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Abstract: Nowadays, scientists need to work with non-contaminating technologies. Some approaches include 
the use of multicomponent reactions (MCRs), and solid and reusable catalysts. Through MCRs it is possible 
to work without isolating intermediate products, so the use of auxiliary solvents is minimized.  

Furthermore, catalysis by heteropolycompounds is a field of increasing importance worldwide. Heteropoly-
compounds are effective, reusable and stable solid catalysts that have intrinsic multifunctionality: they can be designed in 
order to enhance their redox or superacidic properties by varying the atoms in their formula. 

The present review presents recent advances in the synthesis of organic compounds through multicomponent reactions by 
using heteropolycompounds as catalysts. Some of these compounds are: dihydropyrimidinones, quinazolinones, naphthol 
derivatives, pyridines, xanthenones, azabicyclo[2.2.2]octan-5-ones, dispiroheterocycles, imidazoles, spirofused heterocy-
cles, and 1,4-dihydropyridines.  
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INTRODUCTION 

There are many organic compounds that have remarkable 
biological applications and are constantly being prepared 
around the world. Some preparation methods involve the use 
of large quantities of mineral acids as stoichiometric cata-
lysts, long reactions times, high temperatures, contaminating 
solvents and as a result, these processes generate environ-
mentally hazardous substances. Sometimes, these processes 
also give unsatisfactory yields. Therefore, there is a real need 
for the use of non-contaminating technologies. One possible 
approach is the application of the principles that forms the 
basis of Green Chemistry. 

As Deligeorgiev and co-workers have extensively de-
scribed [1], Green Chemistry consists of a set of 12 princi-
ples, which were proposed by Anastas and Warner [2-4]. 
They give a new approach to the synthesis, processing and 
application of chemical substances, thus diminishing the 
hazards for human health and environmental pollution.  

Multicomponent reactions (MCRs) are convergent reac-
tions that maximize the participation of reactant atoms in the 
final product, so they enable proceeding according to the 
second principle (also known as ‘atom economy principle’). 
MCRs allow working without isolating intermediate prod-
ucts, so they minimize the use of auxiliary solvents. Bigi-
nelli, Ugi, Hantzsch, Passerini and Mannich reactions are 
some examples of MCRs [5-15].  
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According to the ninth principle, the use of reaction catalysts 
increases reactions rates, yields and selectivity to the desired 
product. In some other cases, reactions do not take place 
without a catalyst. Catalysis by both bulk and supported het-
eropolycompounds is a field of increasing importance 
worldwide. Numerous developments are being carried out in 
basic research as well as in fine chemistry processes. Het-
eropolycompounds are effective, reusable and stable solid 
catalysts that have intrinsic multifunctionality: they can be 
designed in order to enhance their redox or superacidic prop-
erties by varying the atoms in their formula. 

Some recent advances in the application of heteropoly-
compounds as catalysts for multicomponent organic reac-
tions are presented in the following sections. 

NAPHTHOL DERIVATIVES 

Heravi and co-workers presented two methods using silica-
supported Preyssler nanoparticles as catalyst [16]. Amidoal-
kyl naphthols were prepared with high yields through two 
methods: heating at 90°C under solvent-free conditions and 
using acetonitrile (as reactant and as solvent) at 80°C. The 
catalyst can be reused after a simple work-up, with a gradual 
decline of its activity being observed (Scheme 1a). Using the 
same Preyssler nanoparticles, Heravi also prepared carbama-
toalkyl naphthols by heating at 90°C under solvent-free con-
ditions for the appropriate time (Scheme 1b) [17].  

Khabazzadeh and collaborators prepared 1-amidoalkyl-2-
naphthols using Cu1⋅5PMo12O40 and Cu1⋅5PW12O40 as cata-
lysts [18]. The reactions were conducted in molten tetrabuty-
lammonium bromide (TBAB) as ionic liquid at 100°C 
(Scheme 1c). The reactions were catalyzed by 5 mol% of 
Cu1⋅5PMo12O40 and 2 mol% of Cu1⋅5PW12O40 in 90 and 80 
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min, respectively, giving product yields ranging from 74% to 
95%. After three catalytic cycles, product yields decreased 
slightly, which indicates that the catalyst can be reused with-
out significant loss of activity. 

Dorehgiraee and co-workers presented a method to pre-
pare 1-amidoalkyl-2-naphthols using 12-tungstophosphoric 
acid (H3PW12O40, 2 mol%) as catalyst, and the system was 
heated at 100°C for 80 min (Scheme 1d) [19]. Moderate to 
high yields were obtained for the reaction of virtually all the 
aryl aldehydes examined. 

Ohanian and collaborators prepared 2'-aminobenzothia-
zolomethylnaphtholes in high yields using Wells-Dawson 
heteropolyacid (H6P2W18O62.24H2O) as catalyst in water at 
60°C for 5 h (Scheme 1e) [20]. The products were recrystal-
lized from acetone/water.  

β-ACETAMIDO KETONES 
Acetamido ketone derivatives are versatile intermediates 

in the synthesis of important biological and pharmacological 
organic compounds such as the natural nucleoside antibiotics 
nikkomycins, neopolyoxins, and several antibiotic drugs  
[21-24]. 

Tayebee and Tizabi did extensive research into β-amino 
ketone synthesis using Keggin, Wells-Dawson and Preyssler 
heteropolycompounds [25]. The reaction conditions were at 
reflux of acetonitrile, and the authors were especially inter-
ested in vanadium (V)-containing heteropolyacid activity. 
Some examples of the tested catalysts include: H5PW10 

V2O40; H7SiW9V3O40; H3PW12O40; H6P2W18O62; H5PMo10V2 
O40; H6P2Mo18O62; H14NaP5W30O110; H5SiW9Mo2VO40; 
2Na2O·P2O5

.12WO3. The best results were obtained by using 
2.5 mol% of H5PW10V2O40.The synthesis of β-acetamido-β-
(4-chlorophenyl) propiophenone is shown in Scheme 2. 

DIHYDROPYRIMIDINONES 

Biginelli compounds, 3,4-dihydropyrimidin-2(1H)-ones 
(DHPMs), are medicinally important as antibacterial, anti-
tumor, antiviral and anti-inflammatory agents [26-28]. More 
recently, these compounds have emerged as potential cal-
cium channel blockers, antihypertensives, α1a-adrenergic 
antagonists and neuropeptide antagonists [29]. In addition, 
the 2-oxodihydropyrimidine-5- carboxylate core unit is 
found in nature and in potent HIV gp-120-CD4 inhibitors 
[30-32]. 

Heravi and co-workers presented a method to prepare 
Biginelli compounds using 12-tungstophosphoric acid 
(H3PW12O40, 2 mol%) as catalyst, and the system was re-
fluxed in glacial acetic acid for 6-7 h (Scheme 3a) [33]. The 
product yields obtained by varying the reactants were be-
tween 40% and 75%, and after five runs under the same re-
action conditions, the catalyst activity was almost the same 
as that of the fresh material. 

Rafiee and Jafari tested three catalysts (H3PW12O40, 
H3PMo12O40 and H4SiW12O40) using four different solvents 
(ethanol, toluene, acetonitrile and chloroform) at 80°C [34]. 
They selected  acetonitrile  as the best choice for the reaction  
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Scheme 1. Preparation of naphthol derivatives through five different ways. 
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Scheme 2. Preparation of acetamido ketone derivatives. 
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Scheme 3. Preparation of dihydropyrimidinone derivatives through six different ways. 

solvent and then synthesized a series of DHPMs obtaining 
yields ranging from 52% to 97% in 1 h (Scheme 3b). 

Gharib and collaborators used thirteen different catalysts 
(nine of them were Keggin-type heteropolyacids) and ten 
different reaction solvents [35]. The catalyst-free and sol-
vent-free conditions were also tested. The best results were 
found with H7[PMo8V4O40] under water reflux for 6 h 
(Scheme 3c). After five catalytic cycles under the same reac-

tion conditions, product yields were almost constant: up to 
90%.  

Khabazzadeh and collaborators presented a method to 
prepare Biginelli compounds using 12-tungstophosphoric 
acid (H3PW12O40) as catalyst, in which the system was 
heated under solvent-free conditions at 100°C (Scheme 3d). 
They obtained thirteen different compounds with yields 
greater than 66% in reaction times from 10 to 60 min [36]. 
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Amini and co-workers also used 12-tungstophosphoric 
acid under solvent-free conditions [37]. DHPMs were 
prepared by heating at 80°C from 1 to 1.5 h using bulk 
H3PW12O40, and for 2 h in the case of silica-supported 
H3PW12O40. For both cases product yields were greater than 
86% (Scheme 3e). 

Our research group presented two methods for DHPM 
preparation using Wells-Dawson heteropolyacid (H6P2W18 
O62.24H2O) as catalyst: under solvent-free conditions at 
80°C for 1.5 h and at reflux of acetonitrile for 8 h (Scheme 
3f) [38]. For both methods product yields are from good to 
excellent.  

Our investigation group tested four catalysts (H4PMo12 
O40, H4PMo11VO40, H6PMo11BiO40, and H5PMo11V0.5Bi0.5 
O40) under solvent-free conditions at 80°C for 1 h [39]. The 
reactivity order was: H5PMo11V0.5Bi0.5O40> H4PMo11VO40> 
H6PMo11BiO40> H4PMo12O40. In this reaction, H5PMo11 
V0.5Bi0.5O40 can be recycled without loss of the catalytic ac-
tivity. Then, twelve compounds were obtained with very 
good yields (80%-98%) (Scheme 4a).  

Fazaeli and co-workers studied a series of heterogeneous 
catalytic systems for DHPM preparation [40]. The materials 
were metal oxides (TiO2, carbosil-SiO2, KSF-montmori-
llonite, ZrO2 and Al2O3) used as inorganic supports with 
Keggin-type polyoxometalates, H3PW12O40 and H3PMo12O40 
(Scheme 4b). The products were obtained with high yields in 
short reaction times. The catalysts were recovered and re-
used: they presented almost constant activity.  

QUINAZOLINONES 

Quinazolinones and their derivatives have very important 
biological properties such as antihypertensive, anticonvul-
sant, anti-inflammatory and antimalarial activity [41-44]. 
Moreover, the 4(3H)-quinazolinone moiety is found in sev-
eral bioactive natural products [45, 46].  

Ighilahriz and collaborators studied four catalysts 
(H3PW12O40, H3SiW12O40, H3SiMo12O40, and H3PMo12O40) 
under three different methods for quinazolinone derivative 
preparation: under reflux of toluene for 2 h with conven-
tional heating, with 2-ethoxyethanol as reaction solvent un-
der microwave irradiation, and using microwave irradiation 
under solvent-free conditions [47]. The most convenient re-
action conditions are the third ones: although in all cases 
product yields were almost the same, the reaction time was 
tenfold shorter than in the other two cases. Regarding cata-
lyst activity, product yields decreased in the following order: 
H3PW12O40> H3SiW12O40> H3PMo12O40> H3SiMo12O40. The 
best method is summarized in Scheme 5.  

PYRIDINES 

Pyridines are present in the important niacin and B6 vi-
tamins, and also in highly toxic alkaloids such as nicotine. 
They are important as anti-inflammatory, antiasthmatic, an-
tidepressant, antitubercular and antibacterial agents. There 
are also examples of pyridines that act as potent HIV prote-
ase inhibitor, and some pyridine derivatives and their metal 
complexes are important building blocks for the construction 
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Scheme 4. Preparation of dihydropyrimidinone derivatives by two methods. 
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of chemosensors, self-organized assemblies, or photoactive 
molecular devices [48-54]. 

Heravi and co-workers prepared 2,4,6-triarylpyridines in 
the presence of Preyssler-type heteropolyacid (H14[NaP5 
W30O110]) by heating at 120°C under solvent-free conditions 
(Scheme 6) [55]. Most of the product yields were greater 
than 80% for reaction times from 3.5 to 7 h.  

Our investigation group prepared substituted pyridine de-
rivatives using Wells-Dawson heteropolyacid 
(H6P2W18O62.24H2O) as catalyst under solvent-free condi-
tions at 80°C from 15 to 30 min (Scheme 7) [56]. The prod-
ucts were obtained with excellent yields (60%-99%) and 
selectivity, and were also free of secondary products. Recy-
cling of the catalyst showed that its activity is almost con-
stant after three catalytic cycles. 

The original idea was to prepare 1,4-dihydropyridines 
through the multicomponent Hantzsch reaction. In contrast 
with what takes place by using simple aldehydes, 3-
formylchromones showed an alternative direction of the 
Hantzsch condensation reaction. Functionalized pyridine in 
the 2-, 3- and 5- positions was formed by opening the γ-
pyrone ring after nucleophilic attack and subsequent cy-
clodehydration. So, we decided to optimize the method in 
order to prepare pyridine derivatives in good yields.  

XANTHENONES 

Xanthene derivatives have various important applica-
tions: as dyes in fluorescent materials for visualization of 
biomolecules and in laser technologies due to their useful 
spectroscopic properties [57]. They are also useful as bacte-
ricides [58] in photodynamic therapy [59], as anti-
inflammatory [60] and antiviral agents [61]. 

Hassakhani and co-workers prepared 12-aryl-8,9,10,12-
tetrahydrobenzo[a]xanthen-11-ones using 12-tungstosilicic 
acid (H4SiW12O40, 3.5 mol%) as catalyst, and the system was 
heated at 100°C under solvent-free conditions for 15-40 min 
(Scheme 8a) [62]. The products were obtained in yields 
greater than 82%, and the catalyst showed almost constant 
activity after four catalytic cycles.  

Heravi and collaborators presented a method to prepare 
xanthene derivatives under solvent-free conditions by using 
a Preyssler-type heteropolyacid (H14[NaP5W30O110], 0.4 
mol%) and heating at 120°C (Schemes 8b and 8c) [63]. The 
products were recrystallized from absolute ethanol, giving 
yields greater than 80% for reaction times of less than 2 h. 

IMIDAZOLES 

Imidazoles are one of the most important substructures 
found in a large number of natural products and pharmaco-
logically active compounds. They are present in histidine, 
histamine and biotin, and they are also present as active 
components in several drug molecules: antiallergenic drugs, 
a hypnotic agent (Etomidate), a proton pump inhibitor 
(Omeprazole), and in the benzodiazepine antagonist Fluma-
zenil. Therefore, imidazole and its derivatives are attractive 
compounds for organic chemists [64-68]. 

Heravi and collaborators prepared tetrasubstituted imida-
zoles at reflux of ethanol using 1 mmol% of Keggin hetero-
polyacids such as H3[PW12O40], H4[SiW12O40], 
H3[PMo12O40], H4[PMo11VO40], and HNa2[PMo12O40] [69]. 
In reaction times from 5 to 120 min, all catalysts achieved 
reaction yields greater than 83%, and H4PMo11VO40 showed 
the highest activity (Scheme 9a). The desired products could 
be easily separated: the heteropolyacid was soluble in etha-
nol at room temperature, but the products were not. 

Heravi also presented a publication in collaboration with 
Kakhorani in which they described the preparation of tetra-
substituted imidazoles by using K7Na3P2W18Cu4O68 as cata-
lyst in solvent-free conditions [70]. The products were ob-
tained in excellent yields using 0.2 mol% of catalyst and 
heating at 140°C for 90 min (Scheme 9b). The catalyst was 
reused and after five catalytic cycles, its activity was almost 
constant. 

Javid and co-workers presented the tetrasubstituted imi-
dazole synthesis using 1 mol% of a Preyssler-type hetero-
polyacid (H14NaP5W30O110) [71]. The reactions were carried 
out in ethanol at reflux temperature for 10-30 min (Scheme 
9c). The products were obtained with good to excellent 
yields, and after four catalytic cycles the loss of catalyst 
activity was low.  

Chaskar prepared 1H, 3H- thiazolo [3, 4-a] benzimida-
zole derivatives using phosphomolybdic acid (H3PMo12O40) 
in ionic liquid at 70°C for 45 min [72]. The desired products, 
which could act as potential HIV-1RT inhibitors as well, 
were obtained in good yields. The catalyst was reused in 
three catalytic cycles, showing almost constant activity 
(Scheme 10).  

PYRANOPYRAZOLES 

Pyranopyrazoles are bioactive compounds with important 
applications as anticancer, antimicrobial, anti-inflammatory,  
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Scheme 6. Preparation of pyridine derivatives.  
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Scheme 14. Preparation of azabicyclo[2.2.2]octan-5-ones. 

insecticidal, and molluscicidal agents. They are also used as 
pharmaceutical ingredients and biodegradable agrochemicals 
[73-81]. 

Chavan and co-workers prepared pyranopyrazole deriva-
tives through a one-pot four-multicomponent reaction using 
2 mol% silicotungstic acid (H4SiW12O40) as catalyst under 
solvent-free conditions at 60°C for 10 min (Scheme 11). 
Twenty-two different pyranopyrazoles were prepared with 
yields ranging from 58% to 96 % [82]. 

1,4-DIHYDROPYRIDINES 

1,4-Dihydropyridine (1,4-DHP) derivatives have 
significant biological activity. They function as calcium 
channel blockers and hence, they are suitable for the treat-
ment of cardiovascular diseases, as vasodilators, antiaathero-
sclerotic, antitumor, geroprotective, antidiabetic, neuropro-
tective, antianginal, anti-inflammatory, antitubercular, anal-
gesic and antithrombotic agents, among other applications 
[48, 49, 83-94]. 

Supale and Gokavi reported a method to prepare polyhy-
droquinoline derivatives by using enneamolybdomanganate 
(IV) ((NH4)6[MnIVMo9O32]) as catalyst in ethanol at room 
temperature. This material is one of the stable heteropolymo-
lybdates containing MnIV as a heteroatom and is noncentro-
symmetric [95]. In reaction times from 1.5 to 2 h products 
were obtained in yields greater than 82% (Scheme 12). 

Our research group presented a method for 1,4-DHPs 
preparation using Wells-Dawson heteropolyacid (H6P2 
W18O62.24H2O) as catalyst under solvent-free conditions at 
80°C for 25 to 120 min (Scheme 13) [96]. Product yields are 
from good to excellent, and after three catalytic cycles, cata-
lyst activity is almost constant.  

AZABICYCLO[2.2.2]OCTAN-5-ONES 

Borkin and co-workers prepared azabicyclo[2.2.2]octan-
5-ones using 12-tungstosilicic acid (H4SiW12O40, 3.5 mol%) 

as catalytic material under microwave irradiation and aceto-
nitrile as reaction solvent for 10 min at 100°C (Scheme 14) 
[97]. The products were obtained in good yields and were 
pre-evaluated in two processes that are thought to be impor-
tant in the development of Alzheimer’s disease. Some com-
pounds showed promising activity in these assays, raising 
the possibility of using them as lead scaffolds for the synthe-
sis of dual target inhibitors. 

DISPIROHETEROCYCLES 

Spiro compounds are an important class of naturally oc-
curring substances characterized by their pronounced bio-
logical properties [98-103] such as potent aldose reductase 
inhibitors, polio and rhinovirus 3C-proteinase inhibitors.  

Babu and Raghunathan used H4Si(W3O10)3 as catalyst in 
a one-pot four-component reaction to prepare dispiroindeno-
quinoxaline pyrrolizidine derivatives [104]. They tested the 
catalyst activity through three methods: H4Si(W3O10)3 in 
methanol at reflux, H4Si(W3O10)3 in acetonitrile at reflux, 
and H4Si(W3O10)3-silica in acetonitrile at reflux. All methods 
presented good to excellent yields in reaction times of less 
than 4 h. Some reactions are presented in Scheme 15.  

SPIROFUSED HETEROCYCLES 

Jetti and collaborators used decatungstodivanadoger-
manic acid (H6GeW10V2O40⋅22H2O) for the synthesis of spi-
rofused heterocycles under microwave irradiation in solvent-
free conditions at 80°C [105]. The catalyst can be used for 
subsequent cycles without appreciable loss of activity 
(Scheme 16).  

In this work we have presented a compilation of modern 
and greener pathways, by using heteropolycompounds as 
catalysts, to prepare organic compounds. In most cases prod-
uct yields are from good to excellent, and catalysts maintain 
their activity along several catalytic cycles.  

Many researchers have used microwaves as an alternative 
energy  source,  lower  reaction  temperatures, green solvents  
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Scheme 15. Preparation of dispiroindenoquinoxaline pyrrolizidine derivatives. 
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Scheme 16. Preparation of spirofused heterocycles.  

such as ethanol and water, and even some reactions under 
solvent-free conditions.  

All the above-mentioned modifications help generate al-
ready known and new organic structures, maximizing the 
ecocompatibility of the systems. Those approaches are noth-
ing more and nothing else than what the scientific commu-
nity should adopt in their laboratories, greener and efficient 
chemistry to obtain organic products with minimal environ-
mental contamination. 
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