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Nonlinear MPC for Tracking Piece-Wise
Constant Reference Signals

Daniel Limon , Antonio Ferramosca , Ignacio Alvarado , and Teodoro Alamo

Abstract—This paper presents a novel tracking predictive
controller for constrained nonlinear systems capable to deal
with sudden and large variations of a piece-wise constant
setpoint signal. The uncertain nature of the setpoint may
lead to stability and feasibility issues if a regulation predic-
tive controller based on the stabilizing terminal constraint
is used. The tracking model predictive controller presented
in this paper extends the MPC for tracking for constrained
linear systems to the more complex case of constrained
nonlinear systems. The key idea is the addition of an arti-
ficial reference as a new decision variable. The considered
cost function penalizes the deviation of the predicted tra-
jectory with respect to the artificial reference as well as
the distance between the artificial reference and the set-
point. Closed-loop stability and recursive feasibility for any
setpoint are guaranteed, thanks to an appropriate terminal
cost and extended stabilizing terminal constraint. Also, two
simplified formulations are shown: the design based on a
terminal equality constraint and the design without terminal
constraint. The resulting controller ensures recursive feasi-
bility for any changing setpoint. In the case of unreachable
setpoints, asymptotic stability of the optimal reachable set-
point is also proved. The properties of the controller have
been tested on a constrained continuous stirred tank re-
actor simulation model and have been experimentally vali-
dated on a four-tanks plant.

Index Terms—Model predictive control, nonlinear sys-
tems, setpoint tracking.

I. INTRODUCTION

MODEL predictive control (MPC) is one of the most suc-
cessful advanced control techniques in the process in-

dustry. Its properties have been widely investigated in the last
two decades and currently the MPC is a control technique ca-
pable to provide stability, robustness, constraint satisfaction,
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and tractable computation for linear and for nonlinear systems
[6], [30].

Most of the stabilizing predictive controllers deal with the
regulation problem, that is, controlling the system to a fixed set-
point (which is typically assumed to be the origin) [30, p. 159].
Asymptotic stability of the setpoint and constraints satisfaction
of the closed loop can be guaranteed by designing the terminal
cost function and the terminal constraint in such a way that they
satisfy certain conditions in a neighborhood of the setpoint [25],
[27], [28].

It is not unusual that this setpoint is changed during the op-
eration of the system leading to a piece-wise constant reference
signal. In the process industry, the main goal of advanced con-
trol strategies is to operate the plants as close as possible to
the economically optimal operation point, while ensuring the
satisfaction of the operation limits and stability.

The economic objective to be optimized by the real time op-
timizer may be changed during the operation of a plant, due to
possible changes in the unitary costs that define this function,
adaptation of the forecasted demands or changes in disturbance
estimation derived from the reconciled data of the plant. If the
economic objective changes, the economically optimal opera-
tion point may change. The stabilizing design of the MPC may
not be valid at the new setpoint, and then, the feasibility of the
controller may be lost. Consequently, the controller may fail to
track the desired setpoint [1], [4], [12], [19], [29], [31].

Several solutions have been proposed to deal with changing
setpoints [28]. In [15], a nonlinear predictive control for a fi-
nite set of setpoints is presented. This controller considers a
pseudolinearization of the system and a parameterization of the
setpoints. The stability is ensured thanks to a quasi-infinite non-
linear MPC strategy but only for the finite set of setpoints. If the
new setpoint does not belong to the set of predefined setpoints,
the stability may be lost.

In [9], the tracking problem for constrained linear systems
is solved by means of an approach called dual mode: the dual
mode controller operates as a regulator in a neighborhood of
the desired equilibrium wherein constraints are feasible, while
it switches to a feasibility recovery mode, whenever this is lost
due to a setpoint change. This control law ensures the recur-
sive feasibility in case of changing setpoints for linear systems.
However, it may exhibit poor performance when the feasibility
recovery mode is active.

In [25], an output feedback receding horizon control algo-
rithm for nonlinear discrete-time systems is presented. This
controller solves the problem of tracking exogenous signals
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and asymptotically rejecting disturbances generated by an ex-
osystem. In [26], an MPC algorithm for nonlinear systems is
proposed, which guarantees local stability and asymptotic track-
ing of constant references. This algorithm needs the addition of
an integrator to the system to guarantee the solution of the
asymptotic tracking problem. These predictive controllers ad-
dress the tracking problem but the issue of the feasibility loss
under changing setpoints is not considered.

Another approach to the tracking problem for nonlinear sys-
tems is the so-called reference governors [2], [4], [8], [16], [17].
This solution is based on a two-layer control law such that, in the
lower level, an unconstrained stabilizing control law is designed
and, in the upper level, the reference governor manipulates the
reference of the lower lever controller. The reference governor is
a nonlinear feedback system which computes at each sampling
time an artificial reference to ensure the admissible evolution
of the system, converging to the desired reference. This class
of control techniques maintains the feasibility of the problem
under changing setpoints, but the fact that only one action is
available for satisfying all future constraints may lead to a poor
closed-loop performance.

A novel tracking MPC formulation for constrained linear
systems has been presented in [14], [19], and [21]. The main
characteristics of this control technique are as follows: similarly
to the reference governors, an artificial reference is considered
as a new decision variable together with the sequence of fu-
ture control inputs; a cost function that penalizes the predicted
tracking error with respect to the artificial steady state plus an
additional term that penalizes the deviation between the artificial
setpoint and the (actual) setpoint (the so-called offset cost func-
tion) is minimized and an extended terminal constraint based
on an invariant set for tracking is considered. This controller
ensures that under any change of the setpoint, the closed-loop
system maintains the feasibility of the controller and ensures
the convergence to the setpoint if admissible.

The objective of this paper is to extend this tracking control
technique to the case of constrained nonlinear systems. Some
preliminary results were presented in [13] and [22]. Based on
these results, Fagiano and Teel [10] extended the idea of using a
generalized terminal constraint to the context of economic pre-
dictive control of constrained nonlinear systems. The proposed
controller achieves practical stability by the addition of an ad-
ditional time-varying terminal constraint and by weighting the
economic cost function of the terminal state. On the other hand,
in [11], a time-varying constraint on the optimal cost function is
added in the optimization problem and a filter on the reference
provided to the predictive controller is considered in order to
achieve soft transients under large changes of the setpoint.

In the present work, the ideas of [13], [14], [21] and [22]
have been extended to deal with constrained nonlinear systems
by means of a terminal inequality constraint and a prediction
horizon larger than the control horizon. Stabilizing design condi-
tions are given and constraint satisfaction and Lyapunov stability
under (potentially) piece-wise constant setpoints are rigorously
proved. A simplified formulation based on a terminal equality
constraint is also presented. On the other hand, the design of
stabilizing MPC controllers without using a terminal constraint

is particularly interesting from a practical point of view (see [28]
and the references therein). In this paper, the stabilizing design
in case of removing the terminal constraint is studied and novel
results on this topic are derived. The proposed controller has
been proved on a simple simulation case and experimentally
tested on a real plant, in order to demonstrate its properties.

The paper is organized as follows. In Section II, the con-
strained tracking problem is stated. In Section III, the new MPC
for tracking is presented. In Section IV, the properties of the pro-
posed controller are discussed. In Section V, some illustrative
examples are proposed and in Section VI, an application on a
real plant is presented. Finally, in Section VII, some conclusions
are drawn.

A. Notation

A function α : R+ → R+ is a 𝒦-function, if it is continuous,
strictly increasing, and α(0) = 0. A function β : R+ → R+ is
a 𝒦∞-function, if it is a 𝒦-function and it is not bounded above.
The inverse of the𝒦-function α is denoted as α−1 and is defined
as α−1(s) = {t : α(t) = s}. Given two 𝒦-functions α1 and α2 ,
α1 ◦ α2(s) denotes the function α1(α2(s)).

Given two sets𝒜,ℬ ⊆ Rn , the Minkowsky sum𝒜⊕ ℬ is de-
fined as {c = a + b : a ∈ 𝒜, b ∈ ℬ} and the Pontryagin differ-
ence 𝒜� ℬ is defined as {c : c ⊕ ℬ ⊆ 𝒜}. In ∈ Rn×n denotes
the identity matrix. A bold variable u denotes a sequence of val-
ues of a signal (u(0), u(1), . . . , u(N − 1)) , where u(i) denotes
the ith component and N is the length of the sequence. For a
given z ∈ Rn , |z| denotes its Euclidean norm. The ball of radius
ε, ℬn (ε) ⊆ Rn , is given by ℬn (ε) = {x ∈ Rn : |x| ≤ ε}.

II. PROBLEM STATEMENT

We consider a system described by a nonlinear invariant dis-
crete time model:

x+ = f(x, u)

y = h(x, u) (1)

where x ∈ Rn is the system state, u ∈ Rm is the current con-
trol vector, and x+ is the successor state. The variable y ∈ Rp

is the controlled output and it is chosen to define the de-
sired equilibrium point of the plant by means of a suitable
setpoint yt .

The functions of the model f(x, u) and h(x, u) are assumed
to be continuous at any equilibrium point. The solution of this
system for a given sequence of control inputs u and initial state
x is denoted as x(j) = φ(j;x,u) where x = φ(0;x,u). The
state of the system and the control input applied at sampling
time k are denoted as x(k) and u(k), respectively.

The system is subject to hard constraints on state and control:

(x(k), u(k)) ∈ Z (2)

for all k ≥ 0, where Z ⊂ Rn+m is a closed set whose interior
is not empty.
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The steady state, input, and output of the plant (xs, us, ys)
are such that (1) is fulfilled, i.e.

xs = f(xs, us) (3a)

ys = h(xs, us). (3b)

In order to avoid those equilibrium points with active con-
straints, (for reasons that will be clear later on), the following
restricted constraint set is defined:

Ẑ = {z : z + e ∈ Z,∀|e| ≤ ε} (4)

where ε > 0 is an arbitrarily small constant. Then, the set of
admissible equilibrium states such that the constraints are not
active is defined as follows:

Zs = {(x, u) ∈ Ẑ : x = f(x, u)}, (5)

Ys = {y = h(x, u) : (x, u) ∈ Zs}. (6)

It is assumed that the set Zs is nonempty. Notice that since the
parameter ε can be chosen arbitrarily small, equilibrium points
arbitrarily close to the boundary of Z, are contained in Zs .

Assumption 1: It is assumed that the output of the system
is chosen in such a way that the steady output ys univocally
defines the equilibrium point (xs, us). That is, for any given ys ,
there exists a unique steady state and input (xs, us) such that
xs = f(xs, us) and ys = h(xs, us).

It is also assumed that there exists a locally Lipschitz
continuous function gx : Ys → Rn and a continuous function
gu : Ys → Rm such that

xs = gx(ys), us = gu (ys). (7)

�
Remark 1: Assumption 1 is satisfied if the model functions,

f(·, ·) and h(·, ·), are continuously differentiable and the Jaco-
bian matrix [

(A(xs, us) − In ) B(xs, us)
C(xs, us) D(xs, us)

]

where

A(xs, us) =
∂f(x, u)

∂x
(xs, us), B(xs, us) =

∂f(x, u)
∂u

(xs, us),

C(xs, us) =
∂h(x, u)

∂x
(xs, us), D(xs, us) =

∂h(x, u)
∂u

(xs, us)

is nonsingular for all (xs, us) ∈ Zs .
This is a direct consequence of the application of the im-

plicit function theorem [7, Ch. 3] to the equilibrium point (3).
Notice that, for the linear case, this condition is the same
as the necessary and sufficient condition presented in [30,
Lemma 1.14].

The objective of the paper is to design a state feedback track-
ing MPC control law u = κMPC(x, yt) such that for a given
reference (setpoint or output target) yt , the closed-loop system
is stable, fulfills the constraints throughout the time, and con-
verges (as close as possible) to the equilibrium point defined by
the given setpoint yt . Besides, this property must hold even in

case that the setpoint yt is suddenly changed to a different con-
stant value not known a priori. Notice that this case corresponds
to tracking a piecewise constant reference signal.

III. MPC FOR TRACKING

In this section, the proposed MPC for tracking is presented.
The key of this formulation is the addition of an artificial ref-
erence ys as an extra decision variable in the optimal control
problem to avoid the possible loss of feasibility derived from
changes in the setpoint. The convergence to the (actual) setpoint
yt is achieved by adding the term VO (ys − yt) that penalizes
the deviation between the artificial reference ys and the setpoint
yt . In order to ensure asymptotic stability, a terminal cost func-
tion and a terminal constraint are added. These are based on
a suitable terminal control law u = κ(x, ys) [27]. Besides, as
proposed in [24], a prediction horizon Np larger than the control
horizon Nc is considered. Next, the optimization problem and
the conditions that the design parameters have to fulfill in order
to ensure asymptotic stability are presented. In the following
section, a simple choice of these ingredients will be shown.

For a given state x and setpoint yt , the cost function of the
proposed MPC is given by:

VNc ,Np
(x, yt ;u, ys) =

Nc −1∑
j=0

�(x(j) − xs, u(j) − us)

+
Np −1∑
j=Nc

�(x(j) − xs, κ(x(j), ys) − us)

+ Vf (x(Np) − xs, ys) + VO (ys − yt)
(8)

where u is a given sequence of control inputs {u(0), . . . ,
u(Nc − 1)}, ys is the artificial reference, x(j) = φ(j;x,u),
xs = gx(ys), and us = gu (ys). The function � : Rn × Rm →
R is the stage cost function, the function Vf : Rn → R is the
terminal cost function, and the function VO : Rp → R is the
offset cost function and all of them are positive definite func-
tions. Notice that the first three terms of VNc ,Np

(·) penalize the
predicted tracking error with respect to the artificial reference
ys , while the deviation between the artificial reference and the
setpoint (ys − yt) is penalized by the offset cost function.

In order to derive the stability conditions, it is convenient to
extend the notion of invariant set for tracking introduced in [16]
and [21] to the nonlinear case, which is defined as follows.

Definition 1 (Invariant set for tracking): For a given set of
constraints Z, a set of feasible setpoints Yt ⊆ Ys and a local
control law u = κ(x, ys), a set Γ ⊂ Rn × Rp is an (admissible)
invariant set for tracking for system (1) if for all (x, ys) ∈ Γ,
we have that (x, κ(x, ys)) ∈ Z, ys ∈ Yt , and (f(x, κ(x, ys))
, ys) ∈ Γ. �

This set can be read as the set of initial states and set-
points (x, ys) that provide an admissible evolution of the system
(1) controlled by the control law u = κ(x, ys) with a constant
reference ys .
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The MPC for tracking control law is derived from the solution
of the optimization problem PNc ,Np

(x, yt) given by:

min
u,ys

VNc ,Np
(x, yt ;u, ys) (9a)

s.t.

x(0) = x, (9b)

x(j + 1) = f(x(j), u(j)), j = 0, . . . , Nc − 1 (9c)

(x(j), u(j)) ∈ Z, j = 0, . . . , Nc − 1 (9d)

x(j + 1) = f(x(j), κ(x(j), ys)), j = Nc, . . . , Np − 1 (9e)

(x(j), κ(x(j), ys)) ∈ Z, j = Nc, . . . , Np − 1 (9f)

xs = gx(ys), us = gu (ys), (9g)

(x(Np), ys) ∈ Γ. (9h)

Notice that constraints (9g) could be replaced by

xs = f(xs, us)

ys = h(xs, us)

being xs and us new decision variables. This set of constraints
is suitable when the functions gx(·) and gu (·) are not explicitly
known.

The optimal solution to this optimization problem and the op-
timal cost function will be denoted as (u0(x, yt), y0

s (x, yt)) and
V 0

Nc ,Np
(x, yt), respectively. Considering the receding horizon

policy, the control law is given by

κNc ,Np
(x, yt) = u0(0;x, yt).

It is important to remark that an extended terminal constraint
on the terminal state x(Np) and the artificial steady output ys

is used. Besides, since the set of constraints of PNc ,Np
(x, yt)

does not depend on yt , its feasible region does not depend on
the setpoint yt . Then there exists a region XNc ,Np

⊆ IRn such
that for all x ∈ XNc ,Np

and for all yt ∈ Rp , the optimization
problem PNc ,Np

(x, yt) is feasible.
The stage cost function, the offset cost function, and the set

of feasible setpoints must fulfill the following assumptions:
Assumption 2:
1) There exists a𝒦∞ function α� such that �(z, v) ≥ α�(|z|)

for all (z, v) ∈ IRn+m .
2) The set of feasible setpoints Yt is a convex subset of Ys .
3) The offset cost function VO : Rp → R is a subdifferen-

tiable convex positive definite function such that the min-
imizer

y∗
s = arg min

ys ∈Yt

VO (ys − yt)

is unique. Moreover, there exists a 𝒦∞ function αO such
that

VO (ys − yt) − VO (y∗
s − yt) ≥ αO (|ys − y∗

s |).
�

Remark 2: If the set Ys is convex, then set Yt can be chosen
to be equal to Ys . For instance, in the case that the dimension
of the output subspace is p = 1 and set Ys is connected, then
Yt = Ys .

In order to ensure asymptotic stability, the terminal ingredi-
ents, κ(·), Vf (·), and Γ, must fulfill the following conditions:

Assumption 3:
1) Let Γ be an invariant set for tracking for the system

x+ = f(x, κ(x, ys)).
2) Let κ(x, ys) be a control law such that for all (x, ys) ∈ Γ,

the equilibrium point xs = gx(ys) and us = gu (ys) is an
asymptotically stable equilibrium point for the system
x+ = f(x, κ(x, ys)). Besides, κ(x, ys) is continuous at
(xs, ys) for all ys ∈ Yt .

3) Let Vf (x − xs, ys) be a Lyapunov function for system
x+ = f(x, κ(x, ys)) such that for all (x, ys) ∈ Γ there
exist constants b > 0 and σ > 1 which verify

Vf (x − xs, ys) ≤ b|x − xs |σ

and

Vf (f(x, κ(x, ys)) − xs, ys) − Vf (x − xs, ys) ≤
−�(x − xs, κ(x, ys) − us)

where xs = gx(ys) and us = gu (ys).
�

Notice that the assumptions on the terminal ingredients are
similar to the ones presented in [27] but extended to hold for
any constant reference contained in a set of equilibrium points.
These assumptions require the calculation of a control law capa-
ble to locally asymptotically stabilize the system to any steady
state contained in the set Yt . This is a standard tracking control
problem and it is also present in the design of other controllers
such as the command governors [2], [3], [8], [9]. Since the con-
ditions to be fulfilled by the terminal ingredients are required
to hold only locally, a number of existing techniques could be
used, such as those based on the linearization of the plant [30,
p. 145]. In order to make the paper self-contained, a design pro-
cedure is presented in Appendix B. This method is based on
the LTV modeling technique and the partition method proposed
in [32] and [33]. Besides, the following sections are devoted
to present two schemes of the proposed controller with a more
simple design procedure.

The following theorem presents the main result of this paper.
It ensures the closed-loop stability and convergence of the sys-
tem controlled by the MPC for tracking. For the sake of clarity,
the proof can be found in Appendix A.

Theorem 1 (Asymptotic Nominal Stability): Suppose that
Assumptions 1, 2, and 3 hold and consider a given constant
setpoint yt . Then for any feasible initial state x0 ∈ XNc ,Np

,
the system controlled by the MPC controller κNc ,Np

(x, yt)
derived from the solution of (9) is stable, fulfills the constraints
throughout the time, and converges to an equilibrium point
such that

1) If yt ∈ Yt , then limk→∞|y(k) − yt | = 0.
2) If yt �∈ Yt , then limk→∞|y(k) − y∗

s | = 0, where

y∗
s = arg min

ys ∈Yt

VO (ys − yt).

�
Remark 3 (Stability for Piece-Wise Constant References):

Given that the set of constraints of the optimization problem
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PNc ,Np
(x, yt) does not depend on the setpoint yt , the proposed

controller is recursively feasible for any given setpoint.
Furthermore, if the setpoint remains constant for a sufficiently
long period of time, then the controller steers asymptotically
the output to the best reachable reference y∗

s .
Therefore, if the setpoint changes from a constant value to a

different constant value, i.e., step changes of the setpoint signal,
then the controller maintains the feasibility and steers the system
to the best possible equilibrium point for the new value of the
setpoint irrespective of the amplitude of the change.

Remark 4: Since for all Np ≥ Nc , XNc ,Np
⊆ XNc ,Np +1 , the

domain of attraction of the controller can be enlarged by in-
creasing the prediction horizon Np [24]. However, the result of
Theorem 1 and the stability proof are still valid if a formulation
with N = Nc = Np is chosen.

A. Simple Stabilizing Design: Terminal Equality
Constraint

From a practical point of view, it is interesting to find simple
methods to derive the terminal ingredients. The most simple
way to design the proposed MPC for tracking is considering that
Np = Nc = N and the terminal state reaches the artificial steady
state. This is equivalent to choose the terminal control law as the
steady input of the artificial reference, that is κ(x, ys) = gu (ys),
and the set Γ = {(x, ys) : x = gx(ys), ys ∈ Yt} as the terminal
constraint.

In this case, the cost function is given by:

VN (x, yt ;u, ys) =
N −1∑
j=0

�((x(j) − xs), (u(j) − us))

+VO (ys − yt).

Notice that no terminal cost function is added, i.e., Vf (·) = 0.
The controller is derived from the solution of the optimization
problem PN (x, yt) given by:

min
u,ys

VN (x, yt ;u, ys) (10a)

s.t.

x(0) = x, (10b)

x(j + 1) = f(x(j), u(j)), j = 0, . . . , N − 1 (10c)

(x(j), u(j)) ∈ Z, j = 0, . . . , N − 1 (10d)

xs = gx(ys), us = gu (ys) (10e)

ys ∈ Yt (10f)

x(N) = xs. (10g)

Notice that constraints (10f) and (10g) are equivalent to
adding the terminal condition (x(N), ys) ∈ Γ = {(x, ys) : x =
gx(ys), ys ∈ Yt}. Then, the proposed choice of the terminal in-
gredients can be posed as a terminal equality constraint.

As it is usual in MPC with terminal equality constraint, a
controllability assumption is required [30, Assumption 2.23]
to derive asymptotic stability. In this case, the following
controllability condition is stated.

Assumption 4: The model function f(x, u) is differentiable
at any equilibrium point (xs, us) ∈ Zs and the linearized model
given by the matrices (A(xs, us), B(xs, us)) is controllable.
Furthermore, there exist positive constants ε, b > 0 and σ > 1
such that

N −1∑
i=0

�(x(i) − xs, u(i) − us) ≤ b|x − xs |σ

holds for any feasible solution (u, ys) of PN (x, yt) such that
|x − xs | ≤ ε and |u(i) − us | ≤ ε. �

This condition is similar to [30, Assumption 2.23] with the
additional condition that the upper bound 𝒦∞ function is ex-
ponential. This condition holds, for instance, if the stage cost is
locally upper-bounded by a quadratic function and the linearized
model at each equilibrium point is controllable.

The following theorem proves asymptotic stability and
constraints satisfaction of the controlled system. The proof can
be found in Appendix A.

Theorem 2 (Asymptotic Nominal Stability): Consider that
assumptions 1, 2, and 4 hold and the prediction horizon satisfies
N ≥ n. Then, for any setpoint yt and for any feasible initial
state x0 ∈ XN , the system controlled by the MPC controller
κN (x, yt) derived from the solution of (10) is stable, converges
to an equilibrium point, fulfills the constraints throughout the
time and besides

1) If yt ∈ Yt , then limk→∞|y(k) − yt | = 0.
2) If yt �∈ Yt , then limk→∞|y(k) − y∗

s | = 0, where

y∗
s = arg min

ys ∈Yt

VO (ys − yt).

�
Stability for any piece-wise constant reference signal stated

in Remark 3 holds also in this case.
The MPC for tracking based on the equality constraint is very

simple to design and ensures closed-loop stability. However, it
has also some drawbacks with respect to the general case: 1)
the domain of attraction is potentially smaller, that is, XNc

⊆
XNc ,Np

and 2) the benefits of using a prediction horizon larger
than the control horizon in terms of closed-loop performance
[24] may be lost. In the following section, a method is presented
to design a stabilizing MPC for tracking with Np > Nc such
that the terminal constraint is removed from the optimization
problem.

B. Stabilizing Design Without Terminal Constraint

The stabilizing design of the MPC based on terminal ingre-
dients requires the calculation of the terminal control law, the
terminal cost function, and the terminal region. While the calcu-
lation of the first two ingredients can be done by using efficient
techniques, the calculation of the terminal region may be cum-
bersome. This has motivated the study of stabilizing predictive
controllers without terminal constraint (see [28, Sec. 2.2.1]). In
this section, it is shown how to design the proposed controller
when the terminal constraint is removed from the optimization
problem.
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The following results are the extension of [20] to the case of
the MPC for tracking with a prediction horizon larger than the
control horizon.

Consider that Vf (x − xs, ys) is a terminal cost function and
κ(x, ys) a terminal control law that satisfy Assumption 3. Define
the region Γα as follows:

Γα = {(x, ys) : Vf (x − gx(ys), ys) ≤ α, ys ∈ Yt} (11)

such that Γα is an invariant set for tracking. Notice that there
exists a constant α > 0 satisfying this condition since for all
reachable setpoint in Yt , the constraints are not active thanks to
the condition (4).

Let V γ
Nc ,Np

(x, yt ;u, ys) be the cost function (9) considering a
weighted terminal cost function γVf (x − xs, ys). Then, the op-
timization problem without terminal constraint, Pγ

Nc ,Np
(x, yt),

is given by:

min
u,ys

V γ
Nc ,Np

(x, yt ;u, ys) (12a)

s.t. (9b)–(9g), (10f). (12b)

Let V γ ,0
Nc ,Np

(x, yt) be the optimal cost of Pγ
Nc ,Np

(x, yt) and
define the following level set:

ΥNp ,γ (yt) = {x : V γ ,0
Nc ,Np

(x,yt) − VO (y∗
s − yt) ≤ Npd + γα}

where d is a positive constant such that �(x − gx(ys),
u − gu (ys)) ≥ d for all (x, ys) �∈ Γα (see Lemma 4 in the
appendix).

Then we can state the following theorem.
Theorem 3: Consider that Assumptions 1, 2, and 3 hold and

consider a given setpoint yt . Let κγ
Nc ,Np

(x, yt) be the predictive
control law derived from Pγ

Nc ,Np
(x, yt) for any γ ≥ 1. Then, for

all x(0) ∈ ΥNp ,γ (yt), the system controlled by κγ
Nc ,Np

(x, yt) is
stable, converges to an equilibrium point, fulfills the constraints
throughout the time and besides

1) If yt ∈ Yt , then limk→∞|y(k) − yt | = 0.
2) If yt �∈ Yt , then limk→∞|y(k) − y∗

s | = 0, where

y∗
s = arg min

ys ∈Ys

VO (ys − yt).

�
The proof of this theorem can be found in Appendix A. Fur-

thermore, stability for any piece-wise constant reference signal
stated in Remark 3 holds also in this case.

From this theorem and from [20], the following property can
be derived.

Property 1: The stability region ΥNp ,γ (yt) is enlarged as the
prediction horizon Np and/or the weighting factor γ is enlarged.

�
In order to use this result in a practical case, an estimation of

these parameters would be interesting. The following property
gives an explicit formula that allows us to get a domain of
attraction larger than that of the proposed controller with an
equality constraint.

Property 2: Assume that Z is a compact set. Let D be a
constant such that �(x − xs, u − us) ≤ D for all (x, u) ∈ Z and
(xs, us) ∈ Zs . Let V̂O be a constant such that VO (ys − yt) ≤
V̂O for all ys ∈ Yt and for all possible yt . Define the constant

γ0 as

γ0 = max

(
NcD − Npd + V̂O

α
, 1

)
.

Then
1) ΥNp ,γ0 (yt) contains the domain of attraction of the con-

troller with a terminal equality constraint, i.e., XNc
.

2) For any γ ≥ γ0 , the set ΥNp ,γ (yt) contains the domain of
attraction of the controller with a prediction and control
horizon equal to Nc and the terminal constraint set Γρα ,
where ρ = 1 − γ0

γ .
�

The proof of this property can be found in Appendix A.
Remark 5: From the latter properties, it can be proved that

if the initial state x0 is a feasible equilibrium point, i.e., x0 =
gx(y0) with y0 ∈ Yt , then the MPC for tracking without terminal
constraint asymptotically stabilizes the system for all Np and γ
such that

Npd + γα ≥ V̂O .

This is derived from the fact that applying the equilibrium input
u0 = gu (y0), the system remains at the equilibrium point, which
is feasible. Then taking a suboptimal solution such that u(i) =
u0 and ys = y0 , we have that

V γ ,0
N (x0) ≤ VO (y0 − yt) ≤ V̂O ≤ Np d + γα

which demonstrates that x0 ∈ ΥNp ,γ (yt)
Remark 6: Notice that the set ΥNp ,γ (yt) depends on the pre-

diction horizon Np , not on the control horizon Nc . This set is
then larger than the one presented in [20], even for the regulation
case.

IV. PROPERTIES OF THE MPC FOR TRACKING

It has been shown that the proposed controller ensures closed-
loop stability and convergence to the best admissible equilib-
rium point in Yt . Additionally, this controller has some other
interesting properties that are detailed next.

A. Stability for Any Admissible Setpoint

From the stability theorems, it can be derived that if the initial
state is feasible, then the proposed controller is able to track any
setpoint yt ∈ Yt .

However, in practice, it may be difficult to know beforehand if
the current state is in the feasible region in order to close the loop
with the controller. In real applications, it is a common practice
that the plant is manually operated to an admissible equilibrium
point before closing the control loop. Then assuming that the
initial state is an admissible equilibrium point (x0 , u0) such that
y0 ∈ Yt , the proposed controller ensures that the optimization
problem would be feasible and the proposed controller would
steer the system to the given setpoint yt ∈ Yt under the assump-
tions of the stability theorems. This is derived from the fact that
in this case, the steady state x0 is contained in the domain of
attraction of the proposed controller even if Nc = 1 (or n, in the
case of a terminal equality constraint). Particularly interesting is
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the case of the MPC for tracking without a terminal constraint,
which can drive the plant to any setpoint yt ∈ Yt with Nc = 1
and taking γ ≥ V̂O +D−d

α .

B. Enlargement of the Domain of Attraction

The domain of attraction of the standard MPC to regulate
the system to the setpoint yt , XNc ,Np

(yt) is the set of initial
states that can be admissible steered to (a neighborhood of)
xt = gx(yt) in Np steps. On the other hand, the domain of
attraction of the proposed controller, XNc ,Np

, is the set of states
that can be admissible steered to any setpoint ys ∈ Yt , not only
to yt . This can be read as

XNc ,Np
=
⋃

ys ∈Yt

XNc ,Np
(ys).

Then the domain of attraction of the proposed controller is
(potentially) larger than the domain of the standard MPC for
regulation. This property is particularly interesting for small
values of the control horizon and makes the proposed controller
interesting even in case of a fixed setpoint.

It is worth remarking that the feasibility and implementation
problems that arise when a stabilizing MPC with the equality
constraint is adopted are typically derived from the terminal
equality constraint. However, in the proposed MPC, this termi-
nal equality constraint is not hard to satisfy, since the termi-
nal state xs is actually a decision variable of the optimization
problem, making this controller more appealing.

This property is illustrated in the example of Section V.

C. Steady-State Optimization for Unreachable Setpoints

It is not unusual that the given setpoint yt is unreachable,
that is, it is not contained in Yt . This may happen when the
provided setpoint is not consistent with the prediction model or
when the associated equilibrium point is not consistent with the
constraints considered in the optimization problem. From the
theorems, it can be clearly seen that in this case, the proposed
controller maintains the recursive feasibility and steers the sys-
tem to the optimal operating point according to the offset cost
function VO (·), that is, to the admissible equilibrium point that
minimizes the offset cost function. Then, this function serves
as a measure of the cost of the offset in case of unreachable
setpoints. Therefore, the offset cost function can be chosen in
order to define where the system should converge in case of
unreachable setpoints.

D. Local Optimality

It is well known that the MPC for regulation is equal to the
infinite-horizon optimal controller if the terminal controller and
the terminal cost function are the local optimal controller and
optimal cost function, respectively [30]. However, the proposed
MPC for tracking can be considered as a suboptimal controller
due to the addition of the artificial reference and the chosen cost
function to be optimized. It is now proved that under a mild
assumption on the offset cost function, the MPC for tracking
locally provides the same solution than the standard MPC for
regulation, recovering its local optimality property.

To this aim, the offset cost function must ensure the following
mild assumption.

Assumption 5: Let the offset cost function fulfill
Assumption 2. Moreover, there exists a positive constant
μ such that:

VO (ys − yt) ≥ μ|ys − yt |
�

where | · | denotes a certain norm.
In order to demonstrate this property, it is interesting to see

that the standard MPC control law for regulation to a setpoint
yt ∈ Ys , kr

Nc ,Np
(x, yt) can be derived from the optimization

problem of the proposed controller but forcing that ys = yt ,
that is, from the solution of the following optimization problem
Pr

Nc ,Np
(x, yt):

V r,0
Nc ,Np

(x, yt) = min
u,ys

VNc ,Np
(x, yt ;u, ys)

s.t. (9b)–(9g)

|ys − yt |d = 0

where the norm | · |d is chosen to be the dual norm of | · |,
namely, |z|d = max|v |≤1 z′v [23]. The domain of attraction of
this problem is a compact set noted as Xr

Nc ,Np
(yt). Then, the

ideas presented in [14] and [21] can be extended to the non-
linear case, yielding to the following property that is proved in
Appendix A.

Property 3: Consider that Assumptions 1, 2, and 5 hold.
Assume that the solution of the optimization problem
PNc ,Np

(x, yt) is unique. Then, there exists a μ∗ such that for all
μ ≥ μ∗ and for all x ∈ Xr

Nc ,Np
(yt), the MPC for tracking equals

the MPC for regulation, that is kNc ,Np
(x, yt) = kr

Nc ,Np
(x, yt).

Remark 7: The last property is strictly related to the rate of
convergence of the proposed controller: the larger the value of
μ, the faster the convergence. Moreover, if μ ≥ μ∗, then the
rate of convergence is the same as that of the standard MPC for
regulation.

V. ILLUSTRATIVE EXAMPLE

In this section, some examples are presented to show the
properties of the presented controller.

A. Enlargement of the Domain of Attraction

The aim of this example is to show the property of enlarge-
ment of the domain of attraction of the proposed controller. The
system considered is a continuous stirred tank reactor (CSTR)
[8], [24]. Assuming constant liquid volume, the CSTR for an
exothermic, irreversible reaction, A → B, is described by the
following model:

ĊA =
q

V
(CAf − CA ) − koe

( −E
R T )CA

Ṫ =
q

V
(Tf − T ) − ΔH

ρCp
koe

(−E
R T )CA +

UA

V ρCp
(Tc − T )

(13)

where CA is the concentration of A in the reactor (mol/l), T
is the reactor temperature (K), and Tc is the temperature of the
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Fig. 1. Domains of attraction of the MPC for tracking with the terminal
equality constraints for N = 2, 10, 17 and domain of attraction of the
MPC for regulation with N = 17.

coolant stream (K). The nominal operating conditions are as
follows: q = 100 l/min, Tf = 350 K, V = 100 l, ρ = 1000 g/l,
Cp = 0.239 J/g K, ΔH = −5 × 104 J/mol, E/R = 8750 K,
k0 = 7.2 × 1010 min−1 , UA = 5 × 104 J/ min K, and CAf =
1 mol/l.

The objective is to regulate y = x2 = T and x1 = CA by
manipulating u = Tc . The constraints are 0 ≤ CA ≤ 1 mol/l,
280 K ≤ T ≤ 370 K, and 280 K ≤ Tc ≤ 370 K. The nonlinear
discrete time model of system (13) is obtained by discretiz-
ing (13) using a fifth-order Runge–Kutta method and taking as
sampling time 0.03 min. The set of reachable output is given by
304.17 K ≤ T ≤ 370 K.

The stage cost function is l(x, u) = |x − xs |2Q + |u − us |2R
where Q is a diagonal matrix which main diagonal is (1, 1/100),
and R = 1/100. The function VO = α|ys − yt |∞, with α = 100
has been chosen as offset cost function. The prediction and con-
trol horizons are Np = Nc = N . The terminal condition used is
the equality constraint. The controller has been implemented in
MATLAB using the function fmincons to solve the optimiza-
tion problem.

In the test, the objective is to evaluate the feasible set of the
MPC for tracking for different values of the horizon N . The
system has been considered to be steered to the setpoint yt =
336.9 that corresponds to the setpoint xt = (0.7255, 336.9) and
ut = 303.19, which is an admissible equilibrium point. The
initial condition is x0 = (0.7950, 332), u0 = 302.8986.

The domains of attraction are drawn in Fig. 1, and they have
been estimated for N = 2, N = 10, and N = 17, using the
Phase I algorithm [5]. The controller has been compared with a
standard MPC for regulation, whose horizon has been chosen as
N = 17. The dotted line represents the steady-states manifold
of the system. The steady state xt is represented as a dot. The
domain of attraction of the MPC for tracking with N = 2, N =
10, and N = 17, are represented, respectively, in black, red,
and blue solid line and are denoted as X2 , X10 , and X17 . The
domain of attraction of the MPC for regulation with N = 17 is
represented in dashed line and is denoted as Ω17 .

See how the MPC for tracking always provides a domain of
attraction larger than the one given by the MPC for regulation.
In the MPC for tracking, the domain of attraction is the set of
initial state that can reach any equilibrium point in N steps. This
fact is particularly evident in Fig. 1, since it can be seen that the
domain of attraction of all MPC for tracking controllers cover
the entire admissible steady-state manifold even for N = 2.

B. MPC With Terminal Inequality Constraint

In this case, a formulation with Np > Nc has been used,
taking Nc = 2 and Np = 20.

The terminal ingredients have been calculated using the
LTV modeling in partitions algorithm presented in Appendix
B. To this aim, the steady-state manifold of the system has
been divided in four partitions, given by Ys1 = [304.17; 320],
Ys2 = [320; 340], Ys3 = [340; 355], and Ys4 = [355; 370],
respectively. The terminal ingredients obtained for each region
are, respectively:

1) Ys1

K1 =
[
0.0813 −0.00084

]

P1 =
[

1960.6824 0.0784
0.0784 0.1133

]
.

2) Ys2

K2 =
[−14.7111 −4.9762

]

P2 =
[

130.6951 0.0320
0.0320 0.0871

]
.

3) Ys3

K3 =
[−68.1506 −10.1395

]

P3 =
[

467.4119 −1.3908
−1.3908 0.3197

]
.

4) Ys4

K4 =
[−77.8550 −14.9994

]

P4 =
[

4566.6258 −19.1039
−19.1039 0.8013

]
.

The obtained regions are shown in Fig. 2. Notice how the
regions calculated for the four partitions, cover the entire steady-
state manifold. The union of these regions provides the invariant
set for tracking to be used as terminal constraints.

Two changes of reference have been simulated to the setpoints
yt,1 = 365 and yt,2 = 308, starting from the initial condition
y0 = 308.

The time evolution of the system is plotted in Fig. 3. The
system evolution, the artificial reference, and the reference yt

are drawn, respectively, in solid, dashed, and dashed-dotted line.
It can be observed that the controller always steers the system to
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Fig. 2. Different terminal regions Γi for the CSTR: Γ1 in red line, Γ2 in
blue line, Γ3 black line, and Γ4 in green line.

Fig. 3. Time evolution of the system state (solid line), the artificial
equilibrium state (dashed line), and the reference signal (dashed-dotted
line).

the desired setpoint, even if the system is subject to a big change
of reference. This is due to the use of the artificial reference
which ensures feasibility for any change of setpoint.

The domain of attraction of the MPC for tracking with the
terminal inequality constraint with horizons Nc = 2 and Np =
20, X2,20 , is plotted in Fig. 4 in a black solid line. In the figure,
this set is compared to the domain of attraction of the MPC for
tracking with the terminal equality constraint, for N = 2, X2 ,
which is plotted in a blue solid line. The steady-state manifold
is plotted in the dotted line. See how the set X2,20 results to be
larger than the set X2 due to the use of a prediction horizon Np

larger than the control horizon Nc .

VI. APPLICATION TO A REAL PLANT

The presented controller has been applied to the four tanks
plant located at the process control laboratory of the University
of Seville.

Fig. 4. Comparison of the domains of attraction of the MPC for tracking
with terminal inequality constraint, with Nc = 2 and Np = 20 and the
MPC for tracking with terminal equality constraint, with N = 2.

Fig. 5. Four-tanks process. (a) Scheme of the four tank process.
(b) The real plant.

The four-tanks plant [18] is a multivariable laboratory plant
of interconnected tanks with nonlinear dynamics and subject
to state and input constraints. A scheme of this plant is pre-
sented in Fig. 5(a). The real experimental plant developed at the
University of Seville [1] is presented in Fig. 5(b).

The nonlinear continuous time model of the quadruple tank
process system [18] can be derived from first principles as fol-
lows:

dh1

dt
= −a1

S

√
2gh1 +

a3

S

√
2gh3 +

γa

3600S
qa (14a)

dh2

dt
= −a2

S

√
2gh2 +

a4

S

√
2gh4 +

γb

3600S
qb (14b)

dh3

dt
= −a3

S

√
2gh3 +

(1 − γb)
3600S

qb (14c)

dh4

dt
= −a4

S

√
2gh4 +

(1 − γa)
3600S

qa . (14d)

The plant parameters, estimated on the real plant are shown
in the following table:
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Value Unit Description

H1 m ax 1.36 m Maximum level of the tank 1
H2 m ax 1.36 m Maximum level of the tank 2
H3 m ax 1.30 m Maximum level of the tank 3
H4 m ax 1.30 m Maximum level of the tank 4
Hm in 0.2 m Minimum level in all cases
Vm ax 0.2226 m3 Maximum volume of water
Qa m ax 3.6 m3 /h Maximum flow of pump A
Qb m ax 4 m3 /h Maximum flow of pump B
Qm in 0 m3 /h Minimal flow
Q0

a 1.63 m3 /h Equilibrium flow (Qa )
Q0

b 2.0000 m3 /h Equilibrium flow (Qb )
a1 1.2938e−4 m2 Discharge constant of tank 1
a2 1.5041e−4 m2 Discharge constant of tank 2
a3 1.0208e−4 m2 Discharge constant of tank 3
a4 9.3258e−5 m2 Discharge constant of tank 4
S 0.06 m2 Cross-section of all tanks
γa 0.3 Parameter of the three-ways valve
γb 0.4 Parameter of the three-ways valve

h0
1 0.6702 m Equilibrium level of tank 1

h0
2 0.6549 m Equilibrium level of tank 2

h0
3 0.5435 m Equilibrium level of tank 3

h0
4 0.5887 m Equilibrium level of tank 4

The minimum level of the tanks has been taken greater than
zero to prevent eddy effects in the discharge of the tank.

One important property of this plant is that the dynamics
present multivariable transmission zeros which can be located in
the right-hand side of the s plane for some operating conditions.
Hence, the values of γa and γb have been chosen in order to
obtain a system with nonminimum phase multivariable zeros.

The nonlinear discrete time model of system (14) is obtained
by discretizing (14a)–(14d) using a fifth-order Runge–Kutta
method and taking as sampling time Ts = 15 s.

The MPC for tracking without the terminal constraint has
been tested on the plant. The horizons used are Nc = 5 and
Np = 20. The stage cost function used is l(x, u) = |x − xs |2Q +
|u − us |2R with Q = I4 and R = 0.01I2 as weighting matrices.
The function VO = α|ys − yt |∞, with α = 100 has been chosen
as offset cost function. The cost-to-go is taken of the form
Vf (x − xs, ys) = (x − xs)′P (x − xs). The gain matrix K for
the terminal control law and the matrix P for the cost-to-go have
been calculating by solving an LMI problem, and are given by:

K =
[−0.0282 0.0916 0.1384 −0.4479

0.0883 0.0439 −0.4553 0.4704

]

P =

⎡
⎢⎢⎣

10.9654 0.6257 9.6267 1.3360
0.6257 10.2893 0.7929 8.8616
9.6267 0.7929 42.2449 5.5129
1.3360 8.8616 5.5129 38.0525

⎤
⎥⎥⎦ .

The weight of the cost-to-go has been calculated following
Property 2 and its values is γ0 = 100.3526.

In the test, four changes of references have been considered.
These references are: yt,1 = (0.65, 0.65), yt,2 = (0.35, 0.35),
yt,3 = (0.6, 0.75), and yt,1 = (0.9, 0.75).

Fig. 6. Time evolutions of the output levels h1 and h2 (solid line) and the
corresponding artificial equilibrium states (dashed line) and the reference
signals (dashed-dotted line).

Fig. 7. Time evolutions of the levels h3 and h4 and of the input flows
qa and qb (solid line) and the corresponding artificial equilibrium states
and inputs (dashed line).

The results of the test are shown in Figs. 6 and 7. In partic-
ular, in Fig. 6, the time evolution of the output levels h1 and
h2 is plotted in solid line, while the references and the artificial
references are plotted, respectively, in dashed-dotted and dashed
line. It can be seen that the controller always drives the system
to the desired setpoint without losing feasibility in any case. The
role played by the artificial reference is particularly evident in
the third change of setpoint, at time T = 3000 s. This change
is too large, and may cause a loss of feasibility. However, the
controller is able to maintain feasibility by following the artifi-
cial reference. The offset visible in the figure may be due to the
noises or model mismatches between the prediction model and
the real plant. In Fig. 7, the time evolution of the levels h3 and
h4 are plotted in solid line and the evolution of the input flows
qa and qb , and the artificial references are plotted, respectively,
in solid and dashed line.

The state-space evolution of the outputs of the system is drawn
in Fig. 8. The set of output constraints is plotted in solid line,
the set of equilibrium outputs Ys is plotted in dashed-dotted
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Fig. 8. State-space evolution of the outputs and set of the equilibrium
output.

line, and the references are plotted as blue dots. See how the
closed-loop system is driven to the desired setpoint in any case.

VII. CONCLUSION

In this paper, an MPC for tracking piece-wise constant
references for a constrained nonlinear system has been pre-
sented. This controller considers an artificial reference as ad-
ditional decision variables and minimizes the tracking error of
the predicted trajectory w.r.t. the artificial reference and the
distance between this reference and the provided setpoint. The
stabilizing design is based on a suitable choice of a terminal cost
function and a terminal region. It is proved that stability can be
achieved by using a terminal equality constraint and without ter-
minal constraint. Assuming that the reference remains constant
a sufficiently large period of time, the controller asymptotically
steers the system to the reference if this is admissible. If not, the
controlled system converges to the admissible steady state that
minimizes the offset cost function.

The properties of the proposed controller have been shown in
an illustrative example and tested on a real four-tanks plant.

APPENDIX A
PROOF OF THE STABILITY THEOREMS

A. Proof of Theorem 1

This proof is divided into two parts. First, it is proved that for
any setpoint yt , the optimization problem is recursively feasi-
ble. This means that the control law is defined throughout the
evolution of the system. In the second part, asymptotic stability
of the optimal equilibrium point (x∗

s , u
∗
s) is proved.

Before proceeding with the proof of the theorem, the follow-
ing lemma must be introduced.

Lemma 1: Considering system (1) subject to constraints (2).
Suppose that Assumptions 1, 2, and 3 hold. Considering a
given setpoint yt and assuming that for a given state x, the
optimal solution to PNc ,Np

(x, yt) is such that x = x0
s (x, yt) =

gx(y0
s (x, yt)). Then, V 0

Nc ,Np
(x, yt) = VO (y∗

s − yt).

Proof: Considering that the optimal solution to problem
PNc ,Np

(x, yt) is (x0
s , u

0
s , y

0
s ).1 Since x = x0

s , the optimal value
cost function is

V 0
Nc ,Np

(x, yt) = VO (y0
s − yt).

The lemma will be proved by contradiction. Assuming that
VO (y0

s − yt) > VO (y∗
s − yt), then since y∗

s is the unique mini-
mizer of VO (·), y0

s �= y∗
s .

We define ŷs as

ŷs = βy0
s + (1 − β)y∗

s β ∈ [0, 1].

From the definition of set Yt , it is clear that (x0
s , u

0
s ) ∈ Ẑ and

hence it is in the interior of Z. Therefore, there exists a β̂ ∈ [0, 1)
such that for ŷs given by a β ∈ [β̂, 1], the sequence of inputs û
generated by the terminal control law is such that (û, ŷs) is a
feasible solution of PNc ,Np

(x0
s , yt).

From the Lipschitz continuity of the function gx(·), we have
that |x0

s − x̂s | ≤ Lg |y0
s − ŷs |, where Lg > 0 is the Lipschitz

constant of gx(·). Taking into account that (y0
s − ŷs) = (1 −

β)(y0
s − y∗

s) and the optimality of the solution, the following
holds:

VO (y0
s − yt) = V 0

Nc ,Np
(x0

s , yt)

≤ VNc ,Np
(x0

s , yt ; û, ŷs)

=
Np −1∑
j=0

�((x(j) − x̂s), (κ(x(j), ŷs) − ûs))

+ Vf (x(Np) − x̂s , ŷs) + VO (ŷs − yt)

≤ Vf (x0
s − x̂s , ŷs) + VO (ŷs − yt)

≤ b|x0
s − x̂s |σ + VO (ŷs − yt)

≤ b
(
Lg |y0

s − ŷs |
)σ + VO (ŷs − yt)

= Lσ
g b(1 − β)σ |y0

s − y∗
s |σ + VO (ŷs − yt). (15)

From the convexity of VO (·), we have that

VO (ŷs − yt) ≤ βVO (y0
s − yt) + (1 − β)VO (y∗

s − yt).

Therefore, we derive that

VO (y0
s − yt) ≤ Lσ

g b(1 − β)σ |y0
s − y∗

s |σ

βVO (y0
s − yt) + (1 − β)VO (y∗

s − yt)

which leads to the following inequality:

VO (y0
s − yt) − VO (y∗

s − yt) ≤ Lσ
g b(1 − β)σ−1 |y0

s − y∗
s |σ .

Since σ > 1, taking the limit of both sides of the inequality as
β approaches 1 from the right, we have that

VO (y0
s − yt) − VO (y∗

s − yt) ≤ lim
β→1−

Lσ
g b(1 − β)σ−1|y0

s − y∗
s |σ

= 0.

1In this proof, the dependence of the optimal solution from (x, yt ) will be
omitted for the sake of clarity. Also, recall that, from (7), x0

s = gx (y0
s ), and

u0
s = gu (y0

s ).
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Since we assumed that VO (y0
s − yt) − VO (y∗

s − yt) > 0, then
the last inequality leads to a contradiction that proves the result.
�

Next, the theorem is proved. In order to simplify the notation
throughout this proof, the optimal solution of PNc ,Np

(x, yt) will
be denoted as (u0 , y0

s ), i.e., omitting the dependence of (x, yt).
Recursive feasibility: We consider that x ∈ XNc ,Np

and
(u0 , y0

s ) denotes the optimal solution of PNc ,Np
(x, yt). The

resultant optimal state sequence is

x0 = (x0(0), x0(1), . . . , x0(Np))

where x0(0) = x and (x0(Np), y0
s ) ∈ Γ.

As a standard in MPC [27], [30], let us define the successor
state, x+ = f(x, κNc ,Np

(x, yt)) and let us define also the fol-
lowing sequences:

ũ+ = (u0(1), . . . , u0(Nc − 1),

κ(x0(Nc), y0
s ), . . . , κ(x0(Np), y0

s )),

ỹ+
s = y0

s .

The predicted sequence of states for x+ and (ũ+ , ỹ+
s ) is

x̃+ = (x0(1), . . . , x0(Np), x+(Np))

where x+(Np) = f(x0(Np), κ(x0(Np), y0
s (x, yt))). Since

(x0(Np), y0
s (x, yt)) ∈ Γ, then (x+(Np), y0

s (x, yt)) ∈ Γ.
Therefore, given that x0(1) = x+ , (ũ+ , ỹ+

s ) is a feasible so-
lution for the optimization problem PNc ,Np

(x+ , yt) and conse-
quently, the set XNc ,Np

is an admissible positive invariant set
for the closed-loop system and hence the control law is well
defined and the constraints are fulfilled throughout the system
evolution.

Asymptotic stability: This property will be proved by showing
that (x∗

s , u
∗
s) is a stable equilibrium point of the closed-loop

system, and next, that it is attractive.
Stability of x∗

s = gx(y∗
s) and u∗

s = gu (y∗
s) will be demon-

strated by showing that the function

W (x, yt) = V 0
Nc ,Np

(x, yt) − VO (y∗
s − yt) (16)

is a Lyapunov function for the closed-loop system in a neigh-
borhood of the equilibrium point.

We assume that ε is sufficiently small to guarantee that the
terminal control law u = κ(x, y∗

s) is admissible for all |x −
x∗

s | ≤ ε. Next it is proved that there exists a pair of suitable 𝒦∞
functions, αW and βW , such that

αW (|x − x∗
s |) ≤ W (x, yt) ≤ βW (|x − x∗

s |).

1) From Assumption 2 and the Lipschitz continuity of gx(·),
we infer that

W (x, yt) ≥ �(x − x0
s , u − u0

s ) + VO (y0
s − yt)

−VO (y∗
s − yt)

≥ αl(|x − x0
s |) + αO (|y0

s − y∗
s |)

≥ αl(|x − x0
s |) + αO (L−1

g |x0
s − x∗

s |)
≥ αl(|x − x0

s |) + α̂O (|x0
s − x∗

s |)

where α̂O (s) = αO (s/Lg ) is a 𝒦∞ function. Then, there
exists a 𝒦∞ function αW such that

W (x, yt) ≥ αW (|x − x0
s | + |x0

s − x∗
s |)

≥ αW (|x − x∗
s |).

Notice that this property holds for all feasible x.
2) Let uκ be the sequence of future inputs derived from

the local control law taking x as initial state and y∗
s as

reference. Then this sequence will be feasible and

V 0
Nc ,Np

(x, yt) ≤ VNc ,Np
(x, yt ;uκ ,y∗

s)

≤ Vf (x − x∗
s,y

∗
s) + VO (y∗

s − yt).

From this and due to the Assumption 3, we have that

W (x, yt) ≤ Vf (x − x∗
s , y

∗
s) ≤ b|x − x∗

s |σ

= βW (|x − x∗
s |).

Next, it is proved that W (x(k), yt) is decreasing if x(k) �=
x0

s (x(k), yt). To this aim, we define ṼNc ,Np
(x+ , yt ; ũ+ , y0

s ) as
the cost function evaluated at the feasible solution (ũ+ , y0

s ),
then, taking into account the properties of the feasible nominal
trajectories for x+ , Assumption 3 and using standard procedures
in MPC [27], [30] it is possible to obtain:

ΔW (x, yt) = W (x+ , yt) − W (x, yt)

= V 0
Nc ,Np

(x+ , yt) − V 0
Nc ,Np

(x, yt)

≤ ṼNc ,Np
(x+ , yt ; ũ+ , y0

s ) − V 0
Nc ,Np

(x, yt)

= −�((x − x0
s ), (u

0(0) − u0
s ))

−Vf (x0(Np) − x0
s , y

0
s ) −VO (y0

s − yt)

+ �((x(Np) − x0
s ), (κ(x, y0

s ) − u0
s ))

+Vf (f(x0(Np), κ(x, y0
s ), y0

s ) − x0
s )

+VO (y0
s − yt)

where x0(i), u0(i), x0
s , u0

s , and y0
s denote x0(i), u0(i), x0

s (x, yt),
u0

s (x, yt) and y0
s (x, yt), respectively.

Given the definition of Vf (·) from Assumption 3 and consid-
ering Assumption 2, we have that

ΔW (x, yt) ≤ −�((x − x0
s ), (u

0(0) − u0
s ))

≤ −α�(|x − x0
s |).

Then W (x, yt) is a Lyapunov function for the closed-loop sys-
tem and the stability is proved.

In order to prove asymptotic stability, it suffices to demon-
strate convergence to (x∗

s , u
∗
s). To this aim, see that the inequality

W (x(k + 1), yt) − W (x(k), yt) ≤ −α�(|x(k) − x0
s (x(k), yt)|)

leads to state that

lim
k→∞

|x(k) − x0
s (x(k), yt)| = 0.

Given that W (x(k), y(t)) ≥ 0, then

lim
k→∞

W (x(k), yt) = W∞.
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From Lemma 1, we have that if |x − x0
s (x, yt)|= 0, then

W (x, yt) = 0. Therefore, since limk→∞ |x(k) − x0
s (x(k), yt)|

= 0, we have that

lim
k→∞

W (x(k), yt) = W∞ = 0.

Taking into account the bounds of function W (·), this is
equivalent to

lim
k→∞

αW (|x(k) − x∗
s |) ≤ lim

k→∞
W (x(k), yt) = 0

and then

lim
k→∞

|x(k) − x∗
s | = 0.

Thus, the proof is complete.

B. Proof of Theorem 2

This proof is derived from the proof of Theorem 1, although
some technical details must be solved. Lemma 1 is adapted to
this case as follows.

Lemma 2: Considering that system (1) subject to con-
straints (2) and that Assumptions 2 and 4 hold. Considering
a given setpoint yt and assuming that N ≥ n and that for
a given state x the optimal solution of PN (x, yt) is such
that x = x0

s (x, yt) = gx(y0
s (x, yt)). Then, V 0

Nc ,Np
(x, yt) =

VO (y∗
s − yt).

Proof: The proof is similar to the proof of Lemma 1 if the
inequality (15) is derived for the equality constraint case.

From the definition of the set Yt , it is clear that (x0
s , u

0
s ) ∈ Ẑ

and hence it lays in the interior of Z. From this fact and from
the continuity of the model function, it can be derived that there
exists a constant ε1 such that for all sequences of control inputs
û satisfying |û(i) − u0

s | ≤ ε1 , the predicted trajectory and the
input (φ(i;x0

s , û), û(i)) ∈ Z, for all i = 0, . . . , N − 1.
From Assumption 4, in virtue of the inverse function theorem,

for a prediction horizon N ≥ n, there exists a δ1(ε1) such that
for all x̄ satisfying |(x̄ − x0

s )| ≤ δ1 , there exists a û such that
|û(i) − u0

s | ≤ ε1 , for all i = 0, . . . , N − 1, and φ(N ;x0
s , û) =

x̄. From the continuity of gx(·), it can be derived that there exists
a neighborhood of ys , Ŷt(ys) such that for every ŷs ∈ Ŷt(ys),
there exists a sequence of inputs û such that |û(i) − u0

s | ≤ ε1 ,
for all i = 0, . . . , N − 1, and φ(N ;x0

s , û) = gx(ŷs).
In virtue of the last two claims, it can be stated that there

exists an equilibrium point (x̂s , ûs , ŷs) with ŷs ∈ Ŷt(ys) and a
sequence û such that |û(i) − u0

s | ≤ ε1 , φ(N ;x0
s , û) = x̂s , and

(φ(i;x0
s , û), û(i)) ∈ Z for all i = 0, . . . , N − 1. That is, (û, ŷs)

is a feasible solution of PN (x0
s , yt).

From the controllability Assumption 4, if the pair (û, ŷs)
is chosen in such a way that |û(i) − u0

s | ≤ εu/2, |x̂s − x0
s | ≤

εx , and |ûs − u0
s | ≤ εu/2, we have that |û(i) − ûs | ≤ εu and

|x̂s − x0
s | ≤ εx , and then,

VN (x0
s , yt ; û, ŷs) =

N −1∑
i=0

�(x̂(i) − x̂s , û(i) − ûs)

+VO (ŷs − yt)

≤ b|x0
s − x̂s |σ + VO (ŷs − yt).

Taking into account the last inequality, the Lipschitz continuity
of the function gx , and optimality of the solution, the following
holds:

V 0
N (x0

s , yt) = VO (y0
s − yt)

≤ VN (x0
s , yt ; û, ŷs)

≤ b|x0
s − x̂s |σ + VO (ŷs − yt)

≤ bLσ
g |y0

s − ŷs |σ + VO (ŷs − yt)

≤ bLσ
g (1 − β)σ |y0

s − y∗
s |σ + VO (ŷs − yt)

where Lg is the Lipschitz constant of gx(·). Thus, inequality
(15) is derived. �

Recursive feasibility property is derived from the proof of
Theorem 1 and in order to derive the asymptotic stability
property, it suffices to prove the existence of the upperbound
of W (·).

We assume that ε is sufficiently small to guarantee that
Assumption 4 holds and PN (x, yt) is feasible for ys = y∗

s and
for all x such that |x − x∗

s | ≤ ε. Let (ũ, y∗
s) be a feasible solution

of PN (x, yt), then

V 0
N (x, yt) ≤

N −1∑
i=0

�(x(i) − x∗
s , u(i) − u∗

s) + VO (y∗
s − yt).

Due to the controllability of x∗
s (Assumption 2), there exists a

𝒦∞ function βW such that

W (x, yt) = V 0
N (x, yt) − VO (y∗

s − yt)

≤
N −1∑
i=0

�(x(i) − x∗
s , u(i) − u∗

s)

≤ βW (|x − x∗
s |).

C. Proof of Theorem 3

This proof requires first the demonstration of some lemmas
and properties.

Lemma 3: Considering that the assumptions of Theorem 1
hold. Let xγ ,0(j;x, yt) be the optimal trajectory solution to the
optimization problem Pγ

Nc ,Np
(x, yt) for any γ ≥ 1.

If (xγ ,0(Np ;x, yt), yγ ,0
s ) /∈ Γα , then (xγ ,0(j;x, yt), yγ ,0

s ) /∈
Γα for all j = 0, . . . , Np .

Proof: This is proved by contradiction. We assume that
there exists an i such that (xγ ,0(i;x, yt), yγ ,0

s ) ∈ Γα and (xγ ,0

(Np ;x, yt), yγ ,0
s ) �∈ Γα .

If i < Nc , then a suboptimal solution can be derived by tak-
ing the optimal control inputs until prediction i and then taking
the terminal control law (similarly to [20, Lemma 1]) while the
artificial reference is maintained. This ensures that the subop-
timal predicted trajectory is identical to the optimal one until
prediction i and then it remains in Γα . For the sake of clarity,
the dependence on (x, yt) will be removed and thus the opti-
mal predicted states and inputs will be denoted by xγ ,0(j) and
uγ ,0(j), respectively, and the suboptimal predicted states and
inputs will be denoted by xγ (j) and uγ (j), respectively.
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Then we have that

V γ ,0
Nc ,Np

(x, yt) ≥
i−1∑
j=0

�(xγ ,0(j), uγ ,0(j))

+Vf (xγ ,0(Np)) + VO (yγ ,0
s − yt).

On the other hand, in virtue of Assumption 3 and the
properties of the terminal cost function, we have that the cost of
the suboptimal solution satisfies the following inequality:

V γ
Nc ,Np

(x, yt) ≤
i−1∑
j=0

�(xγ ,0(j), uγ ,0(j))

+Vf (xγ ,0(i)) + VO (yγ ,0
s − yt).

From the optimality of the solution, it is clear that

V γ ,0
Nc ,Np

(x, yt) ≤ V γ
Nc ,Np

(x, yt).

From this inequality, it is derived that

Vf (xγ ,0(Np)) ≤ Vf (xγ ,0(i)) ≤ α.

This implies that xγ ,0(Np ;x, yt) ∈ Γα , which is a contradiction
that proves the statement.

If i > Nc , then the fact that Γα is a positive invariant
for the system controlled by the terminal control law im-
plies that xγ ,0(j;x, yt) ∈ Γα for all j ≥ i, leading again to a
contradiction. �

Lemma 4: Considering that the assumptions of Theorem 1
hold. Let d = α�(β−1

f (α)), then

�(x − gx(ys), u − gu (ys)) ≥ d

for all (x, ys) /∈ Γα .
Proof: We denote xs = gx(ys) and us = gu (ys). We assume

that

�(x − xs, u − us) ≤ d = α�(β−1
f (α)).

Then we have that |x − xs | ≤ β−1
f (α) which implies that

βf (|x − xs |) ≤ α. Therefore, Vf (x − xs, ys) ≤ α and then
x ∈ Γα .

This leads to prove that if x �∈Γα , then �(x − xs, u − us)>d.
�

Recursive Feasibility: The optimization problem is recur-
sively feasible if for any x ∈ Υ̂Np ,γ (yt), then x+ ∈ Υ̂Np ,γ (yt).
From Lemma 3, it is inferred that if the terminal region is not
reached in Np steps, then all the trajectory of the system is out
of Γα and hence

V γ ,0
Nc ,Np

(x,yt) > Npd + γα + VO (yγ ,0
s − yt)

≥ Npd + γα + VO (y∗
s − yt)

which implies that x �∈ ΥNp ,γ (yt) leading to a contradiction.

Therefore, for any x ∈ Υ̂Np ,γ (yt), the optimal solution of
Pγ

Nc ,Np
(x, yt) is such that (xγ ,0(Np), yγ ,0

s ) ∈ Γα .
Defining

W (x, yt) = V γ ,0
Nc ,Np

(x,yt) − VO (y∗
s − yt)

from the proof of Theorem 1, we have that

W (xγ ,0(1;x, yt), yt) ≤ W (x, yt) ≤ Npd + γα.

Since x+ = xγ ,0(1;x, yt), we derive that x+ ∈ ΥNp ,γ (yt).
Asymptotic stability: Since for all x ∈ ΥNp ,γ (yt), the ter-

minal constraint is satisfied, the asymptotic stability property
directly yields following the same arguments as in the proof to
Theorem 1.

D. Proof of Property 2

1) Let x ∈ XNc
, then any feasible solution (û, ŷs) of the

problem with the terminal equality constraint is also a
feasible solution of the problem with the terminal in-
equality constraint. This solution ensures that

V γ0 ,0
Nc ,Np

(x, yt) ≤ V γ0
Nc ,Np

(x,yt ; û, ŷs) ≤ NcD + V̂O

and then V γ0 ,0
Nc ,Np

(x, yt) − VO (y∗
s − yt) ≤ NcD + V̂O .

Since γ0 is such that NcD + V̂O = Npd + γ0α, then x ∈
ΥNp ,γ0 (yt).

2) Assume that x is in the domain of attraction of the MPC
for tracking with Γρα as terminal constraint set and con-
sider that (û, ŷs) a feasible solution. Then

V γ ,0
Nc

(x, yt) ≤ V γ ,0
Nc

(x, yt ; û, ŷs) ≤ NcD + V̂O + γρα.

From the definition of ρ and γ0 , we have that ργ = γ − γ0
and recalling that γ0α = NcD − Ncd + V̂O , the follow-
ing equality holds:

NcD + V̂O + γα − γ0α ≤ Ncd + γα.

Therefore, x ∈ ΥNc ,γ (yt) and the property is proved.

E. Proof of Property 3

We define problem Pr
Nc ,Np ,μ(x, yt) the optimization problem

(9) taking μ|ys − yt | as an offset cost function. Then, problem
Pr

Nc ,Np ,μ(x, yt) results from problem Pr
Nc ,Np

(x, yt) with the
last constraint posed as an exact penalty function [23]. There-
fore, there exists a finite constant μ∗ > 0 such that for all μ ≥ μ∗,
V r,0

Nc ,Np ,μ(x, yt) = V r,0
Nc ,Np

(x, yt) for all x ∈ Xr
N (yt) [5], [23].

Consider now, problem PNc ,Np
(x, yt) with

VO (ys − yt) ≥ μ∗|ys − yt |.
Since the optimal solution of the MPC for regulation is a fea-
sible solution of the MPC for tracking, we have that V 0

Nc ,Np

(x, yt) ≤ V r,0
Nc ,Np

(x, yt). On the other hand, since VO (ys − yt)

≥ μ∗|ys − yt |, we infer that V 0
Nc ,Np

(x, yt) ≥ V r,0
Nc ,Np ,μ∗(x, yt)

=V r,0
Nc ,Np

(x, yt). Then, we can state that V 0
Nc ,Np

(x, yt)=V r,0
Nc ,Np

(x, yt) for all x ∈ Xr
Nc ,Np

(yt), and from the uniqueness of
the solution of PNc ,Np

(x, yt), we have that kNc ,Np
(x, yt) =

kr
Nc ,Np

(x, yt).

APPENDIX B
CALCULATION OF THE TERMINAL INGREDIENTS

The presented method exploits the LTV modeling technique
and the partition method proposed in [32] and [33]. In this
section, for the sake of simplicity, it is considered that Z = X ×
𝒰 and that the stage cost function is �(z, v) = z′Qz + v′Rv.

First, the set of feasible setpoints Yt is split in a partition, i.e.,
a collection of disjoint sets {Ysi

} such that
⋃

i Ysi
= Yt .
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For each set Ysi
, choose the positive constants εx i , εu i and

define

Xi =
⋃

ys ∈Ys i

gx(ys) ⊕ ℬn (εx i), 𝒰i =
⋃

ys ∈Ys i

gu (ys) ⊕ ℬm (εu i).

The constants εx i and εu i are chosen in such a way that for all
x ∈ Xi , u ∈ 𝒰i , and ys ∈ Ysi

, the nonlinear dynamic model (1)
can be described as an LTV given by:

f(x, u) = f(xs(ys), us(ys)) (17)

+
ni∑

j=1

λj [Aij (x − gx(ys)) + Bij (u − gu (ys))]

(18)

where [Aij Bij ] ∈ {[Ai1 Bi1 ], . . . , [Aini
Bini

]}, λj ∈ [0, 1] and∑ni

j=1 λj = 1. Since the parameters λj depend on x, u, and
ys , they might vary throughout the evolution of the system.
Besides, there must exist a suitable control gain Ki ∈ Rm×n

and a Lyapunov matrix Pi ∈ Rn×n such that

A′
Ki j

PiAKi j
− Pi ≤ −Q − K ′

iRKi

for all j, where AKi j
= Aij + BijKi .

Notice that if the matrices of the linearized system at the
equilibrium point given by ys , A(gx(ys), gu (ys)) and B(gx(ys),
gu (ys)), are controllable then, by continuity, there exists a pair
of values εx i and εu i such that the latter condition holds.

Then, we define the set ZKi
= {z : z ∈ ℬn (εx i), Kiz ∈ ℬm

(εu i)} and let Ωi be an invariant set contained in ZKi
for the

LTV given by

z+ =
ni∑

j=1

δjAKi j
z

where δj ∈ [0, 1] and
∑ni

j=1 δj = 1.
Then, ∀ys ∈ Ysi

and x0 ∈ gx(ys) ⊕ Ωi , the evolution of the
system

x(k + 1) = f(x(k), u(k))

u(k) = Ki(x(k) − gx(ys)) + gu (ys)

ensures that x(k) ∈ gx(ys) ⊕ Ωi ⊆ Xi ⊆ X and u(k) ∈ 𝒰i ⊆
𝒰. Therefore, it is derived that

Γi = {(x, ys) : x ∈ gx(ys) ⊕ Ωi , ys ∈ Ysi
}

=

⎛
⎝ ⋃

ys ∈Ys i

gx(ys) ⊕ Ωi

⎞
⎠× Ysi

is such that ∀(x0 , ys) ∈ Γi , (x(k), ys) ∈ Γi ⊆ Xi , u(k) ∈ U .
Then, Γi is an admissible invariant set for tracking and

Vfi
(x − gx(ys), ys) = (x − gx(ys))′Pi(x − gx(ys))

κ(x, ys) = Ki(x − gx(ys)) + gu (ys)

are a suitable terminal cost function and terminal control law,
respectively, ∀ys ∈ Ysi

.

Hence, the terminal ingredients are as follows:

Γ = {(x, ys) : ys ∈ Ysi
, (x, ys) ∈ Γi}

Vf (x̄, ys) = Vf i(x̄, ys) where i : ys ∈ Ysi
.

Remark 8 A drawback of this approach is that the size of Ωi

could be very small. However, taking Np > Nc , the domain of
attraction of the controller can be enlarged [24].
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(Telecom Paris) from September 1991 to May 1993. Part of his
Ph.D. was done at RWTH Aachen, Alemania, from June to Septem-
ber 1995. He is the author or coauthor of more than 160 publi-
cations including books, book chapters, journal papers, conference
proceedings, and educational books. (google scholar profile available
at http://scholar.google.es/citations?user=W3ZDTkIAAAAJ&hl=en). He
has co-funded the spin-off company Optimal Performance (University of
Seville, Spain). His current research interests include decision making,
model predictive control, machine learning, randomized algorithms, and
optimization strategies.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


