 1976–2012 period, were cotton
(Gossypium hirsutum L.), maize (Zea mays L.), soybean, sunflower
(Helianthus annuus L.), and wheat (Triticum aestivum L.) (SIIA, 2015). A
total of 11 historical and current crop rotations were defined for the
ASC based on querying to local experts from the Argentinean National
Institute of Agricultural Technology. These rotations were used to si-
mulate SOC stock change with the RothC model (Coleman and
Jenkinson, 1996) at 0–30 cm soil depth, under three soil clay percen-
tage levels (3%, 13% y 20%), with three rotation yield levels, and under
two tillage systems (full tillage and no-till). Therefore, each crop rota-
tion was used to simulate SOC stock change under 18 combinations of
those factors. The three soil clay levels taken into account correspond to
the minimum, average and maximum values from a data base con-
taining 83 soil profiles from the ASC (Angueira et al., 2007). The three
crop yield levels corresponded to the average minus two standard de-
viations (low), the average (medium) and the average plus two stan-
dard deviations (high) of each crop for the 1976–2012 period (SIIA,
2015). Yield levels were randomly assigned to crops integrating the 11
rotations, and this procedure was repeated three times for each one of
them. Random allocation of yield levels was done with the restriction
that total amount of low, medium and high levels in all three repetitions
per crop rotation, had to be the same.

Carbon inputs were estimated from crop yields. For these estima-
tions it was assumed that: i) harvest indexes of cotton, maize, soybean,
sunflower, and wheat were 0.32 (Peterlin and Mondino, 2004), 0.45,
0.40, 0.45 and 0.35 (Studdert and Echeverría, 2000), respectively, ii)
root/aboveground biomass ratios of cotton, maize, soybean, sunflower,
and wheat were 0.38, 0.38, 0.35, 0.38 y 0.45 (Buyanovsky and Wagner,
1986), respectively, iii) the proportion of roots in the top 30 cm of the
soil is 0.95 for all crops (Buyanovsky and Wagner, 1986), and iv) C
concentration in the biomass (above- and belowground) is 43%
(Sánchez et al., 1996). The RothC model simulates SOC stock change
under full tillage. To simulate no-till system, soil surface condition was
loaded in the model as permanently covered. All scenarios were simu-
lated during 10, 20, 30, 40, and 50 years. The starting points were forest
at equilibrium, obtained by simulating C inputs during 10,000 years.
The C inputs were estimated using the average SOCref (see Section 2.3.)
and the inverse mode of RothC (Coleman and Jenkinson, 1996).

The Fc's were calculated as the ratio between the estimated SOC
stock and the estimated SOC stock in a previous time of the same sce-
nario. With all possible combinations, 2970 data of Fc were obtained.
Then, multiple linear regression models were fitted to predict Fc using
soil clay content (g 100 g−1), cotton, maize, soybean, sunflower, and
wheat proportions (%) in the rotation, weighted average yield (average
of each crop yield weighted by the proportion of each one in the ro-
tation), initial SOC stock, elapsed time in the rotation, and tillage
system as predicting variables. Many of these variables were selected
because they could be obtained from the Argentinean Integrated
Agricultural Information System (SIIA, 2015) and the Argentinean
National Agricultural Census (INDEC, 2004). Along the analyzed per-
iods (1945–1976, 1976–1996, 1996–2012), it was assumed that the
area that changed from one land use to another occurred at a constant
rate. Therefore, the average age of a new cropland area within a period
was calculated as the difference between the ending and the starting
years of the period divided by two (e.g. 1Mha of forest in 1996 that
changed to cropland in 2012 was 8 years old ((2012–1996)/2=8)).
This land use time was used to estimate Fc for forest to cropland or
grassland to cropland conversions (Fig. 3). To estimate Fc for cropland
remaining cropland (Fig. 3) the time used was the difference between
the ending and the starting years of the period. Finally, the best model
was selected through graphical analyses of the residuals and the highest
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R2 criterion.

2.6. Stock change factor for grassland (Fg)

Cultivated grasslands in the ASC are mainly composed by mega-
thermic grasses (Barbera et al., 2014). Dry matter (DM) productivity of
these grasses is strongly determined by mean annual precipitation, and
vary from 4.6Mg DM ha−1 to 6.7Mg DM ha−1 when mean annual
precipitation varies from 600mm to 800mm (De León, 2004). Counties
were grouped according to their mean annual precipitation in three
intervals: i) 487–642mm, ii) 643–797mm, and iii) 798–875mm.
Grassland DM productions were assumed as 4.6, 5.7, and 6.7 Mg DM
ha−1 for the i), ii) and iii) intervals, respectively (De León, 2004;
Cornacchione and Reineri, 2008). These three DM production levels of
grasslands were used to simulate SOC stock changes with RothC
(Coleman and Jenkinson, 1996), under three soil clay content levels
(see Section 2.4.), during 10, 20, 30, 40, and 50 years, and starting from
five initial SOC stocks obtained from cropland simulations (55, 42, 36,
30, and 18Mg C ha−1). In order to estimate C inputs from grassland DM
productions, the following assumptions were done: i) root/above-
ground biomass ratio was 0.45 (Veneciano and Frigerio, 2003), ii) root
proportion in the top 30 cm of soil (Jackson et al., 1996) was 0.83, and
iii) C concentration in the whole biomass (above- and belowground)
was 37% (Maryol and Lin, 2015).

The Fg's were calculated in the same way as for Fc (see Section 2.4.),
obtaining 675 Fg associated to the different situations simulated. Then,
multiple linear regression models were fitted to predict Fg using soil
clay content (g 100 g−1), initial SOC stock, elapsed time under grass-
land (yr), and DM production level as predicting variables. The average
age of a new grassland area within a period was calculated as the dif-
ference between the ending and the starting years of the period divided
by two (see Section 2.4.). This land use time was used to estimate Fg for
forest to grassland or cropland to grassland conversions (Fig. 3). To
estimate Fg for grassland remaining grassland (Fig. 3) the time used was
the difference between the ending and the starting years of the period.
Finally, the best model was selected through graphical analyses of the
residuals and the highest R2 criterion.

3. Results and discussion

3.1. Stock change factors

Selected models to predict Fc and Fg showed very good fit
(R2= 0.89 and R2= 0.90, respectively, Table 3). Hence, SOC changes
simulated with RothC could be predicted with linear models (Table 3).

Stock change factors for forest to cropland and forest to grassland
conversions (Fc and Fg, respectively), were always< 1. This indicates
that deforestation, whether into grassland or into cropland, always
decreased SOC stocks (Fig. 4). The Fg for forest to grassland conversion
was between 0.87 and 0.88 and the Fc for forest to cropland conversion
was between 0.77 and 0.91 (Fig. 4). The Fc for cropland remaining
cropland was always lower than the Fg for grassland remaining grass-
land (Fig. 4). This means that cropland remaining cropland produced
higher proportional losses of SOC stock than grassland remaining
grassland.

The Fc for forest to cropland conversion grew from 1976 through
2012 (Fig. 4). This could be explained by the model parameters in the
Fc model (Table 3). First, the value of the weighted yield parameter,
was positive (Table 3), and the yield of all crops grew from 1976
through 2012 (Table 2). Second, the estimated parameter for no-till,
was positive (Table 3), and no-till adoption by farmers grew ex-
ponentially from 1990s to present (AAPRESID, 2012). The sign of these
parameters is in agreement with the empirical evidence reported in
other works. Soil organic C stocks are positively correlated with C in-
puts and, therefore, also positively correlated with crop yields (Studdert
and Echeverría, 2000; Ogle et al., 2005; Álvarez et al., 2011). On the

other hand, switching from full tillage to no-till strongly affects SOC
dynamics and, in many situations, causes SOC accumulation near soil
surface (West and Post, 2002; Steinbach and Álvarez, 2006; Angers and
Eriksen-Hamel, 2008). Third, looking at crop proportion (%) in the
rotation, cotton had the most negative estimated parameter and wheat
the most positive estimated parameter (Table 3). Between 1996 and
2012, the proportion of cotton in the rotation decreased 14% and wheat
proportion increased 6% (Table 2). Summer crops (cotton, maize and
soybean) are the main cultivated crops in the ASC. When winter-spring
crops (wheat and sunflower) are cultivated, the soil remains covered for
more time along the year because summer crops are cropped im-
mediately after winter-spring crops in the same year. This soil cover
increase has a positive effect on SOC stock (Poeplau and Don, 2015) and
could explain why estimated parameters for wheat and sunflower are
more positive than the estimated parameters for cotton, maize and
soybean. Fourth, the estimated parameter for time was negative
(Table 3). Cropping ages for forest to cropland conversions were as-
sumed 16, 10 and 8 years old, for 1976, 1996 and 2012, respectively.
Thus, the lower cropping age in the later periods also led to increased
Fc value. It takes long time for SOC to respond to land use change (Dalal
and Mayer, 1986; Dean et al., 2012) and this could explain why the
estimated parameter for time was negative (Table 3). As time under
cropland increases, SOC loss also increases. Villarino et al. (2017)
evaluated 21 sites of forest to cropland conversion in the ASC and fitted
a logarithmic model (R2= 0.77) to predict SOC changes as a function of
cropping age. For 16, 10 and 8 yr under cropping after deforestation,
that model (Villarino et al., 2017) predicted Fc's of 0.75, 0.85 and 0.90,
respectively. The Fc's estimated with the model developed for this T2
(Table 3) for the same cropping ages were 0.77, 0.84 and 0.91 (Fig. 4).
Therefore, the degree of agreement between studies, was high.

With T1, the estimated stock change factors for forest to cropland

Table 3
Summary of fitted linear models to predict stock change factor for croplands
(Fc) and for grassland (Fg). Levels of statistical significance (P): *P < 0.05,
**P < 0.01 and ***P < 0.001.

Response
variable

Predictor variable Estimated
parameter

Standard
error

P

Fc Intercept 5.422 0.307 ***
Clay (g 100 g−1) 0.001352 0.000136 ***
Time (yr) −0.00788 0.000102 ***
Soybean (%) −0.04536 0.003065 ***
Maize (%) −0.04549 0.003065 ***
Wheat (%) −0.04302 0.003054 ***
Sunflower (%) −0.04436 0.003089 ***
Cotton (%) −0.04568 0.003071 ***
Weighted yield (Mg
ha−1)

0.04594 0.001176 ***

SOCi (Mg ha−1)2 −0.000058 0.000001 ***
NT 0.05165 0.003589 ***
Time (yr) * NT 0.001962 0.000135 ***

Fg Intercept 1.312 0.01957 ***
Time (yr) 0.00779 0.000466 ***
SOCi (Mg ha−1) −0.02081 0.000844 ***
SOCi2 (Mg ha−1)2 0.000204 0.00001 ***
DM-5.7 0.05383 0.0045 ***
DM-6.7 0.1058 0.004522 ***
Clay (g 100 g−1) 0.007798 0.001287 ***
Clay2 (g 100 g−1)2 −0.000156 0.000056 **
Time (year) * SOCi
(Mg ha−1)

−0.000262 0.000013 ***

SOCi: initial soil organic carbon. NT, DM-5.7, and DM-6.7 are categorical
variables. For croplands under no-till (NT) system, NT=1, and under full til-
lage NT=0. For grasslands, when dry matter (DM) production is 4.6Mg DM
ha−1, DM-5.7=0 and DM-6.7= 0, when DM production is 5.7Mg DM ha−1,
DM-5.7= 1 and DM-6.7= 0, and when DM production is 6.7Mg DM ha−1 DM-
5.7= 0 and DM-6.7= 1. The asterisk (*) indicates interactions between pre-
dictor variables. The adjusted R2 of Fc and Fg models were 0.89 and 0.90,
respectively.
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conversion are 0.55 in 1976 (assuming full tillage and low carbon in-
puts, Table 1), 0.58 in 1996 (assuming full tillage and medium C inputs,
Table 1) and 0.68 in 2012 (assuming no-till and medium C inputs,
Table 1). All these T1 factors are below the estimated Fc's in this work
and by Villarino et al. (2017). Thus, it is likely that estimated SOC
stocks with T1 would have been strongly underestimated, and, conse-
quently, CO2 emissions in forest to cropland category, overestimated.
On the other hand, the estimated SOC stocks with T1 for cropland re-
maining cropland category would have grown from 1976 to 1996 and
from 1996 to 2012. This is because the C input factor (Fi) changed from
0.95 to 1.00 (Table 1) between 1976 and 1996, and the management
factor (Fmg) changed from in 1.00 to 1.17 in no-till area (Table 1)
between 1996 and 2012. However, with our T2, the Fc for cropland
remaining cropland was always lower than 1 (Fig. 3), indicating that
SOC stocks always decreased under cropland. With T1, the accumulated
CO2 emission from SOC changes in cropland (i.e. forest to cropland,
grassland to cropland and cropland remaining cropland categories)
between 1976 and 2012 was 143,058 Gg CO2. However, with our T2 it
was 67,156 Gg CO2. The T1 estimation is 113% higher than T2 esti-
mation. Thus, the net balance of T1 between the CO2 emission over-
estimation in forest to cropland category and the CO2 emission under-
estimation in cropland remaining cropland category, is a great CO2

emission overestimation.
The Fg's for forest to grassland conversion estimated with our T2

were between 0.87 and 0.88. Caruso (2008) studied 11 sites in the ASC
where forest changed to grassland, and the average SOC change under
grassland was −24% (Fg= 0.76). However, this average resulted from
an extremely high range, with a maximum of 6% (Fg=1.06) and a
minimum of −43% (Fg=0.57). No relation between those changes
and time since land use change were reported. Probably this relation
was not detected because soil samples and/or time were not enough
(Schrumpf et al., 2011). In other sites of the ASC, Ciuffoli (2013) ob-
served −30 and− 10% SOC changes at 0–30 cm depth for 4 and 31 yr
since forest to grassland conversion, respectively (Fg between 0.7 and

0.9). Hence, these studies (Caruso, 2008; Ciuffoli, 2013) suggest that
forest to grassland conversion leads to highly variable SOC changes.
Nevertheless, the Fg's estimated with T2 (Table 3, Fig. 4) have a
moderate degree of agreement with the mean of reported values
(Caruso, 2008; Ciuffoli, 2013).

In this work, the estimated T1 stock change factor for forest to
grassland conversion in the ASC was 0.97, because a “moderately de-
graded” condition was assumed (IPCC, 2006). However, the allocation
of T1 stock change factor is quite subjective due to categories that
describe grassland conditions are based on qualitative criteria. It is
likely that many situations between severely degraded grassland with
medium C inputs (Fg=0.7, Table 1) and improved grassland with high
C inputs (Fg=1.3, Table 1) could be found in the ASC grasslands.

3.2. Spatial distribution of estimated SOCref and average SOC stocks

The selected model to estimate SOCref stocks (Eq. (8)) showed an
R2=0.68 and a P-value < 0.0001.

= + × ×SOCref 31.78 0.0007441 (P/S) P (8)

where SOCref is SOC stock under forest (Mg C ha−1), P is mean annual
precipitation (mm), and S is soil sand content (g 100 g−1). Average
SOCref stock for the ASC was 40Mg C ha−1 and varied between 35 and
51Mg C ha−1 (Fig. 4). The highest SOCref stocks were estimated for the
north-east and south-east of the ASC, whereas the lowest SOCref stocks
were estimated for the center-east. Between 1976 and 2012, the
average SOC stocks (Eq. (3)) were estimated as maintaining similar to
SOCref at north and south of the ASC, whereas a tendency to SOC de-
crease was estimated in the central ASC (Fig. 5). In 2032, SOC decrease
expanded towards south and north of the ASC, without important dif-
ferences among hypothetical scenarios (Fig. 5).

The estimated SOCref stock with the T1 for the ASC was
38Mg C ha−1 (“tropical dry” climate category and “high clay activity”
mineral soil category, IPCC, 2006). However, with our T2 the estimated

Fig. 4. Stock change factors for croplands (Fc) and for grasslands (Fg) used to estimate soil organic carbon changes in grassland (SOCg) and cropland (SOCc) for each
evaluation year (bold number inside ovals). Circular arrows indicate grassland remaining grassland (solid) and cropland remaining cropland categories (dashed).
SOCref: soil organic carbon under forest. Numbers between brackets are standard deviations.
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average SOCref stock was 40Mg C ha−1, with a range between max-
imum and minimum of 16Mg C ha−1. Thus, there is a high degree of
agreement between tiers regarding SOC stock average of the ASC, but
the average estimated with our T2 showed high spatial variability that
would not be taken into account with T1 (Fig. 5). In the north-west of
the ASC, Abril and Bucher (2001) measured 71 and 31Mg C ha−1 in
highly restored and moderately restored forest conditions, respectively.
The SOCref estimated with our T2 for this work is close to the moder-
ately restored condition reported by Abril and Bucher (2001), which is
more representative of forest condition at present (Morello et al., 2005),
than to the highly restored condition.

3.3. Land use change, SOC loss and CO2 emissions

The total area of the 40 analyzed counties comprised 30Mha.
Deforested area increased seven times from 1976 to 2012, reaching
approximately 5.5Mha in this last year (Fig. 2). Cropping was the main
fate of this cleared area and occupied 10% of the ASC, whereas grass-
land occupied only 8% of the region (Fig. 2). Soil organic C stock
ranking among land uses estimated with our T2 (forest > grass-
land > cropland, Fig. 6), agrees with the global tendency (Guo and
Gifford, 2002; Don et al., 2011; Smith et al., 2016). Osinaga et al.
(2016) and Ciuffoli (2013) measured SOC stocks at 0–100 and at

0–90 cm soil depth, respectively, in forest, grassland, and croplands.
Osinaga et al. (2016) evaluated sites located in the central part of the
ASC and Ciuffoli (2013) evaluated sites located in the north-western
part. In the first study, the authors observed that average SOC stocks
were: 119Mg C ha−1 in forest, 88Mg C ha−1 in grassland, and
75Mg C ha−1 in cropland. In the second study, the authors reported
average SOC stocks of 73Mg C ha−1 in forest, 52Mg C ha−1 in grass-
land, and 54Mg C ha−1 in cropland. In 2012, our estimated SOC stocks
at 0–100 cm soil depth, were 84Mg C ha−1 in forest and 57Mg C ha−1

in cropland (Fig. 6). Our estimated SOC stocks were between those
reported by Osinaga et al. (2016) and Ciuffoli (2013), but they were
closer to Ciuffoli (2013). On the other hand, the reported SOC stock
differences between forest and cropland were 44Mg C ha−1 (Osinaga
et al., 2016) and 19Mg C ha−1 (Ciuffoli, 2013), and our estimated
difference was 27Mg C ha−1. Our estimation for the whole ASC fell in
between the reported values, in specific places within the ASC. There-
fore, we can consider that it is not far away from reality.

In semiarid environments, wind erosion is a major process that
could alter soil properties and SOC stocks, both in natural and agro-
ecosystems. Generally, wind erosion occurs in cultivated soil and the
sediments are transported to naturals ecosystems (Iturri et al., 2016).
Given the complexity of wind erosion process, we could not include
these effects in our Tier 2. It is likely that SOC stock under forest has

Fig. 5. Soil organic carbon under forest (SOCref) and average soil organic carbon (SOC) stocks at 0–30 cm depth in the Argentinean Semiarid Chaco counties in 1976,
1996, 2012, and 2032 for the three land use change scenarios for 2012–2032 (scenario without land use change (a), scenario with half of 1996–2012 land use change
rate (b), and scenario with the same land use change rate as between 1996 and 2012 (c)).

Fig. 6. Soil organic carbon (SOC) stocks at
0–30 cm (left panel) and at 0–100 cm (right
panel) soil depths in 1976, 1996, 2012, and
2032 for the three land use change sce-
narios for 2012–2032 (scenario without
new deforestation (a), scenario with half of
1996–2012 deforestation rate (b), and sce-
nario with same deforestation rate as be-
tween 1996 and 2012 (c)).
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changed along the analyzed period, adding some uncertainty in our
SOCref estimation and, consequently, in our CO2 emission estimations
too.

Soil organic C stocks under cropland decreased across time, with the
exception of the period 1996–2012, for which a slight increase respect
to 1976–1996 was estimated (Fig. 6). This period corresponds to the
highest increase of forest to cropland conversion area (Fig. 2) and with
the highest Fc for this land use change (0.91, Fig. 4). Therefore, the
incorporation of new area with relative high SOC stocks to cropping led
to an increase in the average SOC stock. This also explains why among
hypothetical scenarios, the higher SOC stock under cropland was esti-
mated under the scenario with higher deforestation rate (2032 (c),
Fig. 6) and the lowest SOC stock under cropland was estimated under
the scenario without deforestation (2032 (a), Fig. 6).

Carbon dioxide emission rates increased across time and were lar-
gely higher when soil depth taken into account changed from 0 to 30 to
0–100 cm (Fig. 7). This could be attributed to the fact that soil under
forest has different SOC vertical distribution respect to croplands and
keeps higher proportions of total SOC in deeper soil layers (40–100 cm)
(Villarino et al., 2017). Between 1996 and 2012, the estimated CO2

emission rate considering 0–100 cm soil depth was 176% higher than
the estimated considering only 0–30 cm soil depth (Fig. 7). At
0–100 cm, CO2 emission rate was highly sensitive to the hypothetical
scenarios. The land use change cessation led to a fast reduction in the
CO2 emission rate (46% reduction respect to 2012, Fig. 7) while if
2012–2032 land use change rate remained as in 1996–2012, the T2
estimated a high CO2 emission rate increase (48% increase respect to
2012, Fig. 7). These differences in the CO2 emission rate among sce-
narios were lower at 0–30 cm soil depth (Fig. 7).

4. Conclusion

Stock change factors and SOC stocks estimated with our T2 were
within the range of the empirical data reported in the ASC. In crop-
lands, management effects on SOC changes were well represented
through the Fc model, at least respect in SOC change direction, due the
signs of model coefficients are in agreement to the present knowledge
about SOC dynamics. However, research about SOC dynamics and land
use change is incipient in the ASC and more empirical information is
needed to validate our T2 estimations.

Deforestation in the ASC leads to high CO2 emissions from soil and
the only scenario where those emissions would be reduced is with de-
forestation cessation. Soil depth considered in GHG inventories is
0–30 cm, and this strongly underestimates CO2 emissions. This limita-
tion was overcome by using SOC vertical distribution models to esti-
mate deep SOC stock (up to 1m) from estimated surface SOC stock.
Hence, these models could be used to improve CO2 estimations from
SOC inventories.
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