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In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the
supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble
walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be
unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological
consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts.
We improve upon previous studies by making a more careful and detailed analysis. In particular, we take
into account the fact that the equation of motion for the phase interface depends separately on the
temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar
for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a
consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable.
Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all
wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous
works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a
critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze
the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales
associated with their growth. We discuss the implications for the electroweak phase transition and its
cosmological consequences.
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I. INTRODUCTION

The development of a cosmological first-order phase
transition via nucleation and expansion of bubbles provides
an interesting scenario for the formation of cosmological
objects such as magnetic fields [1], topological defects [2],
baryon inhomogeneities [3–5], gravitational waves [6,7], or
the baryon asymmetry of the Universe [8]. One of the
relevant aspects of the dynamics of a first-order phase
transition is the motion of the transition fronts. In most
cases, stationary solutions exist, and the bubble growth
reaches a terminal velocity shortly after the bubble nucle-
ates. The velocity of bubble walls depends on the friction
with the plasma [9,10] and on hydrodynamics [11]. Thus,
for a given set of parameters, there can be one or more
solutions. For instance, the wall may propagate as a
supersonic detonation or as a subsonic deflagration. The
cosmological consequences of a phase transition depend
strongly on the wall velocity. For example, detonations
favor the generation of gravitational waves, whereas weak
deflagrations favor electroweak baryogenesis. It is well
known that these hydrodynamic solutions may be unstable
[12–16]. Such instabilities would have important implica-
tions for the cosmological remnants of the phase transition.

The standard approach to the stability of combustion or
phase transition fronts is to consider small perturbations of
the wall surface and the fluid [12]. In the cosmological
context, the stability of deflagrations was first studied in
Ref. [13], in the nonrelativistic limit. This analysis was
improved in Ref. [14] by considering relativistic velocities,
and by taking into account the dependence of the velocity
of phase transition fronts on temperature. The latter is the
most important difference with previous analysis, since
temperature fluctuations cause velocity fluctuations which
may stabilize the wall. Numerical simulations [17] agree
with this stabilization.
A very simple expression for the wall velocity was

considered in Ref. [14], namely, vw ∝ Tc − Tþ, where Tc
is the critical temperature and Tþ is the temperature outside
the bubble. Perturbing this equation gives an equation for
the perturbations of the interface, which involves the
temperature fluctuations δTþ. We wish to point out,
however, that such a simple form of the wall velocity does
not take into account (among other things) the dependence
on temperature perturbations δT− behind the wall (which
were otherwise considered in [14] as independent from
δTþ). Furthermore, the results were applied to a specific
case (the electroweak phase transition) without taking into
account the fact that the temperature Tþ is higher than the
nucleation temperature TN , due to reheating in front of
the wall.

*megevand@mdp.edu.ar
†membiela@mdp.edu.ar

PHYSICAL REVIEW D 89, 103507 (2014)

1550-7998=2014=89(10)=103507(29) 103507-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.103507
http://dx.doi.org/10.1103/PhysRevD.89.103507
http://dx.doi.org/10.1103/PhysRevD.89.103507
http://dx.doi.org/10.1103/PhysRevD.89.103507


These issues are not relevant in the case of small wall
velocity, small latent heat, and little supercooling, but can
be important otherwise. The discussion on the electroweak
phase transition in Ref. [14] was carried out for the minimal
standard model (SM) with a Higgs mass mH ¼ 40 GeV.
This gives a rather weak phase transition (although strong
enough for baryogenesis), for which the aforementioned
approximations are valid. The deflagration was found to be
stable for wall velocities above a critical value vc ¼ 0.07.
Thus, arguing that the wall velocity is generally vw ≳ 0.1, it
was concluded that the deflagration is commonly stable.
However, the wall velocity depends on the details of the
specific model, and may be smaller. Furthermore, many
extensions of the SM give stronger phase transitions, which
would give higher values of vc.
In this paper we aim to perform a more complete

calculation, and to investigate a wider range of parameters.
The main improvements of our treatment will be to
consider a more realistic equation for the wall velocity,
which depends on the fluid fluctuations on both sides of the
interface, and to take into account the effects of reheating,
i.e., the fact that the temperature Tþ in front of the wall is
not a boundary condition for the deflagration. In the limit of
small wall velocities, little supercooling, and small latent
heat, our results agree with those of Ref. [14]. Increasing
the latent heat or the wall velocity does not change the
qualitative picture. However, as the amount of supercooling
is increased, the critical velocity increases much more
quickly than what found in Ref. [14], even though the
reheating effect tends to stabilize the deflagration. As a
consequence, for strong enough supercooling the wall
propagation is unstable for any velocity below the speed
of sound. moreover, the instability is stronger at the speed
of sound. This is in contradiction with the results of
Ref. [14]. The origin of the discrepancy is in the fact that,
in our treatment, the wall velocity depends on fluid
fluctuations on both sides of the wall.
The paper is organized as follows. In the next section we

review the stationary motion of a phase transition front. In
Sec. III we consider linear perturbations of the interface and
the fluid. We discuss the approaches and results of previous
works, and then we derive the equations for the perturba-
tions and find the general solution. In Sec. IV we study the
possible instabilities of the deflagration and compare our
results with previous works. We find analytical approx-
imations for the case of small velocity, small latent heat,
and little supercooling. We also discuss how the reheating
which occurs in front of the wall affects the stability of a
deflagration. In Sec. V we use the bag equation of state to
study the instability as a function of the relevant param-
eters. We explore numerically a wide region of parameter
space. In Sec. VI we consider the dynamics of the
instabilities in a cosmological phase transition, and in
Sec. VII we discuss the results for the specific case of
the electroweak phase transition. We also discuss briefly on

some cosmological effects. Finally, in Sec. VIII we
summarize our conclusions.

II. PHASE TRANSITION DYNAMICS AND
STATIONARY WALL MOTION

Cosmological phase transitions are generally a conse-
quence of the high temperature behaviour of a theory with
spontaneous symmetry breaking. Macroscopically, the
system can be described by a relativistic fluid and a scalar
field ϕ which acts as an order parameter. The free energy
density F ðϕ; TÞ has different minima ϕþ and ϕ− at high
and low temperatures, respectively. These minima charac-
terize two different phases. For instance, in the case of the
electroweak phase transition, ϕ corresponds to the
expectation value of the Higgs field, and we have
ϕþ ¼ 0, ϕ− ∼ Tc ∼ 100 GeV.
If the phase transition is first-order, there is a range of

temperatures at which these two minima coexist separated
by a barrier. Thus, the metastable phase is characterized by
the free energy density FþðTÞ ¼ F ðϕþ; TÞ, whereas the
stable phase is characterized by F−ðTÞ ¼ F ðϕ−; TÞ. The
pressure in each phase is given by p� ¼ −F�, the entropy
density by s� ¼ dp�=dT, and the energy density by
e� ¼ Ts� − p�. The critical temperature Tc is defined
by FþðTcÞ ¼ F−ðTcÞ. The latent heat is defined as the
energy discontinuity at T ¼ Tc, and is given by
L ¼ Tc½F 0−ðTcÞ − F 0þðTcÞ�. A first-order phase transition
is characterized by the supercooling of the system (which
remains in the metastable phase below Tc), followed by the
nucleation and growth of bubbles of the stable phase at a
temperature TN < Tc (see, e.g., [18–20]). The latent heat is
released at the phase transition fronts, which are the
bubble walls.
We are interested in the motion of the latter. Therefore,

we shall consider the hydrodynamics of two phases
separated by a moving interface. The equations for the
wall and the fluid variables can be derived from the
conservation of the stress tensor for the scalar field and
the fluid. These can be written in the form

∂μ

�
−T ∂F

∂T uμuν þ gμνF
�
þ ∂μ∂μϕ∂νϕ ¼ 0; (1)

∂μ∂μϕþ ∂F
∂ϕ þ ~ηTcuμ∂μϕ ¼ 0; (2)

with uμ ¼ ðγ; γvÞ the four velocity of the fluid and gμν the
Minkowsky metric tensor. The terms in parenthesis in
Eq. (1) give the well known stress tensor of a relativistic
fluid

Tμν ¼ wuμuν − pgμν; (3)

where w is the enthalpy and p the pressure. The last term in
Eq. (1) gives the transfer of energy between the plasma and
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the field. The motion of the latter is governed by Eq. (2).
The last term in this equation is a phenomenological
damping term.1 The dimensionless coefficient ~η can be
obtained from microphysics calculations (in the general
case, ~η may depend on the field ϕ).
For the macroscopic treatment, it is a good approxima-

tion to consider an infinitely thin interface. The system of
equations (1) then gives the fluid equations on either of
the phases (where the field is constant), as well as the
connection between the solutions at each side of the
interface. On the other hand, Eq. (2)) gives an equation
for the interface itself and the forces acting on it. Due to the
friction with the surrounding plasma, the bubble walls in
general reach a terminal velocity.2 We shall now consider
the stationary motion. In the next section we shall study
perturbations of the stationary solutions. For simplicity, we
shall assume a planar interface moving towards the positive
z axis.

A. Fluid equations

For planar symmetry, the problem becomes (1þ 1)-
dimensional, and we need only consider the z component of
the fluid velocity, which we shall denote vðz; tÞ. Within
each phase the field is a constant, and Eq. (1) just gives the
conservation of energy and momentum of the fluid,
∂μTμν ¼ 0, with Tμν given by Eq. (3). The absence of a
distance scale in these equations justifies to assume the
similarity condition, namely, that quantities depend only on
the variable ξ ¼ z=t. Thus, we have ∂t ¼ −ðξ=tÞd=dξ
and ∂z ¼ ð1=tÞd=dξ. Furthermore, variations of thermo-
dynamical quantities are related by the speed of sound
c2s ¼ dp=de. We have, e.g.,

dp ¼ dw=ð1þ c−2s Þ: (4)

We may thus obtain an equation for vðξÞ which depends
only on the parameter cs [12] (cs depends on the equation
of state (EOS) and will be in general a function of
temperature). In the planar case this equation is very simple
(see e.g. [26]). The solutions are either v ¼ constant, or the
particular solution vrarðξÞ ¼ ðξ − csÞ=ð1 − ξcsÞ. The latter
corresponds to a rarefaction wave. In this paper we shall be
interested in the constant velocity solutions. For these, the
temperature is also a constant.

B. Matching conditions

The fluid solutions on each side of the bubble wall can be
linked by integrating Eq. (1) across the wall. It is conven-
ient to consider a reference frame moving with the wall,
where all time derivatives vanish. We obtain two equations,
∂zTz0 ¼ 0, ∂zTzz ¼ 0, and the integration gives simply

w−v−γ2− ¼ wþvþγ2þ; (5)

w−v2−γ2− þ p− ¼ wþv2þγ2þ þ pþ; (6)

where þ and − signs refer to variables just in front and just
behind the wall, respectively. Notice that in this frame the
fluid velocity is negative (Fig. 1).
These equations have two branches of solutions, called

detonations and deflagrations. Detonations are character-
ized by the relation jvþj > jv−j, whereas deflagrations are
characterized by jvþj < jv−j. For detonations, the curve of
jvþj vs jv−j has a minimum at the Jouguet point jv−j ¼ cs−,
where jvþj takes a value vdetJ > csþ (hence, for detonations
the incoming flow is supersonic). For deflagrations, the
curve of jvþj vs jv−j has a maximum value vdefJ at the
Jouguet point cs−. In this case, vþ is subsonic, vdefJ < csþ.
Detonations are called weak if v− is supersonic as well as
vþ, and deflagrations are called weak if v− is subsonic as
well as vþ. If one of the velocities is supersonic and the
other one subsonic, then the hydrodynamic process is
called strong.

C. Fluid profiles

The profiles of the fluid velocity and temperature must
be constructed from the solutions of the fluid equations on
each side of the wall, using the matching conditions at the
wall and the boundary conditions. The latter correspond to
vanishing fluid velocity far behind and far in front of the
wall. The value of the temperature TN far in front of the
wall is also a boundary condition. We shall now describe
briefly the possible fluid profiles. For details, see e.g. [26].
Let us call ~vþ and ~v− the values of the fluid velocity on

each side of the phase discontinuity. For a detonation, the
fluid velocity ~vþ vanishes in front of the wall, which moves
supersonically, i.e., we have vw ¼ jvþj ≥ vdetJ > csþ.
Behind the wall, we have a nonvanishing velocity ~v−,
and the wall is followed by a rarefaction wave. It turns out
that only weak detonations can fulfil the boundary con-
ditions. Therefore, strong detonations are not possible.
For a subsonic wall, the rarefaction solution vrarðξÞ

cannot be accommodated in the velocity profile. The fluid

wall

v+v-

FIG. 1. Sketch of a deflagration in the wall frame.

1Recently [21–23], different forms of the damping term have
been proposed in order to account for the saturation of the friction
force at ultra-relativistic velocities [24]. Since we shall only deal
with deflagrations, the damping term in Eq. (2) is a good
approximation [23,25].

2In Ref. [24], it was shown that, if the wall reaches ultra-
relativistic velocities, it may enter a stage of continuous accel-
eration. However, models which allow such ultra-relativistic
velocities will not allow, in general, deflagrations. We are not
interested in such models.
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velocity vanishes behind the wall ( ~v− ¼ 0), and the hydro-
dynamic process is a weak deflagration, with jv−j ¼
vw < cs−. In front of the wall, the velocity is a constant
up to a certain point where the velocity vanishes abruptly
(see Fig. 2). Such a discontinuity without change of
phase is called a shock front. At the shock discontinuity,
Eqs. (5)–(6) still apply, but now the enthalpy and pressure
are related by the same EOS on both sides of the interface.
These equations give the temperature Tþ as a function of
the boundary condition TN , as well as the velocity of the
shock front.
Between weak deflagrations and detonations there is a

velocity gap cs− < vw < vdetJ . The “traditional” weak
deflagration profile described above is in principle
possible for a supersonic wall as well. In such a case,
the hydrodynamic solution is a strong deflagration, with
jv−j ¼ vw > cs−. Numerical calculations [27] suggest that
such a strong deflagration is unstable since, if set as initial
condition, it evolves to other stationary solutions.
A supersonic deflagration can also be constructed using

the solution vrar behind the wall (see Fig. 3). Instead of
jv−j ¼ vw, in this case the matching conditions only require
jv−j ≥ cs− (for details, see, e.g., [26]). Therefore, this kind
of solution is either a strong or a Jouguet deflagration. In
either case, since the fluid velocity ~v− does not vanish, the
wall velocity is given by the relativistic sum of jv−j and ~v−,
and is always supersonic. In order to avoid a strong
deflagration, the only possibility is a Jouguet solution,
v− ¼ −cs−. As shown in Fig. 3 (right panel), in this case
the rarefaction begins immediately at the wall. Thus,
the strong deflagration shown in the left panel is an

intermediate case between the traditional strong deflagra-
tion of Fig. 2 and the supersonic Jouguet deflagration.
Notice that we have a family of solutions depending on

two free parameters, namely v− and ~v−. For v− ¼ −vw we
obtain a reduced family of strong deflagrations, namely,
those with the traditional profile, whereas for v− ¼ −cs we
obtain the family of supersonic Jouguet deflagrations.
Fixing the latter condition and varying the value of ~v−,
the velocity of the Jouguet deflagration fills the range of vw
between the weak deflagration and the detonation.

D. Equation for the interface

We shall now obtain an equation for the interface from
Eq. (2). In the reference frame of the wall, we multiply by
ϕ0 ≡ dϕ=dz and then integrate across the interface. We
obtain

p− − pþ þ
Z þ

−

�
−∂F
∂T

�
dT
dz

dzþ ~ηTc

Z þ

−
ϕ02γvdz ¼ 0;

(7)

where we have used the relation ð∂F=∂ϕÞdϕ=dz ¼
dF=dz − ð∂F=∂TÞdT=dz. In Eq. (7) we identify the force
which drives the bubble expansion,

Fdr ¼ p−ðT−Þ − pþðTþÞ þ
Z þ

−
∂F
∂T

dT
dz

dz; (8)

and the friction force, which explicitly depends on the
velocity of the fluid with respect to the wall. Thus, Eq. (7)
gives the balance between the forces that rule the stationary
wall motion.
While the integration of Eq. (1) across the wall was

straightforward, in this case we shall need some approx-
imations to avoid the dependence on the wall shape [28]. To
evaluate the last integral in Eq. (7), we notice that ϕ0ðzÞ2
behaves approximately like a delta function which picks the
value of γv at the center of the wall width, say γ0v0. Thus,
the integral gives γ0v0σ, where σ ≡ R

ϕ02dz is the surface
tension. We shall approximate the value of γ0v0 by the
average hγvi≡ 1

2
ðγþvþ þ γ−v−Þ. Thus, the last term in (7)

can be written in the form −ηhγvi, with

wall shock
z

v,T

v~+

v  = 0~
-

T+

TNT-

v = 0

FIG. 2. Sketch of fluid velocity and temperature profiles for a
deflagration, in the reference frame of the bubble center.

FIG. 3. Sketch of fluid velocity profile for strong and Jouguet deflagrations.
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η ¼ ~ηTcσ; (9)

and the force balance reads

ηhγvi ¼ −Fdr: (10)

For the first integral in Eq. (7), we can use a linear
approximation for the z dependence of the entropy
density s ¼ −∂F=∂T inside the wall. We obtain
1
2
ðsþ þ s−ÞðTþ − T−Þ. This gives the following approxi-

mation for the driving force,

Fdr ¼ p−ðT−Þ − pþðTþÞ þ hsiðTþ − T−Þ: (11)

In many cases, the free energy has even powers of the
temperature, whereas the last term in Eq. (11) introduces
odd powers. A more convenient approximation for such
cases can be obtained by noticing that ð∂F=∂TÞdT ¼
ð∂F=∂T2ÞdT2. Then, instead of using a linear approxima-
tion for ∂F=∂T, we may use a linear approximation for
∂F=∂T2. We obtain

Fdr ¼ p−ðT−Þ − pþðTþÞ þ
�
dp
dT2

�
ðT2þ − T2−Þ: (12)

The approximations (11) and (12) are quantitatively very
similar, though analytically different. The former involves
the physical quantity s and is useful for physical discus-
sions. As we shall see, the latter gives cleaner analytical
results.

III. STABILITY ANALYSIS

A. Previous results and relevant scales

The stability of deflagrations in a cosmological phase
transition was first studied by Link [13] in the nonrelativ-
istic limit. The results are similar to those of a classical gas
[12] (with the enthalpy taking the role of the mass density).
According to this analysis, small wavelength perturbations
of the phase transition front are stabilized by the surface
tension σ, whereas large wavelength perturbations grow
exponentially. The perturbations are of the form

eik·x
⊥þqzþΩt; (13)

and the initial growth time is given by Ω−1. The essential
features of the instability are easily seen if we consider the
limit T� ≃ Tc in Link’s result, so that the latent heat is
given by L≃ wþ − w−. For small L=wþ we have

Ω≃ L
wþ

vw
2

�
1 − k

kc

�
k; (14)

with

kc ¼ Lv2w=σ (15)

Thus, the critical wavelength above which perturbations are
unstable is given by λc ¼ 1=kc. Notice that, for non-
relativistic velocities, Eqs. (5)–(6) give pþ−p−¼Lvþv−,
which for small L=wþ becomes pþ − p− ¼ Lv2w.
Therefore, the critical wavelength can be written as

λc ¼
σ

pþðTþÞ − p−ðT−Þ
≡ dc: (16)

Physically, dc is the length scale over which the surface
tension just balances the difference of the pressures on each
side of the interface [12,13].
This result was improved by Huet et al. [14]. In the first

place, relativistic velocities were considered in order to
study fast deflagrations (vw → cs). Most important, the
dependence of the wall velocity on temperature was taken
into account. A very simple form for the velocity was
considered.

γwvwðTþÞ ¼
p−ðTþÞ − pþðTþÞ

η
≈
Lð1 − Tþ=TcÞ

η
: (17)

where η is a friction parameter, which can be assumed to be
a constant. The last approximation in Eq. (17) is valid in the
nonrelativistic limit and for Tþ close to Tc. The inclusion of
Eq. (17) into consideration takes into account that temper-
ature fluctuations induce a change in the velocity of the
interface. Instead of this, the treatment of Landau [12] just
equated the normal velocity fluctuations δv� of the fluid to
the velocity of the surface perturbation ∂0ζ, while Link [13]
considered the energy flux F ¼ wvγ2 to be proportional to
the net blackbody energy flux, F ∝ g−ðπ2=30ÞðT4þ − T4−Þ,
where g− is the effective number of degrees of freedom in
the − phase. Notice that these conditions lack important
information, namely, that the interface is a phase transition
front (and not, e.g., a burning front). This information is not
present in either of the equations considered in [12,13]. In
contrast, in Eq. (17), the velocity of the interface depends
on the pressure difference and vanishes at Tþ ¼ Tc, which
is the essential feature of a phase transition.
From Eq. (17), an important parameter arises in the

perturbation equations, namely,

β ¼ Tc

�
− dvw
dTþ

�
γ2wvw: (18)

The dependence of the wall velocity on temperature tends
to stabilize the perturbations. In the nonrelativistic limit and
for Ω ≪ k, the result of Ref. [14] takes the form

Ω≃ L̄vw
2

λ − λc
λ2

ð1 − βÞ
1þ βL̄þ dbk

; (19)

with
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λc ¼ dc

�
1þ 2db=dc

L̄ð1 − βÞ
�
; (20)

where L̄ ¼ L=wþ, and a new length scale

db ¼
σ

p−ðTþÞ − pþðTþÞ
(21)

has appeared due to the introduction of Eq. (17). Its
physical significance is similar to that of dc
[cf. Eq. (16)]. It gives the length scale over which the
surface tension just balances the pressure difference in
equilibrium at T ¼ Tþ. Thus, it gives the size scale of a
critical bubble before it begins to grow. As remarked in
Ref. [14], the quantity db gives also a time scale character-
istic of the dynamics of growth, corresponding to the
acceleration period before the bubble wall reaches a
terminal velocity. Within the present approximations, the
two scales db and dc are related by

db
dc

¼ v2w
1 − Tþ=Tc

; (22)

and Eq. (18) gives β ¼ vwL=η. We can eliminate the
friction parameter and write [14]

β ¼ v2w=v2c; (23)

where

v2c ≡ ðTc − TþÞ=Tc: (24)

The length scales are thus related by db=dc ¼ β.
A few comments on these scales are worth. Notice that,

in the equilibrium situation with T− ¼ Tþ, we have
p−ðTþÞ > pþðTþÞ, whereas, for a real deflagration with
Tþ > T− (see Fig. 2), the pressure balance is inverted,
p−ðT−Þ < pþðTþÞ (this is why it is necessary to invert the
order of p− and pþ between the definitions of dc and db). It
is evident that the pressure difference p−ðT−Þ − pþðTþÞ,
being negative, cannot be used as the driving force, and the
equilibrium value p−ðTþÞ − pþðTþÞ in Eq. (17) is a better
approximation (although it does not take hydrodynamics
into account). A still better approximation to the driving
force is given by Eq. (11).
In practice, the relevant difference between the results of

Refs. [13] and [14] is the appearance of the quantity (1 − β)
in Eqs. (19)–(20) with respect to Eqs. (14)–(16). For β ≪ 1,
the results are essentially the same. However, for β ≈ 1 the
situation changes drastically. For β < 1, perturbations on
wavelengths λ < λc are stable. Thus, as β approaches 1,
only very large wavelengths will be unstable, and with very
large growth time Ω−1. For β > 1, the behavior is inverted.
Perturbations with λ > λc are now stable. Besides, the
second term in Eq. (20) dominates, and we have λc < 0.
This means that perturbations at all scales are stable for

β > 1. Hence, vc is a critical velocity, above which the
deflagration becomes stable.
Notice that the second term in Eq. (20) is not a small

correction, even for β ≪ 1. In fact, due to the smallness of
L̄, this term will generally dominate. As a consequence, the
critical wavelength predicted by Huet et al. is generally
quite larger than Link’s result. A numerical study of the
stability of planar walls was performed in Ref. [17] for the
QCD phase transition, for a value L̄ ≈ 0.089. For the case
of deflagrations, two cases were considered, corresponding
to vw ¼ 0.196 (case A) and vw ¼ 0.048 (case B). For each
of these two runs of the numerical simulation, the planar
wall was initialized with sinusoidal perturbations of wave-
lengths up to λ ¼ 5λLinkc , where λLinkc is the critical wave-
length obtained by Link and given approximately by
Eq. (16). According to Link’s results, these perturbations
should be unstable. However, the perturbations decayed in
the simulation, in agreement with the results of Huet et al.
Indeed, the stability parameter is β ¼ 0.516 for case A and
β ¼ 0.722 for case B [29]. Hence, according to Eq. (20),
we have λc ≈ 25λLinkc and λc ≈ 60λLinkc , respectively.
Perturbations of wavelengths λ higher than these values
of λc should be unstable according to the results of
Huet et al. Unfortunately, such perturbations were not
considered in the simulations of Ref. [17].
Although the treatment of Ref. [14] improved signifi-

cantly upon previous stability analysis, some of the
approximations used in this approach will not hold in
the general situation. The most important are the following.
In the first place, we remark that the simple expression

(17) for vw implicitly assumes the relations T− ¼ Tþ and
vþ ¼ v− ¼ vw [cf. Eqs. (10), (11)], while for a deflagration
we have T− < Tþ and vþ < v− ¼ vw. Moreover, since the
expression (17) depends only on Tþ and v−, it does not
allow to perform independent perturbations of variables on
each side of the wall (such as δT−, δvþ). These limitations
of the surface equation constrain the validity of the treat-
ment of Huet et al. This contrasts with their treatment of the
fluid equations, where independent perturbations were
considered for − and þ variables. One expects that the
approximation δT− ¼ δTþ will be valid if T− ≃ Tþ.
However, the latter is not the most general case.
In the second place, the reheating in front of the wall

was not taken into account. The value of Tþ was estimated
from results on the amount of supercooling3 for the
electroweak phase transition [9] (i.e., the approximation
Tþ ≃ TN was used). Notice that, for a deflagration, the
fluid is reheated in front of the wall (see Fig. 2). As a
consequence, the temperature Tþ in front of the phase
transition front does not coincide with the nucleation
temperature TN . Depending on the wall velocity and the

3The temperature at which bubbles nucleate and expand can be
estimated using the bubble nucleation rate, which is calculated
using the thermal instanton technique [30].
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amount of latent heat released, the local reheating can be
important.
Our derivation of the perturbation equations will be

similar to that of Ref. [14]. The main difference will be,
essentially, that instead of considering Eq. (17), we shall
consider Eq. (10), which depends explicitly on the two
velocities v� and on the two temperatures T� (through the
driving force). According to the approximation (11), we
have Fdr ¼ p−ðT−Þ − pþðTþÞ þ hsiðTþ − T−Þ. In the
case of small supercooling (i.e., Tc − T� ≪ Tc) and small
wall velocity, the pressure difference is OðLv2wÞ and can be
neglected in comparison with the term hsiðTþ − T−Þ.
Besides, we can use the approximation [28]

Tþ − T− ¼ ΔsðTcÞ
s−ðTcÞ

ðTc − TþÞ (25)

to obtain

Fdr ¼ ðhwi=w−ÞLð1 − Tþ=TcÞ; (26)

which, taking into account that hvi ¼ −vwhwi=wþ, gives

vw ¼ wþ
w−

Lð1 − Tþ=TcÞ
η

: (27)

This is similar to Eq. (17), except for the factor wþ=w−,
which is ≈ 1 for small latent heat. Thus, in the limit of small
supercooling, small vw, and small L=wþ, we obtain the
approximation used in Ref. [14] for the wall velocity. In our
treatment, the parameter db will be replaced by

d ¼ σ

Fdr
(28)

For small supercooling and small latent heat, we have
db ≈ d. According to Eq. (22), the parameter dc is
determined by db and vc. Similarly, our results will depend
on d and the critical velocity.

B. Linearized equations

We shall consider small perturbations of the fluid and the
interface. The planar symmetry allows us to consider a
single transverse direction x⊥ instead of two directions x, y.
The perturbation variables we shall use are the pressure
fluctuation δpðx⊥; z; tÞ, the variation of the velocity along
the wall motion δvðx⊥; z; tÞ, the transverse velocity
v⊥ðx⊥; z; tÞ, and the variation of the wall position
ζðx⊥; tÞ. For the sake of clarity, in this subsection we shall
denote the stationary solutions with a bar. Thus, we have

p ¼ p̄þ δp; (29)

uμ ¼ ūμ þ δuμ ¼ ðγ̄; 0; 0; γ̄ v̄Þ þ ðγ̄3v̄δv; γ̄v⊥; γ̄δvÞ; (30)

zw ¼ z̄w þ ζ: (31)

To derive the equations for these four variables, we shall
consider again Eqs. (1)–(2) for a field configuration
corresponding to the perturbed wall.

1. Fluid equations

Away from the (perturbed) interface, the field is a
constant as before, and Eq. (1) gives the local conservation
of energy and momentum ∂μTμν ¼ 0, where Tμν is given by
Eq. (3). To obtain the fluid equations it is convenient to take
the projections of the 4-divergence of the stress tensor
along the directions of the fluid 4-velocity and orthogonal
to it, uμTμν

;ν ¼ 0, ðgαμ − uαuμÞTμν
;ν ¼ 0. Taking into

account the relation between enthalpy and pressure
variations, Eq. (4), we obtain

c2swuν;ν þ uνp;ν ¼ 0; (32)

wuα;νuν − p;α þ uαuνp;ν ¼ 0: (33)

We are interested in the stability of the deflagration solution
depicted in Fig. 2, for which the fluid profile is constant on
both sides of the wall. Therefore, we must consider
perturbations from a constant solution (we shall not
consider here perturbations of the shock front). To linear
order in the perturbations we obtain, for the direction along
the fluid velocity,

c2sw̄ðγ̄2v̄δv;0 þ γ̄2δv;z þ v⊥;⊥Þ þ δp;0 þ v̄δp;z ¼ 0 (34)

and, for the orthogonal directions,

w̄γ̄2ðδv;0 þ v̄δv;zÞ þ v̄δp;0 þ δp;z ¼ 0; (35)

w̄γ̄2ðv⊥;0 þ v̄v⊥;zÞ þ δp;⊥ ¼ 0: (36)

We have not specified the reference frame yet. We shall
consider the frame which moves with the unperturbed wall.
Therefore, v̄ corresponds to the incoming and outgoing
flow velocities.

2. Matching conditions at the interface

To obtain matching conditions for the perturbations, we
need to derive the matching conditions for the perturbed
wall, and then subtract those for the stationary wall. We
shall consider that the unperturbed wall is at z̄w ¼ 0 and the
perturbed wall at zw ¼ ζðx⊥; tÞ. Let us consider again
Eqs. (1), ∂μðwuμuν − gμνpÞ ¼ −□ϕ∂νϕ.
Since there is a discontinuity at the bubble wall, if we

integrate these equations in a small interval along the
normal direction across the surface, only the normal
derivatives will give a finite difference. Thus we can
neglect all other derivatives. We obtain

STABILITY OF COSMOLOGICAL DEFLAGRATION FRONTS PHYSICAL REVIEW D 89, 103507 (2014)

103507-7



∂nðwγ2vnÞ ¼ 0; ∂nðwγ2vnv⊥Þ ¼ 0;

∂nðwγ2vn2 þ pÞ ¼ □ϕ∂nϕ: (37)

For instance, for the unperturbed wall we have n ¼ z,
□ϕ ¼ −∂2

zϕ, and we re-obtain Eqs. (5)–(6),

Δðw̄ v̄ γ̄2Þ ¼ 0; (38)

Δðw̄v̄2γ̄2 þ p̄Þ ¼ 0; (39)

together with the continuity of the transverse velocity,
Δv̄⊥ ¼ 0. The velocity v̄⊥, though, is set to zero by
symmetry. If we use Eq. (37) for the perturbed wall, we
then have to express ∂n in terms of ∂z, ∂⊥ and ∂0, in order
to compare with the stationary equations.
Alternatively, we may stay in the coordinate system of

the unperturbed wall and just consider the fluid equations,

∂0ðwγ2 − pÞ þ ∂zðwγ2vÞ þ ∂⊥ðwγ2v⊥Þ ¼ −□ϕ∂0ϕ; (40)

∂0ðwγ2v⊥Þ þ ∂zðwγ2vv⊥Þ þ ∂⊥ðwγ2v⊥ þ pÞ ¼ □ϕ∂⊥ϕ;

(41)

∂0ðwγ2vÞ þ ∂zðwγ2v2 þ pÞ þ ∂⊥ðwγ2vv⊥Þ ¼ □ϕ∂zϕ;

(42)

taking into account the discontinuity of the variables at the
wall. We shall use this approach. We are going to integrate
across the wall along the z axis. Since we shall integrate in a
vanishingly small interval, we may neglect any dependence
on x⊥ and t, other than the position of the discontinuity,
i.e., we may assume (for this integration) step functions
depending only on z − ζðx⊥; tÞ. Hence, we have, e.g.,
∂0w ¼ −∂0ζ∂zw, ∂⊥w ¼ −∂⊥ζ∂zw, etc. This leaves only z
derivatives in the lhs of Eqs. (40)–(42).
Keeping up to linear terms in the perturbations ζ and v⊥,

only terms proportional to ∂2
zϕ∂zϕ (which vanish after

integration) remain in the rhs, except in Eq. (42), where
there is also a term proportional to ð∂zϕÞ2. Performing the z
integration, the latter gives the surface tension
σ ¼ R ð∂zϕÞ2dz. We thus obtain

−∂0ζΔðwγ2 − pÞ þ Δðwγ2vÞ ¼ 0; (43)

Δðwγ2vv⊥Þ − ∂⊥ζΔp ¼ 0; (44)

Δðwγ2v2 þ pÞ ¼ −σð∂2
0 − ∂2⊥Þζ; (45)

where Δ applied to any function f means Δf ¼ fþ − f−.
In the last equation we have used the fact that, according to
Eq. (43), Δðwγ2vÞ ¼ OðζÞ. Now we replace w ¼ w̄þ δw,
v ¼ v̄þ δv, etc., taking into account the unperturbed
equations (38)–(39) and the relation δw ¼ ð1þ c−2s Þδp.
To first order in all the perturbations, we have

Δ½w̄γ̄2ð1þ v̄2Þð−∂0ζ þ γ̄2δvÞ þ ð1þ c−2s Þγ̄2v̄δp� ¼ 0;

(46)

Δðv⊥ þ v̄∂⊥ζÞ ¼ 0; (47)

σð∂2
0 − ∂2⊥Þζ þΔ½2w̄γ̄4v̄δvþ ð1þ ð1þ c−2s Þγ̄2v̄2Þδp� ¼ 0:

(48)

3. Equation for the interface

Let us now consider the field equation (2). The field
varies in a region (the wall width) around the wall position
zw ¼ ζðx⊥; tÞ. Hence, we may assume a field profile of the
form4 ϕðz; x⊥; tÞ ¼ ϕ½z − ζðx⊥; tÞ�. To first order in ζ and
v⊥, we have ∂μ∂μϕ ¼ ϕ0ð∂2⊥ − ∂2

0Þζ − ϕ00 and uμ∂μϕ ¼
γð−∂0ζ þ vÞϕ0. Multiplying Eq. (2) by ϕ0ðz − ζÞ and
integrating in z (as we did in Sec. II), we obtain

σð∂2
0 − ∂2⊥Þζ ¼ p− − pþ þ

Z
sdT

þ ~ηTc

Z
ϕ02γðv − ∂0ζÞdz: (49)

This equation is similar to Eq. (7), except for the three terms
depending on ζ. The first one, σ∂2

0ζ, takes into account the
acceleration of a surface element of the wall which,
according to Eq. (49), is determined by the sum of all
the forces acting on it. The second one, −σ∂2⊥ζ, gives the
restoring force due to the curvature of the surface. Finally,
the term −∂0ζ takes into account the fact that the friction
force depends on the relative velocity vr between the fluid
and the wall. We have γðv − ∂0ζÞ ¼ γrvr.
Approximating the integrals in (49) as we did in Sec. II,

we obtain

σð∂2
0 − ∂2⊥Þζ − Fdr − ηhγðv − ∂0ζÞi ¼ 0: (50)

The various thermodynamical quantities (entropy, pressure,
temperature), are related through the equation of state.
Hence, we may consider the driving force as a function of
T− and Tþ. In the stationary case, Eq. (50) gives Eq. (10),

hγ̄ v̄i ¼ −FdrðT̄þ; T̄−Þ=η; (51)

where T̄− and T̄þ are related through Eqs. (38)–(39). For
the perturbations we obtain

σð∂2
0 − ∂2⊥Þζ ¼ ηhδðγvÞ − γ̄∂0ζi þ

∂Fdr

∂Tþ
δTþ þ ∂Fdr

∂T−
δT−;

(52)

4Notice that here we are considering a reference frame for
which z̄w ¼ _̄zw ¼ 0, and ζ is a small perturbation, so we have
γw ¼ 1þOðζ2Þ.
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The derivatives ∂Fdr=∂T� can be calculated by using either
the approximation (11) or the approximation (12). In terms
of our perturbation variables δp�, we have

σ

η
ð∂2

0 − ∂2⊥Þζ ¼ 1

2

�
δðγþvþÞ þ bþ

δpþ
wþ

− γ̄þ∂0ζ

�

þ 1

2

�
δðγ−v−Þ þ b−

δp−
w−

− γ̄−∂0ζ

�
; (53)

where

b�
2

≡ T�
1

η

∂Fdr

∂T�
: (54)

The parameters σ and η can be written in terms of the fluid
velocity and the scale d using Eqs. (51) and (28). Thus, we
can write Eq. (53) in a more concise form,

hγ̄ v̄ dð∂2
0 − ∂2⊥Þζ þ γ̄3δvþ bδp=w − γ̄∂0ζi ¼ 0; (55)

with

b�
2

¼ h−γ̄ v̄i T�
Fdr

∂Fdr

∂T�
¼ 2h−γ̄ v̄i T

2
�

Fdr

∂Fdr

∂T2
�
: (56)

The last equality is useful if Fdr is quadratic in temperature.
To understand the meaning of these equations, it is useful

to consider some simplifications used in previous works. In
Ref. [14] hydrodynamics was neglected in the equation for
the wall. This means that, in the first place, it was assumed
that T̄− ¼ T̄þ and v̄þ ¼ v̄− ¼ −vw. In this case we
have Fdr ¼ p−ðT̄þÞ − pþðT̄þÞ and the scale d becomes
equal to db defined in (21). In the second place, only
linearly-dependent perturbations were considered for the
interface equation, δT− ¼ δTþ, δv− ¼ δvþ, such that
even the perturbed force is of the form FdrðTþÞ ¼
p−ðTþÞ − pþðTþÞ. This is the most sensitive simplifica-
tion used in Ref. [14], since perturbations in each phase
may be quite different.5 With these approximations, the two
terms in the rhs of (53) are almost identical. The sum of the
two coefficients b�=2 contains a total derivative dFdr=dTþ
and gives

hbi ¼ Tþ
dðγwvwÞ
dTþ

: (57)

We thus obtain

vwdbð∂2
0 − ∂2⊥Þζ ¼ ð1 − βÞγ2þδvþ − ∂0ζ; (58)

where

β ¼ −Tþ
∂vw
∂Tþ

1

wþ

δpþ
δvþ

: (59)

In Eq. (59), the variation δp=δv depends on the solution of
the fluid equations (34)–(36) on the þ side of the wall.
Equation (58) is essentially6 the same as Eq (52) of

Ref. [14]. As we have seen at the beginning of this section,
the coefficient β plays a relevant role in the hydrodynamic
stability of the deflagration. In the realistic case, we see that
β will split into two parts, β�, corresponding to perturba-
tions on each side of the wall. We remark that, in the case of
small supercooling, Eq. (26) (which depends only on Tþ) is
a good approximation for the stationary force FdrðT̄þ; T̄−Þ,
but not for the general form FdrðTþ; T−Þ, and should not be
used to obtain b�.

C. Fourier modes of the perturbations

The fluid equations away from the wall, Eqs. (34)–(36),
can be expressed in matrix form,

½C0∂0 þ Cz∂z þ C⊥∂⊥� ~U ¼ 0 (60)

where (from now on we remove the bars on unperturbed
variables)

C0≡
2
64
1 c2swγ2v 0

v wγ2 0

0 0 wγ2

3
75; Cz≡

2
64
v c2swγ2 0

1 wγ2v 0

0 0 wγ2v

3
75;

C⊥ ≡
2
64
0 0 c2sw

0 0 0

1 0 0

3
75; (61)

and ~U is the perturbation vector

~U≡
2
64
δp

δv

v⊥

3
75: (62)

To solve Eq. (60) we may use the separation of variables
method which, in this simple case, amounts to searching for
solutions of the form

~Uðt; z; x⊥Þ ¼ ~LeΩtþqzþikx⊥ ; (63)

5This is more apparent in the case of detonations, for which
perturbations can grow only in the—phase, and leads the authors
of Ref. [14] to a wrong conclusion about the stability of
detonations [15,31].

6There is a discrepancy, namely, the relative factor of γ2þ
between the terms δvþ and ∂0ζ. The origin of this is that, in their
derivation, the authors of [14] considered, for vþ ≈ −vw, the
relation δðvþ þ vwÞ ¼ ∂0ζ. However, the correct relativistic
velocity sum gives δðγ2þðvþ þ vwÞÞ ¼ ∂0ζ.
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where Ω, q and ik are the eigenvalues of the operators ∂0,∂z and ∂⊥, respectively. While k is a real wave number,
corresponding to Fourier modes along the wall,Ω and q are
in general complex numbers. The stationary solution will
be unstable whenever ReðΩÞ > 0.
Inserting the modes (63) into Eqs. (60) we obtain the

system of homogeneous equations

ðC0Ωþ Czqþ C⊥ikÞ~L≡ C~L ¼ 0: (64)

The determinant of the matrix C must vanish so that the
trivial solution is not the only one. This gives the dispersion
relations

qvþ Ω ¼ 0 (65)

or

ðqvþ ΩÞ2 − c2sðΩvþ qÞ2 þ c2sγ−2k2 ¼ 0; (66)

and we have three solutions,

q1 ¼ −Ω=v; (67)

q2;3 ¼
ð1 − c2sÞvΩ� csð1 − v2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ ðc2s − v2Þγ2k2

p
c2s − v2

:

(68)

The corresponding eigenvectors are

~L1 ¼

2
64

0

1
iq1
k

3
75; ~L2;3 ¼

2
664
−wγ2

�
Ωþq2;3v
Ωvþq2;3

	
1
ik

Ωvþq2;3

3
775 (69)

The eigenvector ~L1 corresponds to a special solution which
describes isobaric perturbations (δp1 ¼ 0) moving with the
fluid (i.e., with z, t dependence of the form z − vt).
The general solution is a superposition of these modes.

In particular, for given k and Ω, we must consider a
perturbation vector of the form

~Uðt; z; x⊥Þ ¼ ~AðzÞeðΩtþikx⊥Þ; (70)

with

~AðzÞ ¼
X3
j¼1

Aj
~Ljeqjz: (71)

The function ~AðzÞ must satisfy the boundary conditions
at z ¼ �∞ and the junction conditions at the wall.
Accordingly, the perturbation from the planar shape of
the surface will be of the form

ζðt; x⊥Þ ¼ DeðΩtþikx⊥Þ: (72)

For ReðΩÞ > 0 the perturbation grows exponentially
with time, whereas for ReðΩÞ < 0 the perturbation decays
exponentially. On the other hand, the condition that the
source is the wall itself, and not something outside it,
implies that the perturbations must decay away from the
wall [12]. Therefore, instability of the front also requires
ReðqÞ < 0 for z > 0 (þ phase) and ReðqÞ > 0 for z < 0
(− phase).
Since v is negative, the special solution gives Reðq1Þ > 0

for ReðΩÞ > 0. Hence, unstable perturbations will be
associated to the presence of this mode in the − phase
(behind the wall). Conversely, for stable perturbations this
mode will be in the þ phase.
Regarding the other two solutions, we can write Eq. (68)

in the form ðΩ − aþqÞðΩ − a−qÞ ¼ −K2, with

a� ¼ � cs∓v
1∓csv

(73)

and K2 ¼ c2sγ−2k2=ð1 − c2sv2Þ, which shows that, for real q
and Ω, we have a hyperbola with asymptotes q ¼ Ω=a�.
For complex q andΩ, it can be shown that the points ReðqÞ,
ReðΩÞ lie in the same region between these asymptotes. We
show some examples in Fig. 4. We have three different
cases, depending on the value of v. For v supersonic (left
panel), Reðq2Þ and Reðq3Þ have the same sign for a given
Ω. For v subsonic (right panel), Reðq2Þ and Reðq3Þ have
opposite sign. In the case v ¼ −cs (central panel) there is
only one solution (besides the special one), namely

q2 ¼
csk2

2Ω
þ ð1þ c2sÞ

2cs
Ω: (74)

In front of the wall we require ReðqÞ < 0, and the possible
modes are those in the lower quadrants of Fig. 4.
Conversely, the possible modes behind the wall are those
in the upper quadrants.
Deflagrations are characterized by jvþj < csþ, i.e., the

incoming flow is always subsonic. Thus, for the þ phase,
the right panel of Fig. 4 applies. Furthermore, in this phase
we require ReðqÞ < 0 and the dispersion relation corre-
sponds to the lower (blue) curves of this panel, i.e.,
q ¼ q3ðvþ;ΩÞ≡ q3þ. In the þ phase, the special solution
q1 must be included only for the stable case ReΩ < 0.
On the other hand, in the − phase we require ReðqÞ > 0,

but the outgoing flow may, in principle, be supersonic as
well as subsonic. As a consequence, the stability analysis is
quite different for weak, strong, or Jouguet deflagrations.
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D. Solution of the perturbation equations

1. Supersonic deflagrations

As we have seen, a supersonic deflagration can be either
a strong or a Jouguet solution. Let us consider first the case
of strong deflagrations. As already discussed by Landau
[12] for a classical gas, strong deflagrations are absolutely
unstable, either in the case of a combustion front (131) or a
condensation discontinuity (132), due to the fact that such
discontinuities are not evolutionary (i.e., there are more free
parameters than conditions). According to numerical cal-
culations [27], strong deflagrations are unstable also in the
case of a relativistic phase transition. It is interesting to
verify this result analytically.
Strong deflagrations are characterized by a supersonic

outgoing velocity v−, corresponding to the left panel of
Fig. 4. For ReðΩÞ < 0, we see that all the solutions give
ReðqÞ < 0. Therefore, we have no possible modes with
ReðΩÞ < 0 in the − phase. On the other hand, for ReðΩÞ >
0 we have Reðq2Þ > 0, Reðq3Þ > 0, and Reðq1Þ > 0. We
thus have three unstable modes in the − phase. In the
þ phase, as we have already discussed, we have one
unstable mode for Ω > 0, namely, q3, since Reðq3Þ < 0
(right panel of Fig. 4). Hence, according to Eq. (71), for
z > 0 we must consider a perturbation of the form

~AðzÞ ¼ Aþ ~L3þeq3þz; (75)

whereas for z < 0 we have

~AðzÞ ¼ A− ~L3−eq3−z þ B~L2−eq2−z þ C~L1−eq1−z: (76)

Here, the� signs in the qi and ~Li mean that these quantities
[which are given by (67)–(69)] must be evaluated at v�,
respectively. We must impose the junction conditions
(46)–(49) and the surface equation (55) to the fluid
variables and the surface deformation ζ. This gives four
equations for the five variables Aþ, A−, B, C, andD. Such a
system of equations has infinite solutions. Hence, the

strong deflagration is trivially unstable. Notice that our
treatment applies to any of the strong deflagration profiles
sketched in Figs. 2 and 3, since we perturbed the fluid near
the wall from constant velocity solutions.
As we decrease the velocity and reach the Jouguet point

(jv−j ¼ cs−), one of the asymptotes becomes vertical and
the hyperbola becomes single-valued (central panel of
Fig. 4). In this case the solution q3 disappears. Thus, we
now have only two unstable modes in the − phase,
corresponding to q2 and the special solution q1. Hence,
we must set A− ¼ 0 in Eq. (76). In theþ phase the situation
is the same as before (since, for deflagrations, vþ is always
subsonic), and the unstable mode is given by Eq. (75). As a
consequence, the deflagration becomes evolutionary.
As we have discussed in Sec. II A, for the supersonic

Jouguet deflagration the fluid velocity profile develops a
tail just behind the wall (right panel of Fig. 3), and our
treatment no longer applies. Although it would be interest-
ing to study the stability of this kind of solution, it is quite a
difficult task since the stationary velocity profile is a
function of z and t, namely, vrarðz=tÞ. Such a study is
out of the scope of the present paper and we shall attempt it
elsewhere. For the traditional deflagration profile, the
Jouguet point just corresponds to the case vw ¼ cs, which
is the limit between strong and weak deflagrations.

2. Weak deflagrations

In the case of weak deflagrations, both velocities v− and
vþ are subsonic. We have Reðq2Þ > 0 and Reðq3Þ < 0
(right panel of Fig. 4). Hence, we must consider the mode
with eigenvalue q3 again in the þ phase and the mode with
eigenvalue q2 in the − phase. Besides, for ReðΩÞ > 0, we
have Reðq1Þ > 0, and the special solution must be con-
sidered in the − phase. Thus, in the unstable case, for z > 0

the function ~AðzÞ is again of the form (75), ~AðzÞ ¼
A~L3þeq3þz, while for z < 0 we have ~AðzÞ ¼ B~L2−eq2−zþ
C~L1−eq1−z. The junction conditions (46)–(48), as well as
the surface equation (55), require evaluating these functions
at the wall position z ¼ ζ. However, to first order in the
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FIG. 4 (color online). The real part of the dispersion relations q2ðΩÞ (in black) and q3ðΩÞ (in blue) for different values of the imaginary
part ImðΩÞ. Gray dashed lines indicate the asymptotes of these solutions. We also show the special solution q1ðΩÞ in a dotted red line.
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perturbations, we just evaluate at z ¼ 0. We thus have, on
each side of the interface (omitting a factor eΩtþikx⊥),

δvþ ¼ A; δpþ ¼ −γ̄2þw̄þ
Ωþ q3þv̄þ
Ωv̄þ þ q3þ

A;

v⊥þ ¼ ik
Ωv̄þ þ q3þ

A; (77)

and

δv− ¼ Bþ C; δp− ¼ −γ̄2−w̄−
Ωþ q2−v̄−
Ωv̄− þ q2−

B;

v⊥− ¼ ik
Ωv̄− þ q2−

Bþ iq1−
k

C: (78)

These quantities and those related to the corrugation of
the wall,

∂0ζ¼ΩD; ∂⊥ζ¼ ikD; ∂2
0ζ¼Ω2D; ∂2⊥ζ¼−k2D

(79)

(omitting again a factor eΩtþikx⊥), are related by
Eqs. (46)–(48) and (55). We thus have four equations
for the four unknowns A, B, C and D, i.e., the weak
deflagration is evolutionary.
It is interesting to consider also the case of a stable

perturbation, ReðΩÞ < 0. In this case we have q1 < 0
and the special solution must now be included in the þ
phase instead of the − phase. The form of the perturba-
tions is similar to that of Eqs. (77)–(78), except that
the variable C appears in (77) instead of (78). As we
shall see, the jump of the special mode from one side
of the interface to the other as Ω changes sign will
cause a discontinuity in the wave number k as a function
of Ω.
Inserting Eqs. (77)–(79) in Eqs. (46)–(48), (55), we

obtain a homogeneous system of linear equations for the
constants A, B, C, and D. Nontrivial solutions exist if the
determinant of the matrix associated to this system van-
ishes. After some manipulations (e.g., multiplying the first
column by the factorQþ defined below, etc.), this condition
can be written in the form

















1
Rþ

1
R−

Ω̂
v−γ2−

−ðvþ − v−Þ
v−

�
1þ vþΩ̂

Rþ

	
−vþ

�
1 − v−Ω̂

R−

	
vþð1þ v2−Þ Ω̂ð1 − v−vþÞðvþ − v−Þ

1þ Ω̂
vþRþ

−1þ Ω̂
v−R− 2 Fdr

wþ
1

vþγ2þ
ðΩ̂2 þ 1Þkd

γ2sþ
2
ðγþQþ − bþPþÞ γ2s−

2
ðγ−Q− − b−P−Þ − γ−

2
−hγiΩ̂þ hγviðΩ̂2 þ 1Þkd
















¼ 0; (80)

where Ω̂≡Ω=k, and

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2�
γ2s�

þ Ω̂2

c2s�

s
; P� ¼ v�∓ Ω̂

R�
;

Q� ¼ 1∓ v�
c2s�

Ω̂
R�

; (81)

with γs� ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2�=c

2
s�

p
. Although the solution is, by

symmetry, symmetric in k, to obtain these expressions we
have assumed k > 0.7 Thus, from now on we are using the
notation k ¼ jkj.
A solution of Eq. (80) is Ω̂ ¼ −γ−v−. Indeed, for this

value of Ω̂ we have R− ¼ γ−, P− ¼ 0, and Q− ¼ γ−2s− .
Hence, the second and third columns of the matrix are
proportional, and the determinant vanishes. However, as
explained in Ref. [14], this solution is spurious and has no
physical significance, as it leads to vanishing values of the
variables.

Finding analytical solutions for ΩðkÞ from Eq. (80) is a
difficult task. Notice, on the other hand, that the wave
number k appears only in the fourth column, in the matrix
elements 34 and 44. Hence, we can readily find an
expression for k as a function of Ω̂,

kd ¼ ðvþ − v−Þ½det14 þ det24ð1 − vþv−ÞΩ̂� − det44hγiΩ̂
ð1þ Ω̂2Þ½ðFdr=wþÞdet34=ðvþγ2þÞ − hγvidet44�

;

(82)

where detij is the determinant of the 3 × 3matrix that results
by removing the ith row and the jth column in Eq. (80).
We remark that, for ReðΩÞ < 0, we will have a different

matrix, since the special mode must be considered in the þ
phase instead of the − phase. This amounts to changing, in
the third column of the matrix, the indices �↔∓ and the
sign of the first three elements.

IV. STABILITY OF WEAK DEFLAGRATIONS

We shall now attempt to find all the unstable solutions
for a given wave number. Notice that, for real Ω, Eq. (82)

7In particular, we have inserted a factor of k inside a square
root in the expressions for q2;3=k to obtain the quantities R�.
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facilitates to study the general properties of the solution.
Moreover, one may obtain a plot of Ω vs k by just inverting
the graph of kdðΩ̂Þ. However, it is not clear form Eq. (82)
whether solutions with ImðΩÞ ≠ 0 are possible as well.

A. Small velocity limit

In order to understand the general behavior of the
function ΩðkÞ, it is convenient to consider first nonrela-
tivistic velocities, so that we can write down analytical
expressions which are rather lengthy in the general case.
We shall also use, in this subsection, the approximation of
small supercooling, which is consistent with a small wall
velocity and avoids considering a particular EOS. Thus,
from Eq. (56) and the general driving force (11) we obtain

b� ≃ hviL=Fdr. Then we may use, for the stationary
driving force, the approximation (26),

Fdr ¼
hvi
vþ

Lv2c; (83)

where vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tþ=Tc

p
. We thus obtain

b� ¼ vþ=v2c: (84)

Besides, with these approximations Eq. (5) gives v− −
vþ ¼ v−L=wþ plus higher order in ðTc − TÞ=Tc. Hence,
Eq. (80) becomes















1
Rþ

1
R−

Ω̂
v− v−L̄

v−
�
1þ vþΩ̂

Rþ

	
−vþ

�
1 − v−Ω̂

R−

	
vþ −Ω̂v−L̄

1þ Ω̂
vþRþ

−1þ Ω̂
v−R− 2 ðΩ̂2 þ 1Þkdhvi v2c

v2þ
L̄

1
2
ð1 − βþÞ 1

2
ð1 − β−Þ − 1

2
ðΩ̂2 þ 1Þkdhvi − Ω̂














¼ 0; (85)

where L̄ ¼ L=wþ, and

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂2

c2s�

s
; βþ ¼

vþðvþ − Ω̂
Rþ
Þ

v2c
;

β− ¼
vþðv− þ Ω̂

R−Þ
v2c

: (86)

1. Case jΩ̂j ≫ jv�j
Let us first look for solutions of large jΩ̂j. We

are interested in the instability case ReðΩ̂Þ > 0, for
which we have R� ¼ Ω̂=cs�ð1þOðc2s=Ω̂2ÞÞ. Hence, to
lowest order, the parameters appearing in Eq. (85)
become

1

R�
¼ cs�

Ω̂
;

Ω̂
R�

¼ cs�;

βþ ¼ vþð−csþ þ vþÞ
v2c

; β− ¼ vþðcs− þ v−Þ
v2c

: (87)

Notice that, in this limit, we have βþ > 0, β− < 0.
We can now easily calculate the 3 × 3 determinants
defined above. The factors of Ω̂ cancel out in det14,
whereas det24, det34, and det44 are of the form
deti4 ¼ ðΩ̂=v−Þdet0i4, where the det0i4 are determinants
of Ω̂-independent 2 × 2 matrices. Thus, we have

Ωd ¼ 1

hvi
det044 þ L̄v−det024
det044 − L̄ v2c

v2þ
det034

: (88)

From this expression we see that (in the limit of large
jΩ=kj) Ω is be real. More importantly, we can see that the
rhs of Eq. (88) is negative, which means that, in fact, we
cannot have jΩ̂j large for Ω > 0.8 Indeed, consider for
simplicity csþ ¼ cs−. Using the relation v− ¼ ð1 − L̄Þvþ
and dropping terms Oðv2=c2sÞ, we obtain

det044 ¼ 2cs þ L̄ð1þ c2sÞjv−j; (89)

v−det024 ¼
cs
2

�
L̄

1 − L̄
þ ð2 − L̄Þjv−jðcs − L̄jv−jÞ

v2c

�
; (90)

− v2c
v2þ

det034 ¼
v2c
v2þ

2− L̄
2

jv−j þ
L̄ðc− L̄jv−jÞ
2ð1− L̄Þ − jv−jð1þ c2sÞ;

(91)

where we have used absolute values to make the signs
clearer. We see immediately that det044 and v−det024 are
positive (since L̄ < 1). On the other hand, in the expression
for −ðv2c=v2þÞdet034, only the last term is negative. However,
in Eq. (88) this term cancels with the last term of det044.

8Notice that we are considering the case ReðΩ̂Þ > 0; for
ReðΩ̂Þ < 0, the matrix in Eq. (85), as well as the approximations
(87), would have different forms.
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Hence, since hvi < 0, the rhs of Eq. (88) is negative. We
conclude that there are no unstable modes with jΩ̂j ≫ vw.

2. Case 0 < jΩ̂j ≲ jv�j
Let us consider now the case of smaller Ω̂, up to order

v�. To linear order in vþ, v−, and Ω̂, we have R� ¼ 1, and

βþ ¼ vþ
v2c

ðvþ − Ω̂Þ; β− ¼ vþ
v2c

ðv− þ Ω̂Þ: (92)

In order to compare with the results of Ref. [14], we write
down again the determinant in this limit,















1 1 Ω̂
v− v−L̄

v− −vþ vþ −v−Ω̂ L̄

1þ Ω̂
vþ

−1þ Ω̂
v− 2 kd v2c

v2þ
hviL̄

1
2
ð1 − βþÞ 1

2
ð1 − β−Þ − 1

2
kdhvi − Ω̂














¼ 0: (93)

As expected, the first three rows of the matrix (correspond-
ing to the junction equations for the fluid perturbations)
match9 those of Ref. [14]. All the differences appear in the
forth row (which corresponds to the equation for the
interface). Since we considered independent perturbations
of variables in each phase, this row is more symmetric in
our case. In the case of dependent perturbations, we would
replace δv− → δvþ, δp− → δpþ in Eq. (53). We would
thus obtain zeros in the elements 42 and 43 (corresponding
to the perturbations δv− and δp−) and a factor of 2 in the
element 41, which would be just given by 1 − β (1 − η in
the notation of [14]).
As we shall see next, for small velocities, the aforemen-

tioned differences do not introduce a significant qualitative
variation with respect to the results of Ref. [14]. Roughly, the
role of that single β will be played by the average of βþ and
β−. More important discrepancies will appear for higher
velocities. The results will differ significantly also in the case
Ω ≤ 0, even in the nonrelativistic case. Indeed, since the
special mode must be considered on either side of the wall
according to the sign ofΩ, we cannot use Eq. (93) forΩ < 0.
As a consequence, we shall find a discontinuity in the
passage from Ω > 0 to Ω < 0.
Let us first consider the case ReðΩÞ > 0. Besides the

aforementioned spurious solution Ω̂ ¼ −v−, we obtain a
solution of the form

kd ¼ N=D: (94)

The expressions for N andD are still rather lengthy, and we
shall only write down the case of small L=wþ. To first order
we have

kd

�
1þ L̄ð1þ L̄

2
Þ

2β
þ Ω̂
vw

�

¼ L̄
2
ð1 − βÞ −

�
1þ L̄ð1 − L̄Þβ

2

�
Ω̂
vw

−
�
1þ L̄ð1þ βÞ

2

��
Ω̂
vw

�2
− L̄βð1þ L̄Þ

2

�
Ω̂
vw

�3
; (95)

where we have defined the parameter

β ¼ ð1 − L̄Þ v
2
w

v2c
: (96)

In Eqs. (92)–(96) we have neglected terms of order v2w,
except in the ratio v2w=v2c, since vc may be small. Notice that
v2c ¼ 1 − Tþ=Tc gives a measure of the amount of super-
cooling. Hence, in the nonrelativistic approximation, if we
are interested in velocities vw ∼ vc, the amount of super-
cooling must be small enough (of order v2w), i.e.,
ðTc − TþÞ=Tc ¼ v2c ∼ v2w.
In order to obtain all the possible values of Ω (with

positive real part), we should invert the relation (95),
which amounts to finding the three roots of a cubic
polynomial. Notice that the coefficient of the cubic term
is in general suppressed with respect to the the linear and
quadratic ones. If we neglect this term, we obtain a
quadratic equation, with only two roots. The third root of
the cubic equation must be large enough to make the
cubic term comparable to the quadratic one, i.e.,
Ω̂=vw ∼ L̄−1. This root is in general well beyond the
range of validity of the approximation Ω̂ ≲ vw and must
be discarded (in any case, it can be seen that this solution
has a negative real part). Let us just assume, for
simplicity, that L̄ is small enough that we can neglect
the cubic term. Then, we have a quadratic equation with
real coefficients, and it is trivial to see the structure of the
solutions. We have either two complex conjugate roots or
two real roots. Since the coefficients of the quadratic and
linear terms have the same sign, in the case of complex
roots the real part is negative. In the case of real roots,
one of them is negative. The other has a smaller absolute
value and may be positive or negative, depending on the
sign of the Ω̂-independent term. Thus, we have, at most,
only one solution with ReðΩÞ > 0. This solution
has ImðΩÞ ¼ 0.
To study this solution, it is convenient to analyze the

behavior of k as a function of Ω. We can thus go back to
Eq. (95) and considerΩ real. For Ω̂ > 0 the lhs of Eq (95) is
positive, while most of the terms in the rhs are negative.
Indeed, the coefficients of the Ω̂-dependent terms are
negative. The Ω̂-independent term is negative for β > 1.
In such a case, there is no solution with Ω̂ > 0 (i.e., we
would have unphysical values k < 0), and the deflagration
is stable under perturbations of any wavelength. For β < 1,

9Taking into account that dv2c=v2þ ¼ dc and the notations
vq ¼ −vþ, vh ¼ −v−, L̄ → L̄=2.
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the Ω̂-independent term in the rhs is positive and we have
unstable solutions for Ω̂ below a certain value Ω̂0. At Ω̂ ¼
Ω̂0 we have k ¼ 0 and, as Ω̂ decreases from Ω̂0, the value of
k increases. For vanishing Ω̂ we obtain the maximum wave
number kc for which the perturbation is exponentially
unstable.

3. Analytic approximations

In the limit of very small L̄, the critical value β ¼ 1 is
attained for vw ¼ vc. This is in agreement with Ref. [14]
(in this limit, and for Ω̂ → 0, we have βþ ¼ β− ¼ β). If L̄ is
not negligible, the critical velocity is somewhat higher,

vcrit ¼ vc=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − L̄

p
≈ vcð1þ L̄=2Þ: (97)

For vw below vcrit, we have Ω > 0 in the range 0 < k < kc.
The value of kc is obtained by setting Ω̂ ¼ 0 in Eq. (95),

kcd ¼ L̄
2

1 − β

1þ ð1þ L̄
2
Þ L̄
2β

: (98)

This equation shows explicitly the fact that all perturbations
are stable for β > 1.
As already mentioned, to obtain the value of Ω for a

given k, we should in principle invert the cubic equa-
tion (95). In Ref. [14] the corresponding equation is
quadratic because the dependence of the parameter βþ
on Ω is neglected. Furthermore, it is argued that the
smallness of the velocity (and the fact that Ω̂ ∼ vw) insures
that the term quadratic in Ω is small and can also be
neglected, obtaining a linear equation. Notice, however,
that Ω̂ ∼ vw is not a good argument to neglect any of the
terms in the equation. Nevertheless, since the independent
term in the rhs of Eq. (95) is always smaller than L̄=2, we
have Ω̂0=vw < L̄=2. Since we always have L̄ < 1 (and
often ≪ 1), this is an important constraint. As a conse-
quence, for the unstable range 0 < Ω < Ω0, the value of

Ω̂=vw will be, in most cases, small enough to safely neglect
the quadratic and cubic terms in Eq. (95). Keeping only the
linear terms we obtain

Ω̂
vw

¼ L̄
2

ð1 − βÞð1 − k=kcÞ
1þ ð1 − L̄Þ L̄

2
β þ kd

; (99)

which agrees with the result of Ref. [14] for L̄ ≪ 1. Thus,
we have

Ω̂0

vw
¼ L̄

2

1 − β

1þ ð1 − L̄Þ L̄
2
β
: (100)

We see that both Ω̂=vw and kd are at most of order L̄. We
plot the function Ω̂ in Fig. 5.
Notice that Eq. (99) is valid only for Ω̂ > 0. Although we

are not interested in general in the case ReðΩÞ < 0, which
is exponentially stable, it is important to consider the limit
Ω → 0−. As we have seen, for ReðΩÞ < 0 the special mode
must be considered in front of the wall. This results in a
change in the third column of the matrix in Eq. (93), which
becomes colð−Ω̂=vþ;−v−;−2;−1=2Þ. This will give a
jump in k as a function of Ω (see Fig. 5). Proceeding as
before we obtain, for small (and negative) Ω̂=vw,

Ω̂
vw

¼ L̄
2

ð1 − β þ L̄
2
Þð1 − k=k0cÞ

1 − ð1þ L̄Þ L̄2

2
β − ð1þ 2L̄Þkd ðΩ < 0Þ; (101)

where the minimum wave number for which the
perturbation is exponentially stable is given by

k0cd ¼ L̄
2

1 − β þ L̄

1 − ð1þ 3L̄
2
Þ L̄
2β

: (102)

Comparing Eq. (101) with Eq. (99), we observe some
differences of order L̄ ∼ Δv=v in the expressions for Ω > 0
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FIG. 5. Ω̂ vs kd in the small vw, small L and small Ω̂=vw approximation, for L̄ ¼ 0.01, Tþ=Tc ¼ 0.995 (vc ≃ 0.07), and vw ¼ 0.05
(left), 0.007 (center) and 0.003 (right).
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and Ω < 0 (due to the changes v�↔v∓ in the third column
of the matrix). On the other hand, from Eq. (102) we see
that there is also an important sign difference in the
denominator of k0c with respect to that of kc. For β ∼ 1
(i.e., vw ∼ vc), k0c will be slightly higher than kc. As a
consequence, there will be a small gap in the plot of Ω vs k,
as can be seen in the left panel of Fig. 5. This gap grows
significantly as vw decreases from vc (center panel of
Fig. 5), since k0c has a pole at β ≈

ffiffiffiffiffiffiffiffi
L̄=2

p
. Hence, for a wall

velocity v0c ≈ ðL̄=2Þvc the interval kc < k < k0c becomes
infinite. Below this velocity, k0c takes negative values (right
panel of Fig. 5) and the solution with Ω < 0 becomes
unphysical. There are, in general, more solutions with
ReðΩÞ < 0, for higher values of jΩj. We are not interested
in them, though, since they correspond to stable perturba-
tions. In this case, we have linear stability for k > kc.
In the region of Ω > 0 our results agree with those of

Ref. [14]. In this region, Ω̂ decreases from Ω̂0 to 0 as k
increases from 0 to kc. Thus, the instability range of k is
limited by kc ≲ L̄=2, whereas Ω̂ is bounded by
Ω̂0 ≲ vwL̄=2. These values are also proportional to
1 − v2w=v2crit. Therefore, for higher velocities they are even
smaller, and stability is recovered at vw ¼ vcrit. According
to Eqs. (98) and (100), for small velocity we have kcd ∼ v2w
and Ω̂ ∼ vw. Hence, stability is also recovered as vw
vanishes. This is shown in Fig. 6 (solid lines). For a given
velocity, the exponentially unstable wave numbers are
those below the curve of kc, whereas the possible values
of Ω̂ lie below the curve of Ω̂0. Beyond the critical velocity
both kc and Ω̂0 become negative.
For k ≥ kc, on the other hand, we have significant

differences with the results of Ref. [14]. The gap between
kc and k0c was not observed in that analysis. The reason may
be the following. As we have seen, for Ω < 0 the only
changes in the matrix in Eq. (93) are in the third column.
For Ω̂ ¼ 0, the discontinuity in this column is given by
the change colð0; vþ; 2;−1=2Þ → colð0;−v−;−2;−1=2Þ.
Since changing the sign of a column does not alter Eq. (93),
the above change is equivalent to colð0; vþ; 2;−1=2Þ →
colð0; v−; 2; 1=2Þ. In the case of small L̄, the change
vþ → v− is not relevant. Therefore, the discontinuity is

dominated by the change of sign −1=2 → 1=2 in the
element 43. However, due to the simplified treatment of
Ref. [14], in that work this element is 0 instead of −1=2.
In principle, at k ¼ kc, Ω jumps to a value Ω < 0 (not

shown in Fig. 5, as it lies beyond the linear approxi-
mation). It is not clear, though, from the linear stability
analysis, whether there are unstable perturbations or not
in the range kc < k < k0c. For k < kc the perturbations
grow exponentially, whereas for k > k0c they decay
exponentially. In the range between kc and k0c, one
may expect marginal stability with Ω ¼ 0. Notice that,
as Ω → 0, the special solution, which is proportional to
expðΩz=jvjÞ, becomes non-normalizable in either side of
the wall, and cannot be included at all in Eqs. (77)–(78).
As a consequence, we will have four equations for the
three unknowns A, B, D, and the only solution will be
the trivial one, A ¼ B ¼ D ¼ 0. Thus, the approximation
of keeping to linear order in perturbations breaks down. It
is out of the scope of the present paper to go beyond the
linear stability analysis. In any case, in the range of wave
numbers between kc and k0c, the perturbations will not
grow exponentially. For our purposes, it will be enough
to assume that, in this range, the possible instabilities
would grow more slowly than for k < kc. From now on,
we shall concentrate on the case of Ω > 0.

4. Reheating effects

The stability of the perturbations depends on the wall
velocity and on the temperature Tþ. Notice, however, that
the boundary conditions for the fluid fix the temperature
beyond the shock front (the nucleation temperature TN),
while Tþ depends on the amount of reheating (see Fig. 2).
For a given nucleation temperature TN , the temperature Tþ
will depend on the wall velocity. As a consequence, Tþ, as
well as vw, depend on TN and the friction. For the stability
analysis it is useful to eliminate the friction and use the
wall velocity as a free parameter. However, it is not
reasonable to regard Tþ and vw as free independent
parameters. In particular, some combinations of Tþ and
vw will be unphysical.
For small supercooling (i.e., TN close to Tc), the

reheating is given by [28]
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FIG. 6. The values of kcd (solid line), k0cd (dashed line), and Ω̂0 as functions of vw, for the same set of parameters of Fig. 5.
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Tþ
Tc

¼ TN

Tc
þ Lffiffiffi

3
p

wþ
vw: (103)

In the case L=wþ ≪ 1 this gives Tþ ≈ TN . However, a
small temperature variation may cause important effects on
the wall dynamics. Using Eq. (103) we can write the wall
velocity (27) in terms of TN ,

vw ¼ wþ
w−

Lð1 − TN=TcÞ
ηeff

; (104)

where we have defined an effective friction coefficient
which takes into account the reheating in front of the wall
[28]. We have

ηeff
L

¼ η

L
þ Lffiffiffi

3
p

w−
: (105)

Notice that the effects of reheating will depend on the two
ratios η=L and L=w− ∼ L̄, whose values are quite unrelated.
Thus, the effective friction coefficient ηeff may be consid-
erably larger than η (even for small L̄). In particular, for
vanishing η we will still have a finite effective friction. This
hydrodynamic obstruction to the wall motion was dis-
cussed more recently in Ref. [32]. Notice that, for Tþ fixed,
the velocity would only be bounded by relativity for η → 0
[see Eq. (27)]. In contrast, for TN fixed, according to
Eqs. (104)–(105), the velocity may be bounded by a
relatively low value. As a consequence, some velocities
will be unreachable, as they would require a negative η.
Similarly, the velocity vc can be written in terms of TN ,

v2c ¼
Tc − TN

Tc

η

ηeff
: (106)

As we have mentioned, in Ref. [14], the approximation
Tþ ¼ TN was used. Fixing TN and vw instead of Tþ and
vw, the stability parameter β ≈ v2w=v2c is enhanced, with
respect to that approximation, by a factor of ηeff=η. The
ratio

ηeff
η

¼ 1þ 1ffiffiffi
3

p L
w−

L
η

(107)

can make a difference if L=η is large. Thus, for small
velocities (i.e., large η) the approximation Tþ ¼ TN will
not be too bad. Notice, on the other hand, that this is a
stabilizing effect. The factor η=ηeff in Eq. (106) opposes to
the increase with L̄ in Eq. (97). For high velocities
the approximation Tþ ¼ TN will fail as well as the
approximation T− ¼ Tþ.

B. Arbitrary velocities

The previous analytic treatment may be extended beyond
the limits of the above approximations (e.g., by considering

higher orders in vw, Ω̂, or L̄). However, the equations are
rather lengthy to write down here. We have also explored
the solutions of Eq. (80) in all the regions of parameter
space. We found that most of the qualitative features of
Ω̂ðkÞ hold in the whole range 0 < vw < cs. Thus, the only
solution with ReðΩ̂Þ > 0 is real and is always bounded by
the value Ω̂0 corresponding to k ¼ 0. For k > 0 the value of
Ω̂ decreases. In general, Ω̂ vanishes at a finite value kc, and
we have Ω̂0 ≲ vwL̄ and kcd ∼ L̄ (there are some exceptions,
though; see the next section). Beyond kc, there may be a
range kc < k < k0c of marginal stability. For k > k0c the
perturbations are exponentially stable. The general behav-
ior of k0c is qualitatively similar to that observed analyti-
cally. We shall be interested mostly in the case of
exponentially unstable perturbations k < kc.

10

Setting Ω̂ ¼ 0 in Eq. (82) we obtain the critical wave
number,

kcd ¼ Δv det014
ðFdr=wþÞ det034 =ðvþγ2þÞ − hγvi det044

: (108)

Setting k ¼ 0 we obtain, to linear order in Ω̂,

Ω̂0 ≃ Δv det014
hγi det044−Δv½det024ð1 − vþv−Þ þ det114�

: (109)

We have used the notations detij ¼ det0ijþdet1ij Ω̂þOðΩ̂2Þ.
We write down, as an example, the determinant det014
(i.e., det14 evaluated at Ω̂ ¼ 0),

det014 ¼ Δv
�
γ2s−ðγ− − v−b−Þ − γ−

2

�
þ −vþ

γ2−
hγ2sðγ − vbÞi;

(110)

where b� are the stability parameters defined in Eq. (56).
This determinant dominates the behaviors of kc and Ω̂0. In
particular, it can be seen that the denominators in Eqs. (108)
and (109) are always positive. Thus, the signs of kc and Ω̂0

depend essentially on the factors γ� − v�b� in Eq. (110)
(notice that Δv and −vþ are positive). Hence, the stability
is dominated by the quantities 1 − β�, with

β� ¼ v�b�=γ�: (111)

These definitions of β� are essentially the same as in the
previous subsection, but evaluated at Ω̂ ¼ 0 [cf. Eqs. (86),
(92)]. The denominators in Eqs. (108) and (109) become

10A characteristic feature is, thus, that the instability range
appears continuously below a critical velocity. Furthermore, Ω̂
grows continuously below k ¼ kc, and is in general small. In
contrast, in the case of detonations, instabilities generally arise,
below a critical velocity, with large values of Ω̂ for all wave
numbers [31].
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important for vw close to cs−. Indeed, in the limit v− → cs−
we have γs− → ∞, and det014 diverges. This divergence is
canceled by factors of γs− appearing in the denominators.
In any case, Ω̂0 and kc are still dominated by the quantities
1 − β�, which appear in all the determinants.

1. High velocities and the Jouguet point

In the nonrelativistic, small L̄ case, we have v� ≃ vw,
b� ≃ vw=v2c [cf. Eq. (84)]. As a consequence, kc and Ω̂0 are
proportional to 1 − β≃ 1 − v2w=v2c. This simple expression
is a consequence of the fact that the driving force is
proportional to v2c ¼ 1 − Tþ=Tc [cf. Eq. (83)]. In the
general case, it is always possible to define a velocity vc
which is proportional to the driving force (hence, vc, as
well as Fdr, will vanish for T− ¼ Tþ ¼ Tc). Thus, accord-
ing to Eq. (56), the quantities b� will be of the form
hγvi=v2c, and we have

β� ≈
γ−1� hγviv�

v2c
: (112)

Notice that we have β� > 0. In the case vþ ≃ v−, we obtain
β� ≈ v2w=v2c, and the behavior is similar to the nonrelativ-
istic case (namely, Ω̂0 will become negative for a velocity
vcrit ≈ vc). However, for large vw we may have a relatively
large difference between vþ and v−.
For a deflagration we have jvþj < jv−j ¼ vw and, con-

sequently, βþ < β−. Therefore, the factor 1 − β− vanishes
for a certain velocity vw ≳ vc, but 1 − βþ remains positive
until vw is increased further. As a consequence, the critical
velocity vcrit (at which Ω̂0 and kc vanish) will be higher than
vc. For large Δv, we may have vcrit close to cs− for
relatively low values of vc. Moreover, jvþj is bounded by a
subsonic value vdefJ . If vc is higher than this value, then
1 − βþ may be positive in the whole range 0 < vw < cs−.
Then, it may happen that Ω̂0 never becomes negative, i.e.,
that there is no critical velocity at all. In such a case (which
will depend on the amount of supercooling), the deflagra-
tion will be unstable for any subsonic velocity. Moreover,
as we shall see in the next section, the values of Ω̂0 and kc
may become large as vw approaches the speed of sound.
This result is in clear contradiction with Ref. [14], where

it is claimed that it is possible to show that, in the limit
vw → cs, the equation for Ω has no positive roots, for any
value of k. This discrepancy is, probably, due to the
approximations vþ ¼ v− ¼ vw, T− ¼ Tþ used in [14]
for the interface equation. Physically, the stability found
for the weak deflagrations in this limit is explained in
Ref. [14] by the fact that the result matches with the
stability of detonations. However, weak deflagrations never
match detonations, as the latter have higher, supersonic
velocities vw ≥ vdetJ . Between the speed of sound and the
Jouguet detonation velocity vdetJ , we may have, in principle,
either strong deflagrations or Jouguet deflagrations. As we

discussed in Sec. II, both match the weak deflagration at
vw ¼ cs− (i.e., the hydrodynamic solution bifurcates at the
Jouguet point). As we have seen, the strong deflagration is
unstable, whereas the supersonic Jouguet deflagration is
presumably stable in general.
Regardless of the behavior for vw → cs−, it is easy to

show that there cannot be a solution with Ω < 0 for
vw ¼ cs−. Indeed, since v− ¼ −cs−, Fig. 4 (central panel)
shows that, for Ω < 0, all the modes have q < 0. Thus, we
have no mode behind the wall. In front of the wall, we have
vþ > −csþ (right panel), and we see that there are two
modes (q1 and q2) with q > 0. Applying the linear
perturbation analysis, we will have only three unknowns
(namely the amplitudes of these two modes and that of the
surface deformation) for our four equations (46)–(48),(55).
This means that the analysis of linear perturbations breaks
down11 for Ω < 0.
For Ω > 0, in contrast, the calculation is similar to the

subsonic case (cf. the center and right panels of Fig. 4),
only we must use Eq. (74) for q2 instead of Eq. (68). We
have checked that the result of such calculation matches the
result of the subsonic calculation in the limit vw → cs.

V. NUMERICAL RESULTS

A. The Bag equation of state

To proceed to the calculation of ΩðkÞ, we need to
consider a concrete equation of state. The simplest phe-
nomenological model for a phase transition is the bag EOS,
which consists of radiation and vacuum energy densities
(see, e.g., [33]). The pressure in each phase can be written
in the form

pþðTÞ ¼
a
3
T4 − L

4
; p−ðTÞ ¼

�
a
3
− L
4T4

c

�
T4: (113)

The entropy and enthalpy densities can be obtained from
s ¼ dp=dT, w ¼ Ts. This model depends on three param-
eters, namely, the critical temperature Tc, the latent heat L,
and the coefficient a. The latter is related to the number of
effective massless degrees of freedom in the þ phase. The
simplicity of the model often allows to obtain analytic
results. The speed of sound is the same in both phases
cs� ¼ 1=

ffiffiffi
3

p ≡ cs.
The solution for the wall velocity can be obtained from

Eq. (10), ηhγvi ¼ −Fdr, using the matching conditions
(5)–(6) and the boundary conditions. Since the pressure in
both phases is a function of T2, it is convenient to use
Eq. (12) for the driving force. We obtain

11For supersonic Jouguet deflagrations this argument does not
apply, since we are considering perturbations from a constant
velocity, while this solution has a rarefaction wave immediately
after the wall.
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Fdr ¼
L
4

�
1 − T2−T2þ

T4
c

�
: (114)

The matching conditions give the relations

T2−
T2þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vþγ2þ
v−γ2−ð1 − L̄Þ

s
; (115)

vþ¼
1

1þαþ

�
1

6v−
þv−

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

6v−
þv−

2

�
2

þα2þþ
2

3
αþ−1

3

s �
;

(116)

where

L̄≡ L
4aT4

c=3
¼ L

wþðTcÞ
; (117)

and

αþ ≡ L
4aT4þ

¼ L̄
3

T4
c

T4þ
: (118)

Theþ sign in Eq. (116) corresponds to detonations, and the
− sign to deflagrations. For weak deflagrations, we have
v− ¼ −vw, and the reheating temperature Tþ is related to
the nucleation temperature TN by

ffiffiffi
3

p ðT4þ − T4
NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3T4þ þ T4
NÞð3T4

N þ T4þÞ
p ¼ vþ − v−

1 − vþv−
: (119)

We define the velocity vc by

v2c ≡ 1

4

�
1 − T2−T2þ

T4
c

�
(120)

so that we have Fdr ¼ Lv2c. The velocity vc is symmetric
in Tþ and T−. For small supercooling we have
v2c ≃ 1

2
ð1 − TþT−=T2

cÞ≃ 1 − ffiffiffiffiffiffiffiffiffiffiffiffi
TþT−

p
=Tc. For small latent

heat we have T− ≃ Tþ and we recover the definition
v2c ¼ 1 − Tþ=Tc. From Eqs. (56) and (114) we see that
the coefficients b� are equal,

b� ¼ hγvi
v2c

T2þT2−
T4
c

; (121)

and the quantities β� defined in (111) are given by

β� ¼ γ−1� hγviv�
v2c

T2þT2−
T4
c

: (122)

For small supercooling and small latent heat, we have
β� ≃ v2w=v2c, and we have a critical velocity vcrit ¼ vc. In
the general case, the temperature ratios in Eq. (122)
enhance the value of vcrit with respect to vc.
Furthermore, the fact that jvþj < jv−j implies that
βþ < β−, as already discussed.

B. Stability of deflagrations

In Fig. 7 we plot the set of real solutions for Ω̂ as a
function of kd (the right panel zooms at small kd). For
ReðΩ̂Þ > 0, we have found no other solutions (neither real
nor complex). We considered values of the parameters
similar to those considered in Ref. [14], namely, a very
small value of the latent heat (L̄ ¼ 0.01) and a value of Tþ
very close to Tc, which gives a small12 critical velocity,
vcrit ≃ vc ≃ 0.07. We have chosen a wall velocity below the
critical one, vw ¼ 0.05, so that there is a range of unstable
wave numbers. In the right panel we have also plotted the
approximations (99) and (101). Notice that these do not
match the exact solution even for vanishing Ω̂. This is
because the approximations are linear not only in Ω̂, but
also in the parameters vw, vc and L̄.
Changing the values of the parameters, the behavior is

qualitatively similar (as we already discussed analytically).
Essentially, the effect will be a variation of the points where
the curves cut the axes, i.e., of the parameters Ω̂0, kc, and
kc0 (see Fig. 5). In Fig. 8, the two parameters which
characterize the instability (namely, kc and Ω̂0) are plotted
as functions of the wall velocity. The lower curve corre-
sponds to the parameters of Fig. 7 and is well approximated
by the nonrelativistic approximation shown in Fig. 6. The
other curves in Fig. 7 correspond to higher values of the
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FIG. 7. Ω̂ vs kd for L̄ ¼ 0.01, Tþ=Tc ¼ 0.995, and vw ¼ 0.05. The right panel shows also the linear approximations (dotted line).

12See the discussion below Eq. (96).
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latent heat. As already seen with analytic approximations,
the critical velocity increases with the latent heat. Notice,
however, that this effect is quite small. Although kc and Ω0

are proportional to L̄, the critical velocity hardly varies
with L̄.
The dependence on the amount of supercooling is more

important (see Fig. 9). For small supercooling we have
vcrit ≃ vc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tþ=Tc

p
. As we increase the amount of

supercooling, we observe that vcrit grows more quickly than
vc, as predicted in the previous section. Thus, e.g., for
Tþ=Tc ¼ 0.92, we have vc ≃ 0.28 while vcrit ≃ 0.38. We
see that this behavior becomes critical for a value of
Tþ=Tc ≃ 0.9, which corresponds to vc ≃ 0.31, while the
critical velocity reaches a value vcrit ≃ 0.5. Here, a second
critical velocity appears, beyond which Ω̂0 and kc become
positive again. Increasing slightly the amount of super-
cooling, the critical velocity ceases to exist and the
deflagration is unstable in all the range 0 < vw < cs.
Notice that, as we increase the supercooling, the

nonrelativistic regime of vw does not suffer qualitative
modifications, while the relativistic regime changes con-
siderably. This happens because the difference Δv ¼ vþ −
v− grows with vw. As discussed in Sec. IV B, a high value
of Δv prevents Ω̂0 and kc to become negative. This effect is
so important that, beyond a certain amount of supercooling,
vcrit disappears before reaching cs. Moreover, the value of
Ω̂0 at vw ¼ cs begins to grow very quickly, and the value of
kc diverges.

C. Reheating effects

As already discussed, it is important to notice that Tþ is
not the nucleation temperature, and should not be consid-
ered as a free parameter. The reheating in front of the wall
increases with the wall velocity. Hence, if we fix TN and
increase vw, the temperature Tþ will get closer to Tc,
reducing the value of vc.
To see the importance of this effect, let us consider the

wall velocity as a function of the friction coefficient η. In
the left panel of Fig. 10 we show the relation between
velocity and friction for fixed Tþ, corresponding to some of
the curves of Fig. 9. The dots indicate the critical velocity.
Thus, below the dots the deflagration is unstable under long
wavelength perturbations (λ > 1=kc). For the upper curve,
the critical velocity does not exist and deflagrations of any
velocity have instabilities. Notice that (fixing Tþ) defla-
grations do not exist for small enough η. Besides, for some
values of the friction, there are two possible wall velocities.
In the right panel of Fig. 10, we fix instead the value of

TN (to the same values given previously to Tþ). For small
vw (large η), the results are similar, indicating that
Tþ ≃ TN . However, for higher vw (smaller η) it becomes
apparent that the velocity is smaller than in the left panel.
This is because Tþ is closer to Tc and hydrodynamics acts
as an effective friction. In particular, for small supercooling
(lower curves), we see that the deflagration is always
subsonic, even for η ¼ 0. This means that, depending on
the parameters, not any velocity will be physically
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FIG. 8. The maximum value of Ω=k (corresponding to k ¼ 0) and the maximum unstable wave number kc (corresponding to
Ω̂ → 0þ), as functions of the wall velocity, for Tþ=Tc ¼ 0.995 and, from bottom to top, L̄ ¼ 0.01, 0.05, 0.1 and 0.3.
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FIG. 9. The values of Ω̂0 and kcd as functions of the wall velocity, for L̄ ¼ 0.1 and, from bottom to top, Tþ=Tc ¼ 0.98, 0.96, 0.92, 0.9,
0.895, and 0.89.
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reachable. This fact may be missed when we consider vw
instead of η as a free parameter.
In Fig. 11 we plot again the values of Ω̂0 and kc, this time

fixing TN and taking into account the reheating. We
considered some of the previous values of TN , as well
as higher amounts of supercooling. We see that the
behavior is softened with respect to Fig. 9. The critical
velocity now grows more slowly, and reaches vcrit ¼ cs at a
temperature TN ≃ 0.775. As the amount of supercooling is
increased further, wall velocities close to the speed of sound
become more and more unstable.
Thus, we may have two different situations, depending

on the amount of supercooling. If the latter is small enough,
we have vcrit < cs and the deflagration is stable in the range
vcrit < vw < cs. Since the weak deflagration matches the
supersonic Jouguet deflagration at vw ¼ cs, this may be an
indication of the stability of the latter. On the other hand,
after the critical velocity reaches the value cs, the situation
is inverted; velocities close to cs are the most unstable ones.
This instability may be an indication of the instability of the
supersonic Jouguet deflagration. This result suggests that,
under the conditions which give weak deflagration veloc-
ities close to cs (a high amount of supercooling and a low

friction), another solution is hydrodynamically favored,
namely, the weak detonation.

VI. EFFECTS OF THE INSTABILITY

In this section we shall consider the effects of the
instability on the dynamics of a cosmological phase
transition.

A. Bubble growth and surface corrugation

As mentioned in Sec. III A, bubbles nucleate with an
initial radius which is of the order of the scale d. Their walls
accelerate during a time which is also of order d, after
which they reach a terminal velocity. The scale d is in
general much smaller than the final bubble radius or the
duration of the phase transition (the latter two are related by
Rf ∼ vwΔt). Indeed, although both d and Δt depend on the
nontrivial dynamics of the phase transition, the former is
determined by forces which are not related to the expansion
rate of the Universe, H, whereas the latter will be a fraction
of the age of the Universe, t ∼H−1. Roughly, we have d ∼
T−1 and Δt ∼MP=T2, where MP is the Planck mass.
Hence, we have d=Δt ∼ T=MP, which is, for most phase
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FIG. 10. The wall velocity as a function of the friction, for L̄ ¼ 0.1. In the left panel Tþ is fixed. In the right panel, TN is fixed. The
values of Tþ=Tc and TN=Tc are, from bottom to top, 0.98, 0.96, 0.92, 0.9, and 0.89.
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FIG. 11. The values of Ω̂0 and kcd as functions of the wall velocity, for L̄ ¼ 0.1 and different values of the nucleation temperature.
From bottom to top, we have TN=Tc ¼ 0.98, 0.94, 0.9, 0.84, 0.8, 0.775, 0.77, 0.765, and 0.76.
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transitions, many orders of magnitude less than 1.
Therefore, the terminal velocity is reached almost immedi-
ately. During most of its growth, the bubble will be in a
stationary state, unless the growth becomes unstable under
small perturbations.13

Let us assume that we have instabilities, and consider
their growth. We shall concentrate on exponentially unsta-
ble perturbations (i.e., Ω > 0). We remark, though, that
there is a velocity v0c around which perturbations of any
wavelength are marginally unstable (see the discussion
around Figs. 5 and 6).
In most cases, the behavior of the instability can be

described (at least qualitatively) by the analytic approx-
imations derived Sec. IV, except in the limit in which both
vcrit and vw are very close to cs, where the behavior departs
significantly from these approximations. For vw < vcrit, the
essential features of the instability are already present in
Link’s result, namely, that Ω is of order L̄ and proportional
to the wall velocity, as well as the dependence ΩðkÞ ∝
kðk − kcÞ [see Eq. (14)]. Thus, for the purposes of the
present discussion, we shall use the approximations
(98)–(100), to lowest order in L̄. In particular, we have

kcd≃ βL̄=2
β þ L̄=2

ð1 − βÞ: (123)

In most cases the parameter L̄ will be small. Hence, for
β ∼ 1 we have

kcd≃ L̄
2
ð1 − βÞ ðβ ∼ 1Þ: (124)

However, in some cases we may have a very small
velocity (e.g., due to a significant reheating during bubble
expansion). In such a case we have

kcd≃ β ðβ ≪ 1Þ: (125)

In any case, we may neglect kd in the denominator of
Eq. (99) and write

Ω=k≃ Ω̂0ð1 − k=kcÞ; (126)

with

Ω̂0 ≃ L̄vwð1 − βÞ=2: (127)

Thus, perturbations above the critical wavelength λc ¼
1=kc are unstable. Notice, though, that stability is recovered
for λ → ∞. Indeed, the finite value of Ω̂0 implies that Ω
vanishes at k ¼ 0 (see Fig. 12, left panel). The stability of
the zero mode may be understood as follows. This
perturbation corresponds to acceleration of the wall without
corrugation. However, we know that the uncorrugated wall
has already undergone an acceleration stage and has
reached a terminal velocity, ending in this stationary state.
In a way, the stability for k ¼ 0 just confirms the existence
of such a stationary state. On the other hand, if we allow the
wall to be deformed, instabilities arise. In this case, the
corrugation introduces a length scale, and the relevant
quantity will not be the value of Ω but the dimensionless
combination Ω=k. The latter is a velocity and in principle
should be contrasted with vw. Thus, an important parameter
will be Ω̂0=vw ∼ kcd ≲ L̄=2 (see Fig. 12, right panel).
As can be seen in the left panel of Fig. 12, there is a mode

with maximum growth rate. For the approximation (126),
the wave number of this mode is k ¼ kc=2, and the growth
rate is Ωmax ¼ Ω̂0kc=4. We may obtain a stability criterion
by considering this mode, which has the shortest growth
time τ ∼Ω−1

max [13,34]. Notice that bubbles have a finite size
Rb and, thus, cannot admit corrugations of arbitrary scales.
At the beginning, bubbles are very small, Ri ∼ d. From the
equations above, we see that the critical wavelength is
higher than that, λc > 2d=L̄. Hence, physical perturbations
(i.e., those with λ < Rb) will be stable until bubbles reach a
size Rb > λc. Besides, the time available for an instability
to grow is bounded by the duration of the phase transition,
Δt ≈ Rf=vw. The mode with the shortest growth time Ω−1

max

will be able to develop if Rf is larger than the
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FIG. 12. The values of Ω and of the dimensionless quantity Ω=ðkvwÞ as functions of k, for the same parameters of Fig. 5.

13In Ref. [14] the results of the stability analysis were applied
to the acceleration stage (although they were derived for the
stationary motion). The conclusion was that, since the terminal
velocity is reached when the bubble size is ∼d < λc, the growth is
not destabilized during this stage. We shall assume that the wall
reaches the stationary state before it can become unstable.
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corresponding wavelength 2=kc, and if Δt > Ω−1
max. The

two conditions are thus Rf > 2=kc and Δt > 4=ðΩ̂0kcÞ.
The latter condition (which implies the former) gives

Rf >
4=kc
Ω̂0=vw

: (128)

This instability criterion can be improved, if we notice
that modes with longer growth times may have, on the other
hand, more time available to develop. Indeed, a perturba-
tion with wave number k can only be formed after the
bubble reaches a size λ ¼ 1=k. The time elapsed since λ
“enters” the bubble size until the bubble reaches a larger
size Rb is given by Δtk ¼ ðRb − 1=kÞ=vw. On the other
hand, the perturbation (if unstable) grows in a time τ ∼Ω−1.
Therefore, the mode k will become dynamically important
when Rb is such that ΩΔtk ≳ 1. Using the approximation
(126) we obtain

ΩΔtk ¼
Ω̂0

vw

�
1 − λc

λ

��
Rb

λ
− 1

�
: (129)

This equation takes into account the fact that perturbations
are linearly unstable only in the range λc < λ < Rb. The
first two factors in Eq. (129) are smaller than 1. Moreover,
we have in general Ω̂0=vw ≪ 1. However, the last factor
may be large, depending on the final bubble size.
For a given Rb, the dynamically most relevant

perturbation is now given by the maximum of ΩΔtk,

ðΩΔtkÞmax ¼
Ω̂0

vw

ðRbkc − 1Þ2
4kcRb

; (130)

which is attained for a wave number

k ¼ 1

2

�
1

Rb
þ kc

�
: (131)

This perturbation will be important if ðΩΔtkÞmax ≳ 1. If we
apply this criterion to the final bubble size, for which we
have Rf ≫ 1=kc, we obtain Eq. (128). On the other hand,
when the bubble size is still comparable to the critical
wavelength, the criterion says that no instability is impor-
tant. The instabilities become important once the bubble
reaches the size

Rinst
b ¼ 1=kc

Ω̂0=vw

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω̂0=vw

q �
2

: (132)

Since in general Ω̂0=vw is small, we have Rinst
b ≈

ð4=kcÞ=ðΩ̂0=vwÞ, as in Eq. (128).
The parameters Ω̂0 and kc are not independent. For β ∼ 1

we can use the approximation (124), which gives
kcd ≈ Ω̂0=vw ≈ ð1 − βÞL̄=2. Thus, we have

Rinst
b ≃

�
4=L̄

1 − ðvw=vcritÞ2
�
2

d ðβ ∼ 1Þ: (133)

For vw → vcrit, Eq. (133) diverges, meaning that the
instabilities need infinite time to develop. On the other
hand, for vw → 0 we must use the approximation (125).
Although Ω̂0=vw does not vanish in this limit, kc does, and
we have

Rinst
b ≃ 8

L̄
v2critd
v2w

≃ 8

L̄
σ=L
v2w

ðβ ≪ 1Þ; (134)

where we have used the relations d ¼ σ=Fdr and Fdr ≃ Lv2c
to make explicit the fact that v2critd does not depend on the
temperature TN . In most cases, we will have β ∼ 1.
Therefore, Eq. (133) can be used to determine the bubble
size at which the instabilities become important. Roughly,
we have Rinst

b =d ∼ ð4=L̄Þ2 (unless there is a fine tuning so
that vw ≃ vcrit). Thus, Rinst

b will be in general quite higher
than the initial bubble size d. On the other hand, as we have
mentioned, the final bubble size Rf will be a fraction of the
Hubble radius H−1, which is many orders of magnitude
larger than d and, in general, much larger than Rinst

b as well.
Notice also that, as can be seen from Eq. (132) we have, in
general, Rinst

b ≫ 1=kc. As a consequence, the dynamically
most relevant wave number will be, according to Eq. (131),
close to k≃ kc=2.
As pointed out in Ref. [34], the stability may be

recovered due to reheating. Indeed, once the shock fronts
(which precede the phase transition fronts at a speed
vsh ≃ cs) meet, they may reheat the space back to a
temperature Tr very close to Tc. In such a case, a phase
equilibrium stage begins, during which the regions of stable
phase can grow only at the rate at which the adiabatic
expansion takes the latent heat away [3,4,35]. From the
viewpoint of the instabilities, the effect would be, roughly,
to change the boundary condition for the temperature from
TN to Tr. As a consequence, both velocities vc and vw will
decrease significantly. It is not clear which will be the value
of β. Nevertheless, since d≃ σ=ðLv2cÞ, we see that either of
Eqs. (133) and (134) will give a large value of Rinst

b ðTrÞ. To
appreciate the importance of the change of the scale d after
reheating, we notice that the new wall velocity is propor-
tional to the expansion rate, vw ∼ RbH=L̄ [4,36]. Thus,
Eq. (134) gives an enhancement ∼ðH−1=RbÞ2, which
ensures the stability of the deflagration. Notice that the
time available for the instabilities to grow is the same as
before (Δt ∼ Rf), since the spacing between bubble centers
is given by Rf and the reheating will occur after a time of
order Δt ¼ Rf=vsh. The only difference is that, if a phase
equilibrium stage is reached, the total duration of the phase
transition will be longer than Δt.
In summary, the time and length scales are the following.

After a bubble nucleates with size ∼d, it reaches the
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stationary motion in a time ∼d. The instabilities (provided
that vw < vcrit) become dynamically relevant much later,
after a time ∼ð4=L̄Þ2d. In general, though, there will be
ample time for this to happen during bubble expansion,
since the final bubble size is still much larger (Rf∼ a
fraction ofH−1). After a time∼Rf, the phase transition may
end, or it may enter a phase-equilibrium stage during which
stable growth is recovered. The dynamically relevant
unstable modes are those of wavelengths ∼4d=L̄. This is
generally much shorter than the average bubble size Rf by
the end of the phase transition.

B. Deflagrations vs detonations

For strong supercooling or small friction, the stationary
solution is in general a detonation with high velocity. On
the contrary, for TN very close to Tc or large ηwe generally
have weak deflagrations with small velocities. Between
these two extremes, we may have coexistence of subsonic
and supersonic solutions (see e.g. [25,28]). In such a case,
the question arises of which one will be realized during the
phase transition, and of whether this can be elucidated by
the analysis of instabilities. These issues were discussed
previously from a different approach, namely, in the context
of a numerical investigation of Eqs. (1)–(2) in a grid [27].
Instead of using an approximation for the interface, the
field configuration ϕðx; tÞwas considered together with the
fluid profile. Thus, the dynamical evolution of a phase
transition front was studied, from the initial acceleration
period to the collision between two bubbles.
Regarding the coexistence of deflagrations and detona-

tions, it was found in [27] that, in the cases in which either
of the stationary solutions is possible, it is the detonation
the one which is realized during bubble expansion.
Nevertheless, this seems to be due to the dynamical
evolution rather than due to an instability of the deflagra-
tion, since the detonation configuration is reached without
going through a deflagration configuration. According to
our results, the instability of the deflagration is unrelated to
the existence of detonation solutions. Although the insta-
bilities become important for large amounts of super-
cooling and low friction, detonations already exist for
more moderate values of these parameters, where defla-
grations are still stable.
Regarding possible instabilities, the results of Ref. [27]

were the following. The wall configuration was found to be
unstable only for strong deflagrations and for detonation
solutions close to the Jouguet point. In contrast, if given as
an initial condition, the weak deflagration remains as such,
indicating stability. This seeming contradiction with the
instability of deflagrations found in the present paper and in
Ref. [14] has a simple explanation. Due to calculation
convenience, the amounts of time considered in [27]
(as well as the distance between bubbles) were much less
than those in an actual cosmological phase transition. This
is a general problem of lattice calculations. A similar

calculation was carried out recently [37]. In this case,
the available time did not even allow the walls to reach the
stationary state before they collided. As we have seen, the
time needed for the instability to become dynamically
relevant is much longer than the time it takes to reach the
stationary state. Nevertheless, the duration of the phase
transition is still much longer.

VII. A PHYSICAL MODEL

The strength of the phase transition [38] depends on the
separation between the two minima of the free energy,
Δϕ ¼ ϕþ − ϕ−, and is usually characterized by the value
of Δϕ=Tc (for instance, in the limit Δϕ → 0 one gets a
second order phase transition). However, the phase tran-
sition dynamics does not depend on this single parameter
alone. The wall velocity depends essentially on three
parameters. These are the amount of supercooling (which
determines the pressure difference), the latent heat (which
reheats the plasma slowing down the wall), and the friction
coefficient. As can be seen, e.g., in Eq. (133), these
parameters are relevant for the dynamics of the instabilities
as well. The ratio TN=Tc determines the value of vc and,
hence, of β. The ratio L=wþ gives the parameter L̄. Finally,
the friction coefficient determines the wall velocity vw.
Unfortunately, these parameters do not have a simple

relation in general.14 For a given model, both the released
energy and the amount of supercooling increase with the
strength of the phase transition. Indeed, a higher value of
Δϕ implies a higher discontinuity of the energy density
(i.e., a higher L) as well as a wider and higher barrier
between minima. The latter causes the system to stay longer
in the metastable minimum, i.e., a lower temperature will
be reached before bubble nucleation effectively begins.
A strong supercooling causes a large pressure difference
between phases and, thus, favors a high wall velocity. In
contrast, a large release of latent heat causes reheating and
slows the wall down. Besides, the wall velocity depends on
the friction coefficient. This parameter is quite difficult to
calculate, model-dependent, and is the main source of
uncertainty for the wall velocity.15 Therefore, it is not easy
to ascertain, without a detailed calculation, whether the wall
velocity will be above vcrit or not.
We shall address elsewhere such a detailed study of

specific models. Here we wish to discuss in general the
possibility that the deflagration becomes unstable in

14While the latent heat can be directly computed from the
free energy density F ðϕ; TÞ, the calculation of TN involves,
first, calculating the nucleation rate (using thermal instantons
[30]) and, then, considering the dynamics of the phase
transition to compute the number of bubbles nucleated in a
causal volume [18].

15In general, it depends on the couplings of the particles with
the field ϕ (the stronger the coupling, the higher the friction).
However, it also depends on the particles interactions which
determine the diffusion of particle densities near the wall [10].
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physical models, as well as some possible cosmological
implications of the instability. For that aim, we shall
consider the case of the electroweak phase transition,
which may be quite different for different extensions of
the Standard Model.

A. The electroweak phase transition

In Ref. [14], the electroweak phase transition was
considered for the minimal Standard Model (SM), with
a Higgs mass mH ¼ 40 GeV in order to obtain a first-order
phase transition which is strong enough to fulfil the
requirement of electroweak baryogenesis (Δϕ=Tc ≳ 1).
Still, the phase transition for such a model is relatively
weak and has a small amount of supercooling. The critical
velocity was found to be bounded by 0.07, whereas
microscopic calculations gave vw ≳ 0.1 [9]. It was thus
concluded that the propagation of the phase transition front
as a deflagration is stable.
For the actual value of the Higgs mass, the SM

electroweak phase transition is just a smooth crossover.
Nevertheless, many extensions of the SM have been
considered in the literature. In particular, the Minimal
Supersymmetric Standard Model (MSSM) has been exten-
sively investigated in relation with electroweak baryo-
genesis (see, e.g., [39]). Moreover, it is well known that
extra scalar singlets may cause an extremely strong phase
transition (see, e.g., [40]). Thus, depending on the model
(and on the model parameters) the electroweak bubble may
grow either as a deflagration or as a detonation (see, e.g.,
[41]), or it may even run away [24]. The former possibility
favors baryogenesis, whereas the latter two favor GW
generation.
In Fig. 13 we show the values of L and TN for some

extensions of the Standard Model. We only considered
phase transitions with Δϕ=T > 1. Weaker phase transitions
give less supercooling and smaller latent heat (in the limit
of a second order phase transition we have TN ¼ Tc and
L ¼ 0). Thus, the models considered in Fig. 13 give values
of the latent heat in the range L̄ ∼ 10−2–10−1. Higher
values of L̄ may be possible in other models (the physical
bound is L̄ < 1). On the other hand, it may be inferred from
Fig. 13 that a very strong supercooling is hard to achieve in
a physical model. Indeed, the two lower dots (those around
TN=Tc ¼ 0.7) were obtained for phase transitions which
are already extremely strong (a slightly stronger phase
transition would remain stuck in the false vacuum, causing
an inflationary era). The numerical examples considered in
Sec. V roughly spanned this region of parameter space.
As we have seen, the possible instabilities need time to

grow. The initial bubble radius at nucleation, which is
related to the size scale d, is in general Ri ∼ 10=T. On the
other hand, the instabilities become dynamically important
for bubble sizes larger than Rinst

b ∼ ð4=L̄Þ2d, which is thus
in the range ∼104=T–106=T. The average bubble size by
the end of the phase transition is a fraction of the Hubble

size H−1. The exact value depends on the whole dynamics
of the phase transition, and is not easy to estimate without a
complete numerical calculation. Numerical results (see,
e.g., [5,35]) give values which range from Rb ∼H−1 for
very strong phase transitions to Rb ∼ 10−5H−1 or smaller
for weak phase transitions. At the electroweak scale we
haveH−1∼MP=T2, with T∼100GeV andMP∼1019 GeV.
Hence, the final bubble size for the electroweak phase
transition will be in the range Rf ∼ 1012=T − 1017=T.
Thus, this example confirms the general hierarchy
Ri ≪ Rinst

b ≪ Rf obtained in the previous section. The
most important perturbations will be those with
λ ∼ 4d=L̄ ∼ 10–102d≳ Ri.

B. Baryogenesis and gravitational waves

This phase transition may have several cosmological
consequences, most of them depending on the dynamics of
moving walls. In principle, the hydrodynamic instability
may affect any of the cosmological remnants. For instance,
the generation of magnetic fields due to instabilities of the
bubble walls was considered in Ref. [43]. Here we wish to
discuss the generation of gravitational waves (GW) and of
the baryon asymmetry of the Universe (BAU), which
require quite different values of the wall velocity.
A successful electroweak baryogenesis requires

Δϕ=Tc ≳ 1, so that baryon number violating processes
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FIG. 13 (color online). The space of the parameters L̄ and
TN=Tc for the electroweak phase transition, for some extensions
of the Standard Model (taken from Ref. [7]). Black dots
correspond to extra scalar singlets, with gs ¼ 12 degrees of
freedom. The strength of the phase transition increases with the
coupling of the scalars to the Higgs, hs. Thus, a higher hs implies
a larger latent heat as well as a smaller TN. The values of hs range
from 0.7 to 1.2 and are equally spaced. Blue dots correspond to
the same extension, with less singlets, gs ¼ 2. In this case we
have 1.4 ≤ hs ≤ 1.9. Red dots corresponds to an extension with
heavy fermions and bosons [42]. The coupling of the fermions to
the Higgs is in the range 2.2 ≤ hf ≤ 2.8 (the strength of the phase
transition increases with hf). Green dots correspond to the
MSSM in the light stop scenario, for stop masses mstop ¼ 132,
136, and 140 GeV (from right to left).
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(sphalerons) are turned off in the broken-symmetry phase,
in order to avoid the washout of the generated BAU.
Regarding the wall velocity, on the one hand, it should not
be too large, so that sphalerons have enough time to
generate baryons in the symmetric phase (sourced by
CP-violating interactions of the wall with the particles
of the plasma). On the other hand, the wall velocity should
not be too small either, in order to avoid that sphalerons in
the symmetric phase have enough time to reach the
equilibrium and wash out the generated BAU. All in all,
a relatively small wall velocity (vw ∼ 10−2–10−1) is needed.
As a consequence, baryogenesis is favored for relatively
weak phase transitions, which may give such small wall
velocities.16 Weak phase transitions will generally have
little supercooling and, consequently, small values of vcrit
as well. Therefore, the presence of hydrodynamic insta-
bilities will depend on details of the specific model.
To see the effect of these potential instabilities on

electroweak baryogenesis, let us assume that vw is below
the critical velocity vcrit. As we have seen, for a weak phase
transition, the instability will become dynamically impor-
tant when the bubble reaches a size Rinst

b ≳ 106=T. After
that moment, the growth of the bubble may be of dendritic
type [29]. One expects that the motion of the wall will
become too quick to successfully generate baryons [46,47].
We may thus assume that baryogenesis stops as soon as
bubbles reach the size Rinst

b . Since the final bubble size is
Rf ∼ 106Rinst

b , we see that the resulting BAU will be
strongly suppressed with respect to a stable wall.17 We
see that an accurate determination of the wall velocity
becomes crucial since electroweak baryogenesis may be
completely spoiled if vw < vcrit.
On the other hand, we have seen that, once shock fronts

meet and reheat the plasma, the motion of phase transition
interfaces as stable deflagrations may be reestablished.
Depending on the friction and latent heat, the value of the
wall velocity during this phase-equilibrium stage may or
may not be appropriate for baryogenesis [4,5,48]. In case it
is, bubble walls will generate baryons during the last stages
of the phase transition. It is important to notice that a
significant fraction of space may be spanned by the walls
during this stage.
Generating gravitational waves of sizeable intensity

generally requires quite higher velocities (vw > cs) in order
to generate a strong disturbance of the plasma (through
bubble collisions and turbulence). Hence, the instability of
the deflagration is preferable, as it accelerates the wall

motion. In fact, gravitational waves of sizeable amplitude
seem to be possible only in models with large amounts of
supercooling (e.g., the lower dots in Fig. 13), which give
detonations with high velocities [7]. Such models may also
allow deflagrations with velocities vw close to cs or higher.
In general, these models will give vcrit also close to cs.
According to Fig. 11, in this case the deflagration may have
instabilities on all wavelengths (notice the divergence of kc
at vw ¼ cs). This opens the possibility of a new mechanism
of GW generation, which may compete with the collisions
of detonations, even for weaker phase transitions.
The evolution of the system beyond the linear regime is

difficult to guess. Furthermore, it will be characterized by
turbulent motions of the fluid, which make the treatment
more involved. The results of a simple geometrical model
(described by an equation which depends only on the local
geometry of the interface) suggest that the growth may be
of dendritic type [29]. This means that “fingers” grow out
of the wall and then split into new fingers.
A spherically symmetric bubble cannot generate gravi-

tational radiation. As a consequence, the usual mechanisms
(bubble collisions and turbulence) rely on the collision of
bubble walls, once bubbles have grown up to there final
size. The corrugation instability, in contrast, deforms the
walls and stirs the fluid as soon as the bubble reaches the
size Rinst

b ∼ ð4=L̄Þ2Ri, when bubbles are still much smaller
than the final mean size. Therefore, the GW spectrum will
be quite different. The characteristic wavelength of the
gravitational radiation is given by the stirring scale. For the
usual mechanisms, this is roughly the bubble size scale Rb,
which is determined by the mean average separation
between nucleation points. In the case of unstable growth,
the relevant scale (or scales) will be smaller.
Initially, the source of turbulence will be the unstable

corrugations of the wall (accompanied by perturbations of
the fluid). Thus, the initial stirring length scale is that of the
most relevant unstable mode, λinst ∼ 2=kc ∼ 4Ri=L̄. These
perturbations then grow in size and amplitude. In the case
of dendritic growth, a new length scale may arise, namely,
the length of the fingers. In any case, after a certain time
the turbulent fluid will “see” also the nominal radius of the
bubbles Rb ∼ Rinst

b . This gives another stirring scale. The
bubble spacing Rf may also play a role in the turbulence
spectrum. As we have seen, both λinst and Rinst

b are much
smaller than Rf. For the usual mechanisms, the (redshifted)
peak of the spectrum is around the miliHertz (correspond-
ing to Rf ∼ 10−2H−1). For the unstable growing, the GW
spectrum may have several peaks, some of them at
frequencies much higher than that.

VIII. CONCLUSIONS

The possibility that an observable background of gravi-
tational waves was produced at the electroweak phase
transition has motivated in the last years a renewed interest
in the hydrodynamics associated with the propagation of

16The fact that the incoming flow velocity jvþj is smaller than
vw may increase the upper bound [44]. Moreover, the possibility
of electroweak baryogenesis with detonations has been recently
discussed [45].

17In this argument we have used the rough approximation
Rinst
b =d ∼ ð4=L̄Þ2 for vw < vcrit. Taking into account the factor

1=ð1 − v2w=v2critÞ will not change the conclusion, unless vw is very
close to vcrit.
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phase transition fronts. It is well known that, while
electroweak baryogenesis requires weak deflagrations with
rather small interface velocities, vw ≲ 0.1, GW generation
is favored by detonations or runaway solutions with ultra-
relativistic velocities. Thus, the various extensions of the
SM give quite different results, depending on the values of
three relevant parameters, namely, the amount of super-
cooling, the latent heat, and the friction. In particular, small
supercooling, large friction, and large latent heat will give
in general small wall velocities, favoring baryogenesis.
The instability of deflagrations may alter completely this
picture.
In this work, we have studied the hydrodynamic stability

of deflagrations. We have calculated the linear instability
under corrugation of the wall as a function of the relevant
parameters, we have analyzed the dynamical relevance of
the instabilities, and we have discussed the implications for
the electroweak phase transition and its cosmological
consequences.
The instability of deflagration phase-transition fronts

was previously considered in Ref. [14]. The treatment of
that work improved significantly upon preceding analysis,
by taking into account the perturbations of the force which
drives the wall motion. This is an important aspect, since
the pressure difference between phases is very sensitive to
temperature variations. Unfortunately, some simplifications
used for the driving force constrain the application of those
results. Our approach improved several aspects of the
calculation of Ref. [14]. In the first place, we have derived
the equation for the perturbations of the wall directly from
the field equation (2), taking into account independent
perturbations of the fluid variables on either side of the
wall. This is the main difference with the treatment of
Ref. [14]. Its quantitative effect increases with the wall
velocity. We have also performed a more exhaustive search
of instabilities. In particular, we have looked for complex
solutions of the equation for the exponential growth rate Ω.
In the case of a classical burning gas [12], the unstable
modes have ImðΩÞ ¼ 0. Thus, the disturbances are not
propagated but are only amplified. This feature was also
found (numerically) in the work of Link [13]. We inves-
tigated analytically as well as numerically this possibility
for the case of a phase transition front. The result is that,
indeed, we have ImðΩÞ ¼ 0 for ReðΩÞ > 0.
For small velocities and small supercooling, our results

are qualitatively similar to those of Refs. [13] and [14].
However, we have found a range of marginally unstable
wave numbers, which was not noticed in previous works.
Outside this interval we have exponential (either growing
or decaying) behavior. This wave-number gap arises as a
discontinuity atΩ ¼ 0, and is due to the fact that the special
mode q1ðΩÞ jumps from one side of the wall to the other as
Ω changes sign. Studying the stability in this range would
require to go beyond linear perturbations. Unfortunately,
the numerical analysis of Ref. [17] did not explore regions

of parameters where our results would differ from those of
Ref. [14]. Moreover, a numerical investigation of the
parameter region where linear perturbation theory predicts
instabilities is still lacking.
The general behavior of the linear stability is essentially

the following. Below a critical velocity vcrit, perturbations
on wave numbers k smaller than a value kc are exponen-
tially unstable. In general, we have kc ≲ L̄=d, and
Ω ≲ vwL̄kc. The critical velocity depends strongly on the
amount of supercooling. For small supercooling, we have
vcrit ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tþ=Tc

p
, in agreement with Ref. [14].

However, as we increase the amount of supercooling
vcrit quickly departs from this simple behavior. Even taking
into account the reheating effect Tþ > TN , the critical
velocity soon approaches the speed of sound, which means
that any subsonic velocity becomes unstable. Furthermore,
in this case, those velocities which are closer to the speed of
sound have a larger range of unstable wave numbers and
higher growth rates. This result is in disagreement with
Ref. [14], according to which weak deflagrations are
always stable in the limit vw → cs. The discrepancy is
due to our more realistic treatment of the equation for the
interface.
We have briefly discussed supersonic deflagrations. The

case of supersonic Jouguet deflagrations turns out to be
considerably more involved, and shall be addressed else-
where. Regarding strong deflagrations, we have checked,
for the case of planar relativistic phase-transition fronts,
that these are trivially unstable, by showing explicitly that
the whole family of strong deflagrations (sketched in Fig. 3,
left panel) is not evolutionary.
We have also studied the dynamical importance of the

instabilities. Thus, we have improved the discussions of
Refs. [13,34], and we have established a hierarchy of time
and length scales for the growth of bubbles and instabilities.
We also discussed briefly a physical model, namely, the

electroweak phase transition, and considered two of its
possible outcomes, namely, the BAU of the Universe and a
stochastic background of gravitational waves. In general,
for a cosmological phase transition, the instabilities have
ample time to develop, provided that vw < vcrit. This may
be a serious problem for electroweak baryogenesis and
deserves further investigation for specific models. On the
other hand, the deflagration instability favors the produc-
tion of gravitational waves, by accelerating and deforming
the walls almost from the beginning of bubble growth.
However, to estimate the GW spectrum would require us to
go beyond the linear stability analysis.
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