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A metal–organic framework of [Co(II)(1,4-benzenedicarboxylate)2(pyridine)2(water)2] has been synthesized
and characterized by IR spectra, TGA and single crystal X-ray diffraction analysis. Discrete cyclic hexameric water
clusters through carboxylate oxygens and pyridine molecules are trapped inside a two-dimensional coordination
channel.
ar).

rights reserved.
© 2011 Elsevier B.V. All rights reserved.
In the past several decades, considerable attention has been focused
on theoretical [1] and experimental [2] studies of small water clusters to
understand the structures and characteristics of liquid water and ice. A
variety of water clusters including tetramer, hexamer, octamer and
decamer have been structurally [3–6] characterized in crystalline
hosts in one-dimensional [7] and two-dimensional [8] water morphol-
ogies. Their structural information holds considerable promise for
achieving a more accurate description of the properties of bulk water
at themolecular level. The cluster of tenwatermolecules is of particular
interest because this is the smallest unit of naturally occurring cubic ice
and so calledmolecular ice [6]. It is quite interesting to note that clusters
with even numbers of water molecules appear more frequently than
the odd-numbered ones. Only trimers and pentamers are common in
crystal hydrates and higher nuclearity, while other odd-numbered clus-
ters are much less known. Furthermore, it is well-known that self-
assembly processes are highly affected by several factors such as the
ligand's nature, medium, template, metal ligand ratio, pH value, and
counter ion. The water clusters can play an important role in the stabi-
lization of supramolecular systems both in solution and in the solid
state, and there is clearly a need for a better understanding of how
much water aggregations are influenced by the overall structure of
their surroundings [9].

Metal–organic framework (MOF) structures with suitable organic
ligands can provide void spaces where discrete water clusters can
exist. Metal ions in such structures can also act as glues in holding
the water clusters, interactions between the water aggregates and
the surrounding often play a key role in stabilizing the unusual
water clusters in the crystal lattice. To date, chair [10] and boat [11] cy-
clic hexamers included in host lattices have been characterized byX-ray
crystallographic analysis. While Saykally and co-workers characterized
the cage form of the hexamer [12], Nauta and Miller reported [13] the
detection of a quasiplanar hexamer in a helium droplet. We report
here on the preparation, crystal structure of octahedral polymeric [Co
(1,4-benzenedicarboxylate)2(pyridine)2(water)2] and the structure of
a cyclic hexamer water cluster.

The hydrothermal reaction [14] of Co(NO3)2.6H2O with pyridine
and 1,4-benzenedicarboxylic acid in mole ratio 1:4:2 at 180 °C leads
to the formation of colored crystals. Elemental analysis confirmed the
formula of polymeric complex (1). X-ray single crystal analysis reveals
[15] that 1 contains a 1D polymeric chain through coordination of 1,4-
benzenedicarboxylate ligand. Co(II) metal ion has perfect octahedral ge-
ometry. The bond distances of Co\NandCo\O (coordinated carboxylate
oxygen) and Co\O (coordinated water molecule) are 2.088(6), 2.057(3)
and 2.028(4), respectively. The bond angles of N\Co\N and O\Co\O
are equal to perfect 180°. The crystal data together with bond lengths
and angles are shown in Tables 1S and 2S. Coordinated water molecules
and 1,4-benzenedicarboxylates, and pyridines are located in trans posi-
tion. Each Co(II) is coordinated to two 1,4-benzenedicarboxylate, two
pyridine and two water molecules. The 1,4-benzenedicarboxylate ligand
helps to form a 1D polymeric chain through polycatenation.

A view of 1 and the atoms labeling scheme used are shown in
Fig. 1. The structure of 1 was found as a discrete water cluster and
uncoordinated pyridine, are trapped in voids (Fig. 2A). In the water
cluster, the free oxygen of carboxylate are bound to water molecules
by hydrogen bonding. The oxygen atoms are opposite to the cyclic
hexamer (Fig. 2B). The striking feature of this cluster is that each
and every oxygen atom is connected to two water molecules and
every water molecule is linked by one oxygen atom and one water
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Fig. 1. ORTEP diagram of compound 1 with partial atom labeling and 40% thermal ellipsoids. Selected bond lengths (Å) and bond angles (deg): Co1\O2=2.058(3),
Co1\N1=2.089(6), Co1\OW1=2.028(4). N1\Co1\N1=180.0, OW1\Co1\OW1=180.0, OW1\Co1\O2=91.69(15), O2\Co1\O2=180.0.

Table 1
Hydrogen bonds for (1) [Å and °].

D\H…A d(D\H) d(H…A) d(D…A) b(DHA)

OW1\H(04)…O(1) 0.83(8) 1.82(8) 2.597(6) 154(7)
OW1\H(07)…OW2 0.77(10) 1.82(11) 2.590(7) 170(11)
OW2\H(06)…O(1)#1 0.89(11) 2.02(11) 2.760(7) 139(10)

Symmetry transformations used to generate equivalent atoms: #1 −x, −y, −z−1.
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molecule via hydrogen bonds. One hydrogen atom is along each edge
of the hexamer, so each oxygen is bound to two hydrogen atoms of
two water molecules. Each oxygen atom has two hydrogen bonds to
an oxygen atom of water and an oxygen atom of carboxylate and
one hydrogen bond from an adjacent oxygen atom on the same site.
There are two kinds of O\H\O hydrogen bonds in this water cluster.
This hydrogen bound O\O separations are in the range of 2.599–
2.759 Å, which is shorter than the reported [16], 2.85 Å for liquid
water. Bond lengths and bond angles of hydrogen bonds are given
in Table 1. The strengths of hydrogen bonding are confirmed by ther-
mal analysis. The angles of O2W\O1W\O1, O1W\O1\O2W and
O1\O2W\O1W are 128.7(2), 112.8(1) and 108.7(2), respectively.
The cyclic hexamer bound through carboxylate oxygen atoms to
water molecules is like a cyclohexane molecule. The packing diagram
of compound 1 is shown in Fig. 3. The two 1D chains are connected by
π–π interactions with a distance of 4.364 Å in c-direction to form a reg-
ular 3D channel. Water clusters and pyridine molecules are well
trapped in isolated cavities surrounded by liner polymeric chains of
the Co(II) complex (Fig. 1S). The uncoordinated pyridine hangs in the
voids of the polymeric channels by C\H–π interaction between the
Fig. 2. (A). Two chains are connected by a cyclic hexamer. (B). Six oxygen atoms are bound t
bound oxygen (four of these oxygens are part of a water molecule and two of them pertain
C\H of uncoordinated pyridine and the π system of 1,4-benzenedicar-
boxylate with a distance of 2.7495(8)Å.

The IR spectrum of 1 shows disappearance of the broad band at
1710 cm−1 and the appearance of a band at 1589 cm−1 (antisymmetric
COO− stretch) and 1416 cm−1 (symmetric COO− stretch) correspond-
ing to a coordinated carboxylate group. A sharper band at 1545 cm−1 is
due to the aromatic ring stretch. Other prominent bands are at 766, 715
and 684 cm−1. The compound shows O\H stretching vibrations at
3440 and 3260 cm−1 and these are more analogous to those of liquid
water than those of ice [16,17].

The thermal stability of the oxygen–water cluster in [Co(II)
(1,4-benzenedicarboxylate)2(pyridine)2(water)2] (1) was studied
hrough hydrogen bonding with the range of bond distances 1.826–2.022 Å and through
to carboxylate moieties).
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Fig. 3. 3Dbuilding block of the chains of compound 1, connected to each other by hydrogen bonding and π–π interactions at a distance of 4.364 Å (in c-direction is shown). Uncoordinated
pyridine molecules (spacefill style) are trapped between the two layers.
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by thermogravimetric analysis (TGA). The TGA curve shows that
the compound exhibits a first weight loss of 5.80% in the temper-
ature range 215–308 °C corresponding to the loss of water mole-
cules in the cluster (calculated weight loss 5.88%) (Fig. 4). This
analysis confirms that there are two water molecules per formula
unit, as expected from X-ray diffraction and elemental analysis
data. The temperature required for water molecule removal is
Fig. 4. TGA spectrum of compound 1.
well above 100 °C (more than 215 °C), suggesting that the hydro-
gen bonding that builds the oxygen–water cluster must be of sig-
nificant strength and that water molecules are strongly
incorporated as a part of this cluster. Such observation of retaining
very volatile liquids in the crystal packing has been reported [18]
previously.

In conclusion, a discrete dioxygen-tetrahydrate water cluster has
been trapped in the solid state structure. This water cluster has a
chair like structure in which the oxygen atoms occupy opposite cor-
ners. From thermal analysis, the temperature required for water mol-
ecule removal is more than 215 °C, which shows that the hydrogen
bonding that builds the oxygen atom of water cluster is strongly in-
corporated as a part of this cluster.
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