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Abstract. In this paper, we used an analytical method to calculate the effects that produce the parameter’s
fluctuations characterizing a generalization of Nagumo model. (The extinction option is replaced by one
of low density homogeneous population.) Moreover, we also check the results by means of numerical
simulations of the corresponding stochastic process. We find that these fluctuations have a strong impact
on the solutions producing interesting changes.

1 Introduction

Results about constructive effects of noise have been
reported for many years now [1–19]. Particularly, an
intuitive vision has been used in some articles. This vi-
sion considers that a multiplicative noise tends to expel
to the system out of field region where its intensity is
higher [10,11]. In order to explore this idea, we have pre-
sented and studied multiplicative noises that were able
to push the homogeneous solutions (HS), that correspond
to a given dynamic, toward predetermined field values by
the multiplicative noise factor. Here, the objective is to
stimulate the pattern formation [20–23] and dissipative
solitons [24]. We have recently reported results about a
comprehensive study that shows how by means of a suit-
ably designed multiplicative noise, the HS can be not only
pushed but also confined into a field region predetermined
by its multiplicative factor [25]. We have named this phe-
nomenon as “Pusher noise” and we have observed that its
forcefulness grows proportionally to the negative multi-
plicative noise factor’s derivative with respect to the field.

Here, we have addressed a case that considers Nagumo
model’s parameters fluctuations [26]. This is a simple
model appropriate to show how a multiplicative noise gen-
erated by fluctuations of its parameters may cause signif-
icant changes in the behaviour of the system. In the fu-
ture we will consider more complex models such as the
FitzHugh-Nagumo-model, which describes a prototype of
an excitable system (e.g., a neuron) [27–30]. It is well
known, the Nagumo-model describes the evolution of a
species that is restricted by adverse factors, with two
options (extinction or survival), with a cubic nonlinear
equation

F (u) = u(u − αb)(b − u);
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it is characterized by two parameters: the HS (u = b),
representing the survival, and the so-called adversity (α),
indicating the limit between the attraction basins of each
HS by means of the unstable solution u = bα. We estab-
lished this model by replacing the extinction option with a
low density homogeneous population (this generalization
has also been applied before [31]), which adds another
parameter: β associated to the new solution as u = βb
(instead of u = 0).

As aforementioned, our aim is to study the fluctua-
tions’ effects of each of these parameters over the Nagumo
model solutions, including the unstable one. With this in
mind, we obtain a zero-dimensional stochastic dynamic
driven by the generalized Nagumo model’s nonlinearity
as well as a multiplicative noise with a factor that de-
pends on the positive parabola shaped field (the corre-
sponding Langevin equations are to be interpreted in the
Stratonovich sense). Such dynamic can be turned into
relaxation one, being the corresponding coefficient the
square of multiplicative factor of the noise [21–23,25]. This
way, not only the noise fulfills the dissipation-fluctuation
theorem [10,32,33], but the corresponding average dynam-
ics can also be easily described. Thus, we can observe how
the multiplicative noise pushes to the affected solution to-
ward the values that minimize its factor. In addition to
the corresponding analytic calculation, we obtain the sta-
tionary probability distribution function, using a recently
reported numeric method [34]. This way, we check the in-
teresting predictions of the analytic calculation.

2 Proposal development and results

By applying the Nagumo model we consider that each in-
dividual requires a minimum vital space (a space that can-
not be invaded by another individual). Thus we define u as
the covering of the space available (with u a dimensionless
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variable normalized to 1). As aforementioned, we also con-
sider a low density homogeneous population: u = βb as
an alternative proposal to extinction. Under these condi-
tions, the modified Nagumo nonlinearity can be expressed
as: F (u) = (u − βb)(u − αb)(b − u). This also shows two
uniform attractors (u = βb and u = b) and an ejector
(αb), where α is known as the adversity factor. The ejector
u = αb marks a limit between domains (low/high popula-
tion density). When u is lower than this value, the system
evolves toward the low population density u = βb and
when u is higher, the system evolves toward a population
with density u = b.

Furthermore, we consider the effects of fluctuations of
each parameter separately by using a Gaussian white noise
with zero mean and correlation

〈η(t)η(t′)〉 = 2λ2δ(t − t′). (1)

Thus, by describing β’s fluctuations as: β = β0 + η(t),
the modified zero-dimensional dynamic that the Nagumo
model imposes can be expressed as:

u̇ = Fβo(u) + Γ 1/2(u) η(x, t), (2)

where Fβo(u) = (u − β0b)(u − αb)(b − u) and Γ 1/2(u) =
−b(u − αb)(b − u). We note that Γ 1/2(u) is a parabola
with positive curvature and has a minimum value located
right at the midpoint between the two roots which are not
affected by fluctuations (umin = b 1+α

2 ).
In absence of fluctuations, we can rewrite equation (2)

by multiplying and dividing Fβo(u) by −Γ (u). This indi-
cates that the dynamic is relaxational in some free-energy
function F(u) with a field-dependent kinetic coefficient
Γ (u). The fictitious relaxation function so defined is writ-
ten as:

F(u) = −
∫

du
Fβo(u)
Γ (u)

= ln

⎧⎨
⎩

|u − b|
1−β0

(1−α)b2

|u − αb|
α−β0

(1−α)b2

⎫⎬
⎭ . (3)

It is clear that the fictitious relaxation function does not
include the solution that is affected by fluctuations. How-
ever, the real dynamic does not change because of the
action of the relaxation coefficient which reintroduces the
aforementioned solution.

Therefore, equation (2) written in terms of the ficti-
tious relaxation function is:

∂tu = −Γ (u)
dF(u)

du
+ Γ 1/2(u) η(t). (4)

When raising this issue, we observe that the fluctuations
fulfill the fluctuation – dissipation theorem [10,32,33].

Under these conditions, the stationary probability dis-
tribution function (SPDF) for the field Pst(u) is of the
Boltzmann’s type and can be described by effective relax-
ation function [10,11]:

Pth(u) ∝ exp
{
−Feff(u)

λ2

}
=

|u − αb|eαb

b2|u − b|eb , (5)
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Fig. 1. SPDF vs. u and λ for β parameter fluctuations. (Top)
calculated analytically (Pth). (Bottom) calculated by simula-
tion of stochastic process (Pst). α = 0.5, β0b = 0.001 and
b = 0.9 (curves are referenced to their maximum value).

where Feff(u) = F(u)+λ2 ln[Γ (u)], eαb = α−β0−2(1−α)b2λ2

(1−α)b2λ2

and eb = 1−β0+2(1−α)b2λ2

(1−α)b2λ2 .
On the other hand, we also simulate the stochastic

process described by equation (4) and calculate the sta-
tionary probability density Pst(u), using an efficient al-
gorithm that was recently reported1 [34]. Figure 1 shows
the curves obtained both analytically and numerically. It
becomes evident that the fluctuations-affected solution is
absent even in very low values of λ. We also observe that,
starting a (λc) critical value of noise intensity onward,
the unstable solution in noise absence is stabilized by the
noise effect. The latter is predicted by the theoretical cal-
culation when the exponent eαb in equation (5) changes

its sign. Therefore we obtain λc =
√

α−β0
2(1−α)b2 requiring a

zero value for said exponent. For the parameters of Fig-
ure 1, we obtain λc ∼ 0.79 by theoretical calculation, while
we obtain λc ∼ 1.5 by numerical calculation2. Although
the numbers do not match, it is important to be able to
predict such phenomenon. Figure 2 shows the exponent
corresponding to both solutions; (−eαb and eb) �→ 2 when
λ �→ ∞.

Another property that is worth taking into account is
the ratio amongs the peaks of the SPDF. Figure 1 shows

1 We test distinct symmetrical initial conditions (including
a Gaussian and other uniform distribution) getting the same
results regardless the symmetrical initial condition used.

2 While for λ ∼ 1, we observe a balanced competition be-
tween the two solutions, for λ ∼ 2, u = αb is evidently the
stable solution.
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Fig. 2. Exponent vs. noise intensity. Upper curve corresponds
to eb and bottom curve corresponds to −eαb. α = 0.5, β0b =
0.001 and b = 0.9.
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Fig. 3. Ratio vs. noise intensity. Upper curve corresponds to
theoretical calculation and bottom curve corresponds to nu-
merical calculation. α = 0.5, β0b = 0.001 and b = 0.9.

that for higher intensities of noise the two stable solutions
become more equiprobable. Although equation (5) clearly
shows that the height of those peaks is infinite, they are
comparable when measured from a given distance to the
solutions. Figure 3 shows the ratio R vs. λ. The curves
differ by an additive constant, whose origin we assume is
related to the difference between the λc values.

Since the lack of the fluctuations-affected solution
(even for very low noise intensities) is intriguing to us,
we try to find evidence of its existence. The effective re-
laxation function Feff(u) enables a description of the zero-
dimensional average dynamics through one effective non-
linearity [10,11,21–23]:

F β0
eff = Fβ0−λ2 dΓ (u)

du
=

(
1+4b2λ2

)
(u−ust)(u−αb)(b−u),

(6)
where ust = bβ0+2b2λ2(1+α)

1+4b2λ2 is the “missing” solution. For
low λ values

ust ≈ b[β0 + 2b2λ2(1 + α − 2β0)].
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Fig. 4. (Top) F β0
eff vs. u for different values of λ. (Bottom) Qeff

vs. u for different values of λ. α = 0.5, β0b = 0.001 and b = 0.9.

So, it can be seen that ust is displaced toward unstable
solution u = αb, by effect of the fluctuations. In fact, for
λ �→ ∞, ust is located right in the middle point between
u = αb and u = b (u∞

st = b 1+α
2 = umin). This means that

ust become an unstable solution creating an exchange of
roles between both solutions. This result explains why the
solution u = αb appears in the curves shown in Figure 1.
The solution that is unstable in absence of noise becomes
stable for higher noise intensities (in fact, λc can also be
obtained as: ust = bα). Furthermore; due to the fact that
for very high noise intensities, ust (being now the unsta-
ble solution) is located right in the middle between the
other two solutions, both stable solutions (u = αb and
u = b) become almost equiprobable (as shown in Fig. 1).
In order to better illustrate this result, Figure 4 shows
curves of effective nonlinearity (F β0

eff ) and effective poten-
tial Qeff (integral over u of F β0

eff ) for different noise intensi-
ties. Curves clearly show the displacement of the solution
that is affected by fluctuations until the roles of unstable
(u = αb) and stable (ust) solutions are exchanged. Then,
for λ > λc, regardless of the noise intensity’s value, the
now stable solution remains in u = αb while the affected
one by fluctuations is now unstable. Therefore, the now
unstable solution (ust) changes its value while the noise
intensity increases, and so does the relationship between
the weights of both stable solutions.

Based on the above results, we believe that the “miss-
ing” solution should be noticeable through the simula-
tion of stochastic processes. We test this by calculating
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Fig. 5. SPDF vs. u and λ (for β parameter fluctuations) calcu-
lated by simulation of stochastic process (Pst) by introducing
a form which is non-zero uniform over the corresponding basin
around the affected solution and in the rest zero as the initial
condition. α = 0.5, β0b = 0.001 and b = 0.9.
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Fig. 6. ust vs. λ. Solid line: analytic values and crosses line:
numerical values. α = 0.5, β0b = 0.001 and b = 0.9.

the SPDF with a very skewed initial condition over
the fluctuations-affected solution. We particularly suggest
a non-zero uniform form over the corresponding basin
around the said solution and in the rest zero. This way, we
expect the solution we assume as meta-stable to remain on
such basin. Figure 5 highlights the existence of the missing
solution. Now, we can not only detect the fluctuations-
affected solution but also observe its displacement as λ
increases, until it overlaps with the unstable solution. Fig-
ure 6 completes this idea by comparing ust values that are
obtained analytically with those obtained numerically, for
different intensities of noise.

2.1 Fluctuations of b parameter

When instead of β (without any of the other two param-
eters doing it) b fluctuates, we expect a similar behavior
to the previous case. Therefore, the corresponding zero-
dimensional dynamic is described by

u̇ = Fbo(u) + Γ 1/2(u) η(x, t), (7)

where Fbo(u) = (u− βb0)(u−αb0)(b0 − u) and Γ 1/2(u) =
b0(u−αb0)(u−βb0). Here we also observe that Γ 1/2(u) is
a parabola with positive curvature and a minimum value
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Fig. 7. SPDF vs. u and λ for b parameter fluctuations. (Top)
calculated analytically (Pth). (Bottom) calculated by simula-
tion of stochastic process (Pst). α = 0.5, β0b = 0.001 and
b0 = 0.9 (curves are referenced to its maximum value).

located right at the midpoint between the two roots which
are not affected by fluctuations (umin = b0

β+α
2 ).

In the same way as before we calculate the fictitious
relaxation function F(u)

F(u) = −
∫

du
Fb0(u)
Γ (u)

= ln

⎧⎨
⎩

|u − b0β|
1−β

(α−β)b20

|u − αb0|
1−α

(α−β)b20

⎫⎬
⎭ . (8)

Then, by calculating Feff(u) = F(u) + λ2 ln[Γ (u)], we ob-
tain the corresponding SPDF:

Pth(u) ∝ exp
{
−Feff(u)

λ2

}
=

|u − αb0|eαb0

b2
0|u − βb0|eβb0

, (9)

where eαb0 = 1−α−2(α−β)b20λ2

(α−β)b20λ2 and eβb0 = 1−β0+2(α−β)b20λ2

(α−β)b20λ2 .
Subsequently, just as we have done before, we also numer-
ically calculate the corresponding SPDF for same param-
eters values. Figure 7 shows the results for both calcula-
tions. Indeed, a critical value of λ is observed from which
the fluctuations always stabilize the solution u = αb0. Un-
like the previous case, here we can detect the fluctuations-
affected solution when the noise intensities are very low.
This result is not surprising, since the current problem
is not symmetric with the previous one. In fact, when
we consider fluctuations of β for β0 = 0.1, α = 0.5 and
b = 0.9, we also observe low pecks for very low λ value.
Moreover, the behavior of the ratio between the peaks of
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Fig. 8. (Top) exponent vs. noise intensity; upper curve corre-
sponds to eβb0 and bottom curve corresponds to −eαb0 . (Bot-
tom) ratio vs. noise intensity; upper curve corresponds to the-
oretical calculate and bottom curve corresponds to numerical
calculate. α = 0.5, βb = 0.001 and b0 = 0.9.

the SPDF and also of the exponents (eαb0 and eβb0), in
relation to the noise intensity, is similar to the previous
case. This can be observed in Figure 8.

For this case we also reveal the “missing” solution by
means of a calculation that is similar to the previous case.
Therefore, we obtain the effective non-linear equation as:

F b0
eff =Fb0−λ2 dΓ (u)

du
=(1+4b2

0λ
2)(u−ust)(u−αb)(u−βb0),

(10)
where ust = b0

1+2b20λ2(β+α)

1+4b20λ2 is the “missing” solution. Here
ust is also displaced by the noise toward the unstable so-
lution until the last is reached. Figure 9 shows F b0

eff(u) and
Qeff(u) with λ increasing from λ = 0.002. The displace-
ment of fluctuations-affected solution and strong decrease
in the size of its basin can be observed clearly in the shown
figure. As noted before, the critical noise intensity can be
calculated as both ust = αb0 and eαb0 = 0 resulting in
λc =

√
1−α

2(α−β)b20
.

Finally, we also calculate the SPDF with a very skewed
initial condition over the fluctuations-affected solution.
Figure 10 shows the corresponding outcomes. The dis-
placement of affected solution induced by fluctuations can
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Fig. 9. (Top) F b0
eff vs. u for different values of λ. (Bottom) Qeff

vs. u for different values of λ. α = 0.5, βb = 0.001 and b0 = 0.9.
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Fig. 10. SPDF vs. u and λ (for b parameter fluctuations) cal-
culated by simulation of stochastic process (Pst) by introducing
a form which is non-zero uniform over the corresponding basin
around the affected solution and the in rest zero, as initial
condition. α = 0.5, βb = 0.001 and b0 = 0.9.

be clearly observed. This solution approaches to the un-
stable solution as the noise intensity increases, until both
solutions overlap. Then, for higher noise intensities, the
roles between both solutions are exchanged.

One result that is worth emphasizing is that, for both
cases studied, as λ �→ ∞ fluctuations-affected solution is
set right at the midpoint between the two roots which are
not affected by fluctuations, corresponding to the min-
imum value of multiplicative factor of noise. This way,
the solution not only becomes unstable but also tends to
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Fig. 11. SPDF vs. u and λ for α parameter fluctuations. (Upper left) α0 = 0.3, calculated analytically (Pth). (Upper right)
α0 = 0.3, calculated by simulation of stochastic process (Pst). (Lower left) α0 = 0.7, calculated analytically (Pth). (Lower right)
α0 = 0.7, calculated numerically (Pst). βb = 0.1 and b = 0.9 (curves are referenced to their maximum value).

balance the weight between the attraction basins corre-
sponding to each stable solution.

2.2 Fluctuations of α parameter

This case is different from the previous one, since the sta-
ble solutions are not affected by the fluctuations and there-
fore remain on its original values. Following the same line
of work as before, we described the corresponding zero-
dimensional dynamic as:

u̇ = Fαo(u) + Γ 1/2(u) η(x, t), (11)

where Fαo(u) = (u − βb)(u − α0b)(b − u) and Γ 1/2(u) =
b(u − βb)(b − u). Here we also observe that Γ 1/2(u) is
a parabola with positive curvature and a minimum value
located right at the midpoint between the two roots which
are not affected by fluctuations (umin = b 1+β

2 ). Then, we
calculate the corresponding fictitious relaxation function:

F(u) = −
∫

du
Fα0(u)
Γ (u)

= ln
{
|u − bβ|

α0−β

(1−β)b2 |u − b|
1−α0

(1−β)b2

}
(12)

and the SPDF:

Pth(u) ∝ exp
{
−Feff(u)

λ2

}
=

|u − bβ|−eβb |u − b|−eb

b2
,

(13)

where Feff(u) is defined as before, eβb = α0−β+2(1−β)b2λ2

(1−β)b2λ2

and eb = 1−α0+2(1−β)b2λ2

(1−β)b2λ2 . Of course, for this case we also
calculated numerically the corresponding SPDF.

Here, we report studies on two particular cases which,
in absence of fluctuations, differ by the weight ratio be-
tween the respective attraction basins. The affected pa-
rameter by fluctuations (adversity) is the relevant one to
determine such ratio. We consider α0 = 0.3 (dominant so-
lution: u = b) and α0 = 0.7 (dominant solution: u = βb).
Figure 11 showing the SPDFs calculated analytically and
numerically for both cases. It can be observed that for
noise intensities λ > 1 the analytical result corresponds
to the numeric result. Under this condition, we can see
that weight of the non-dominant solution increases with
λ until it is equalized with the weight of the other solu-
tion for very high noise intensities. However, we observe
differences between results of both calculations for values
of λ < 1.

In order to interpret this result we calculate the corre-
sponding effective nonlinearity:

Fα0
eff =Fα0−λ2 dΓ (u)

du
=(1+4b2λ2)(u−ust)(b−u)(u−βb),

(14)
where ust = bα0+2b2λ2(1+β)

1+4b2λ2 is the fluctuations-affected
solution and, of course, is the unstable one (effective
adversity) that separates the basins corresponding to two
stable solutions. The effective adversity grows with λ tend-
ing asymptotically toward the midpoint between the two
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solutions not affected by the fluctuations: ust = (1+β)b
2

when λ �→ ∞ (also coincident with the value that mini-
mizes the multiplicative noise factor). This means that the
size of the attraction basins tends to balance out as the
noise intensity increases. In order to illustrate this result
we show the effective potential Qeff on a graph. Figure 12
shows the corresponding curves for different noise inten-
sities. We can see that the “imbalance” of effective po-
tential in absence of fluctuations becomes “balanced” for
very high noise intensities, with a gradual connection be-
tween these two situations as λ varies from zero to infinite.
Therefore, regardless of the fact that the adversity pro-
motes one or another solution in absence of fluctuations,
whenever the noise intensity is high enough, the weight of
both solutions is being balanced by effect to fluctuations.

On the other hand, we know that a deterministic dy-
namic prevails for very low noise intensity and there-
fore, when numerically calculating the SPDF starting from
uniform distribution, each attraction basin captures an
amount of individuals proportional to the basin’s size.
This means that under these conditions the two peaks
must emerge. Then, as noise intensity increases, a prob-
ability flow is generated towards the larger basin which
tends to empty the other one. Hence, the probability peaks

height of the smaller basin decreases with λ. Nevertheless,
for even higher noise intensities, the weight ratio between
the two basins tends to reach an equilibrium when λ in-
creases, and so do the peaks’ weight. The behavior for low
λ cannot be detected by the analytic calculation because
the effective relaxation function loses the fluctuations-
affected solution, which arise when the deterministic dy-
namic prevails. In fact, the first does not describe it prop-
erly when λ �→ 0.

3 Analysis and conclusions

The aim of this paper is to research the effect of parame-
ters fluctuations corresponding to a Nagumo’s Model gen-
eralization, which consists in replacing the extinction op-
tion with the low density homogeneous population (u =
βb). First we obtain analytic results to later confirm them
by numerical simulation of stochastic process. This leads
us to obtain the stationary probability distribution func-
tion [34]. So, we separately calculate the fluctuations’ ef-
fects of the three parameters (β, α and b) that characterize
this model.

In relation to the parameters that define the stable so-
lutions in absence of fluctuations (β and b), we observe
that the fluctuations always “displace” the affected solu-
tion toward the middle point between the two non-affected
solutions. Moreover, for enough high noise intensities, the
affected solution exchanges its role with the adversity (α),
therefore, the previously unstable solution becomes sta-
ble and the affected by the fluctuations plays the role of
the unstable one. In a normal situation, a larger (smaller)
adversity value means to promote the low (high) density
population solution, but with the contribution of fluctua-
tions, once λc is overcome, the affected solution (now in
the adversity role) gives the previously unstable (and now
stable) solution more weight (by being displaced toward
the aforementioned middle point), while the noise inten-
sity increases, until both stable solutions reach an equilib-
rium for higher intensities. Moreover, the aforementioned
middle point coincides with the value that minimizes the
multiplicative factor of the noise, which suggests the pos-
sible existence of an underlying average dynamic that is
able to push the system toward such minimum, until bal-
anced by the deterministic forces. This vision is enhanced
when we consider that the forcefulness of this effect grows
proportionally to the negative multiplicative noise factor’s
derivative with respect to the field [25]. Then, when the
noise intensity is high enough, the stochastic average dy-
namic prevails over the deterministic dynamic and, there-
fore, the system is localized in a solution that minimizes
the multiplicative factor of the noise.

We also observe that the fluctuations-affected solution
is displaced toward one of the multiplicative factor’s ze-
ros, provided said solution remains stable (λ < λc). Then,
when this solution turns into unstable (λ > λc), it is dis-
placed toward field’s values that minimize the multiplica-
tive factor. Therefore, for the latter situation, the stable
solutions are always those that are non-affected by the

http://www.epj.org
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fluctuations. By visualizing the population as a set of indi-
viduals, our results confirm the intuitive knowledge, which
states that these individuals move away from those cir-
cumstances that change randomly. To this extend, the in-
dividuals choose to exist with such density values in order
to minimize the effect of the fluctuations.

Since the adversity determines the size ratio between
the attraction basins, its fluctuations affect said ratio.
Here, our results show that when the adversity is affected
by fluctuations, an effective adversity arises (αeff) which
moves itself toward the middle point (1+β

2 ) between the
two (stable) non-affected solutions as noise intensity in-
creases. This tends to balance the size ratio between the
attraction basins and the probabilities of the two sta-
ble solutions. Then, when the noise intensity is very high
αeff = 1+β

2 , meaning that both stable solutions are equally
probable. Again, the said middle point also coincides with
the value that minimizes the multiplicative factor of noise.

Finally, we emphasize two issues. On the one hand, we
have raised and systematized an analytic method (which
has been checked numerically) for studying the effects of
parameters fluctuations that characterize a given system,
inspired by Ibañes et al. [10,11]. We have also observed
that this method is reliable when the noise intensities are
high enough. On the other hand, we have observed strong
and interesting effects of fluctuations over the population’s
model studied.
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