
Physics Letters A 378 (2014) 1579–1583
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

A reduced gradient description of stochastic-resonant spatiotemporal
patterns in a FitzHugh–Nagumo ring with electric inhibitory coupling

A.D. Sánchez, G.G. Izús, M.G. dell’Erba, R.R. Deza ∗

Physics Department—FCEyN, National University of Mar del Plata (UNMdP) and IFIMAR (Mar del Plata Institute for Physical Research, UNMdP & CONICET),
Deán Funes 3350, B7602AYL Mar del Plata, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 January 2014
Received in revised form 25 March 2014
Accepted 28 March 2014
Available online 16 April 2014
Communicated by C.R. Doering

Keywords:
Synchronization and coupled oscillators
Neural networks and synaptic
communication
Noise in biological systems

We study the synchronization (sync) properties of a ring of N units with excitable FitzHugh–Nagumo
dynamics, when the inhibitor fields of nearest-neighbor units are coupled diffusively (electric coupling).
The system is submitted to a common subthreshold adiabatic signal S(t), and independent Gaussian white
noises with common variance η. By running numerical integrations with increasing η, we observe the ex-
citation activity to become spatiotemporally self-organized, until η is so strong that spoils sync. By means
of a two-cell model and projecting the dynamics along the slow manifolds, we obtain a (signal-dependent)
potential landscape which explains qualitatively the sync regime, and whose barrier heights give a good
estimate of the optimal noise intensity.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

This work enrolls in the study of constructive effects of noise
on the dynamics of complex systems [1–3], a field of ever increas-
ing interest and activity during almost half a century which has
uncovered phenomena like stochastic resonance [4–7], coherence
resonance [8], and noise-sustained synchronization [9,10] in non-
linear dynamical systems. Our focus is the study of synchronization
processes in populations of interacting nonlinear oscillators, a topic
of particular relevance to understand key issues in neuroscience,
where single neurons are often described as relaxation oscillators
[11] displaying excitable behavior. This means that suprathreshold
perturbations to their quiescent state (the stable stationary state of
the cross-membrane potential) elicit “action potentials”, in which
the relaxation to the rest state proceeds through large excursions
in the space of the model variables.

Complex systems (e.g. networks) made of excitable units usu-
ally display nontrivial behavior. Take for instance the FitzHugh–
Nagumo (FHN) model [12,13], a two-component reduction of the
Hodgkin–Huxley one and an archetypal model of activator–inhibi-
tor systems, capable of displaying periodic oscillations, stable fixed
points, and excitability [14]. This model has been largely used as
battle horse to shed light on the dynamics of neural [15] and car-
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diac tissues [16], but also to discover a host of noise-induced phe-
nomena. A known example is coherence resonance [8], appearing
as a nonlinear response to a purely noisy excitation. In neuronal
dynamics it is well established [17–19] that noise leads to vari-
ous key effects, like stochastic resonance [4,17,20–22] and noise-
assisted synchronization [11,23–26].

In previous study [27–30] we have been addressing the noise-
sustained synchronization of a ring of autonomous units with ex-
citable FHN dynamics, coupled through their activator fields but in
phase-repulsive way. In all the cases, we found noise (and cou-
pling)-induced nonequilibrium structures called by us antiphase
state (APS), in which the neurons on the ring alternate regularly
(except for noise-induced defects) their excitation states. Antiphase
coupling plays an important role in circadian oscillation in the
brain [31], synthetic genetic oscillators [32], the dynamics of astro-
cyte cultures [33], and has been used to investigate several aspects
in the dynamics of neuronal and FHN coupled models [33–37] as
well as Hodgkin–Huxley neurons [38,39]. In particular, we have
made theoretical estimations of the noise thresholds for activa-
tion and synchronization of the APS in FHN system. This analysis
was facilitated by the knowledge for this system [40,41] of a non-
equilibrium potential (NEP) [42]. The NEP is the non-equilibrium
analog of a free energy, and provides deep insight on the dy-
namical mechanisms leading to pattern formation and other phe-
nomena where fluctuations play a constructive role [2,43]. Here
we show that the same kind of stochastic-resonant spatiotempo-
ral self-organization—featured with both APS and enhancement of
the system’s output—can be generated through electric inhibitory
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couplings, and that the resonant dynamics can be explained in
terms of noise-sustained transitions between NEP attractors, as
they exchange adiabatically their relative stability obeying the slow
subthreshold signal. These are the fundamental ingredients driv-
ing the dynamics and determining the relevant noise scales. In the
present case, the full NEP is not known. Hence, in order to obtain a
NEP structure enabling to calculate barrier heights, we first resort
to a projecting on the slow manifolds.

In Section 2 we briefly review the dynamic equations of the
model; in Section 3 we provide numerical evidence of noise-
sustained synchronization, and characterize the constructive role
of noise in the process. Then we elucidate the observed dynam-
ics in terms of the NEP of a reduced description in Section 4, and
collect our conclusions in Section 5.

2. The model

Inhibitory coupling is a basic ingredient in the dynamics of neo-
cortical pyramidal neurons [44] and cortical networks [45]. It also
plays a major role in the dynamics of synchronous neural firing
[46]. On the other hand, gap-junction coupling between inhibitory
interneurons is substantially more abundant than that between ex-
citatory ones [47] and the diffusive coupling of inhibitor fields
comes out to be a crucial ingredient to explain the spontaneous
emergence of low-frequency oscillations with spatially and tempo-
rally chaotic dynamics, in the transition from wake to anesthetic
coma [48]. For the purpose of studying the effects of electric in-
hibitory coupling on the physical behavior of a network of ex-
citable elements, the simplest activator–inhibitor dynamics can be
assumed, and this is provided by the FHN model. The fast variable
in this model (the activator u) mimics the action potential of the
neuron and the slow one (the inhibitor or recovery variable v) is
related to the time-dependent conductance of the K+ channels in
the axon membrane [49].

We consider a ring of N identical excitable FHN cells, with
their inhibitor fields electrically coupled to those of their nearest-
neighbor. The system is submitted to a common subthreshold har-
monic signal S(t) and independent additive Gaussian white noises
in each component and each site. The equations for the model are

u̇i = bui
(
1 − u2

i

) − vi + S(t) + r1ξ
(u)
i (t) + r2ξ

(v)
i (t),

v̇ i = ε(βui − vi + C) + E
[
(vi+1 − vi) + (vi−1 − vi)

]
+ r3ξ

(u)
i (t) + r4ξ

(v)
i (t), (1)

with i = 1, . . . , N , uN+1 ≡ u1, and u0 ≡ uN . The activator–inhibitor
timescale ratio ε is an important parameter in the model, since the
single-cell NEP’s integrability condition [40] relates β and the r’s
to it. E > 0 is the electric inhibitory coupling strength, and the slow
subthreshold external signal has the form S(t) = A0 sin Ωt . The
ξ

(p)

i (t), p ∈ [u, v], are Gaussian random variables with 〈ξ (p)

i (t)〉 = 0

and cross-correlation 〈ξ (p)

i (t)ξ (q)

j (t′)〉 = ηδi, jδp,qδ(t − t′).
Tables 1 and 2 display most of the parameter values adopted

throughout the work. Moreover, r3 = εr1, r4 = εr2 and N = 256.
The parameters fulfill the above mentioned NEP’s integrability con-
dition and the requirement for the signal to be regarded as a
subthreshold adiabatic perturbation (in particular, Ω must remain
below the typical inverse deterministic time, i.e. the turnaround
time of a single spike). Eqs. (1) imply direct electric connection
(gap junction) between cells. The coupling term is inhibitory: when
neuron i fires, neurons i ± 1 are less likely to fire.

3. Noise induced synchronization

Numerical integration of the stochastic system (1) with increas-
ing η for appropriate values of E allows to visualize the noise-
Table 1
Cell parameters.

ε β b C

0.01 0.01 0.035 0.02

Table 2
Signal and noise parameters.

A0 Ω r3 r4

0.011 0.002 cos 0.05 sin 0.05

Fig. 1. Record of a set of 32 cells (white: ‘activated’, black: ‘inhibited’) with E = 0.5.
a) η = 2 × 10−8 (subthreshold homogeneous oscillation), b) η = 2 × 10−7 (partially
synchronized state), c) η = 5 × 10−7 (noise-sustained sync), and d) η = 10−6 (Par-
tially synchronized state). Left thin column refers to signal phase (white maximum,
black minimum).

induced phenomena taking place: synchronization with the ex-
ternal signal of the ring’s activity and (imperfect) spatiotemporal
self-organization of the cells.

Fig. 1 collects—for η values increasing up to the one that max-
imizes the coherence of its collective behavior—the time evolution
of the u variable for a ring’s subset (32 neurons). Although the
u values are displayed in grayscale (no thresholding whatsoever,
otherwise the faint bands in the leftmost frames could not be
seen), the picture looks quite pixeled because of excitability’s own
nature. For the purpose of quantifying the phenomenon we do in-
troduce some threshold uth (and call active those cells for which
u > uth, see below), but its precise value is irrelevant as far as it
exceeds the u-threshold for spike generation.

For η too low, only small-amplitude highly homogeneous [ui(t) ≈
u j(t)] subthreshold oscillations (induced by the adiabatic signal)
occur around the S = 0 rest state (leftmost frame). As η increases,
so does the number of cells that become noise-activated during
roughly half a cycle of the external signal. For η even higher,
the cells’ activity enhances its coherence with the external sig-
nal as a consequence of its coupling-mediated self-organization: as
one neuron activates, it usually inhibits its nearest-neighbor. The
outcome of this phenomenon is the APS, which partially arises
along the ring during the stage of noise-activation. In this scenario,
noise (together with coupling and signal) plays a constructive role.
Nonetheless for η too large, frame (d) in Fig. 1, the sync becomes
eventually degraded.
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Fig. 2. Q -factor of the activity for E = 0.5 (average over 20 realizations). Q max oc-
curs at η ≈ 5 × 10−7.

This behavior can be quantified by introducing the (time-de-
pendent) normalized global activation or activity

Ac(t) = 1

N

N∑
i=1

θ
[
ui(t) − uth

]
(2)

(θ is the Heaviside step function). Since (as already stated) for uth
values in the useful range, Ac(t) is quite insensitive to threshold,
we take hereafter uth = 0.4. By normalization, Ac = 1/2 means
states where half of the neuron population is active. Whereas
an APS is ideally such a state, Ac does not reach the value 1/2
because alternance may fail because of the local noise, a neces-
sary ingredient for activation. The failure takes the form of defects
where pairs of neighbor neurons remain inhibited or excited.1

We get an even more useful quantifier by selecting the Ω-com-
ponent of Ac(t)

Q sin = 1

nT

nT∫
0

2Ac(t) sin(Ωt)dt,

Q cos = 1

nT

nT∫
0

2Ac(t) cos(Ωt)dt,

where n is the number of periods T = 2π/Ω covered by the inte-
gration time. This is the Q -factor

Q =
√

Q 2
sin + Q 2

cos, (3)

plotted in Fig. 2 as a function of η, for E = 0.5. Q goes through
a maximum at η ∼ 5 × 10−7, indicating optimal neuronal coher-
ence and signal enhancement. At that noise intensity, the system
reaches the best possible synchronization.

4. Approximate analytical treatment

We now undertake a theoretical study of the dynamics by
exploiting the properties of the NEP during the time-evolution
[27–30]. We consider the minimal description of an idealized case
where all the even nodes on one hand, and all the odd ones on
the other, have the same stochastic phase-space trajectory. That is,
a reduced two-neuron system with variables (u1, u2, v1, v2), which
allows the formation of an APS (besides homogeneous one). Model
equations turn up from Eq. (1) specifying N = 2. Now it turns out
that (at variance with the antiphase-coupled activator case) a NEP

1 Presence of defects grants results being independent of N ’s parity.
Fig. 3. Φ-landscape along the slow manifolds for maximum signal amplitude and
E = 0.5. The system has two uniform attractors (both cells inhibited, both cells ac-
tivated), two APS (with one cell activated and one inhibited), four saddles and one
maximum. Nullclines are indicated in dashed and dashed dotted line.

cannot be easily found for this system. So we decided to further
reduce this description by projecting the dynamics along the cor-
responding slow manifolds. Since in the single-neuron case [40,41]
the equivalence between doing so at the NEP level or in the dy-
namical equations has been granted, we now proceed along the
second way and get for the slow manifolds

βu1,2 − v1,2 + C + 2E

ε
(v2 + v1 − 2v1,2) = 0. (4)

The projection—which confines the neurons’ dynamics to their re-
spective slow manifolds—is used only to calculate heights of barri-
ers. The resulting system

u̇1 =
(

b − 2E + ε

4E + ε
β

)
u1 − bu3

1 − 2Eβ

4E + ε
u2 + S − C

+ r1ξ
(u)
1 (t) + r2ξ

(v)
1 (t),

u̇2 =
(

b − 2E + ε

4E + ε
β

)
u2 − bu3

2 − 2Eβ

4E + ε
u1 + S − C

+ r1ξ
(u)
2 (t) + r2ξ

(v)
2 (t) (5)

is gradient with a NEP

Φ(u1, u2) = − 1

λ1

[
−b

2

(
u4

1 + u4
2

) − 4Eβ

4E + ε
u1u2

+
(

b − 2E + ε

4E + ε
β

)(
u2

1 + u2
2

)

+ 2(S − C)(u1 + u2)

]
, (6)

where λ1 = r2
1 + r2

2 .
Fig. 3 displays the Φ-level curves in the (u1, u2) plane, for

maximal signal amplitude, S(t) = A0. Inheriting the u1–u2 per-
mutation invariance of the dynamical equations, the NEP (in the
space spanned by the slow manifolds) and hence the distribu-
tion of its fixed points, are symmetric with respect to the u1 = u2
line. The fixed points can be obtained either from the intersec-
tion of the nullclines or by extremizing Φ(u1, u2). The ones lying
along the u1 = u2 line are uniform states: the rest–rest and active–
active attractors (recall that the latter is a point-like attractor in the
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Fig. 4. Same as Fig. 3, for S = 0. The system has one uniform attractor (both cells
inhibited), two APS and two saddles.

Fig. 5. Φ vs S for the uniform (rest–rest), the saddle and the APS, when E = 0.5.
The last two fixed points disappear for S below ∼ −5 × 10−3 (deterministic decay).

space of the projections, which does not rule out excitable behav-
ior for the individual neurons) and a repeller in between. Besides,
there are two mirror APS attractors and four saddle points. The
complete equivalence between mirror fixed points in the reduced
model indicates a degeneracy of the APS (u1 activated, u2 inhib-
ited or u2 activated, u1 inhibited) which is also present in the full
ring.

The number of attractors changes with the signal amplitude, as
can be appreciated in Fig. 4—the counterpart of Fig. 3 for S(t) = 0—
where the repeller, the active–active attractor, and two saddle
points have vanished. For minimal signal amplitude, S(t) = −A0
(figure not shown), only the uniform rest-state attractor survives.

The global stability of each attractor (depending on S) is given
by its well’s depth with respect to the saddle level. In Fig. 5, the
Φ values of the uniform (solid line), either APS (dashed line) and
either low-u saddle (dot-dashed line) are plotted as functions of S ,
between ±A0 (the repeller, the active–active attractor, and both
high-u saddle points involve higher Φ-barriers and are not shown,
since they are irrelevant to the discussed dynamics). Fig. 5 tells us
that above S ≈ 0.07, the uniform state yields its global stability to
both APS.

For S(t) = A0, the difference in Φ between the saddle and the
uniform state is �Φ = 7 × 10−7. For a noise level of this order, the
two-cell system would climb that potential barrier and transit to
the APS, which has a lower Φ value. The APS can then determin-
istically return to the uniform state because the saddles lying in
between collapse. η ∼ �Φ is the expected order of magnitude of
noise for full sync, in good agreement with the numerical results
of Fig. 2.

The two-cell approximation does not take into account the
eventual formation of defects, which break the background acti-
vation’s alternance of extended APS. We find it remarkable that
these approximate theoretical results help elucidate the route to
synchronization, and estimate the order of magnitude of the opti-
mal noise intensity.

5. Conclusions

We have investigated the stochastic dynamics of a ring of FHN
cells, with nearest-neighbor electric (diffusive) coupling between
their inhibitor fields. The system is externally, adiabatically forced
by a common subthreshold harmonic signal, and submitted to
additive and independent Gaussian white noises of the same in-
tensity η. Numerical integration for appropriate parameter values
shows that local additive noise sustains extended APS (where the
cells alternate their activation state), which moreover synchronize
with the external subthreshold signal.

In addition to being the noise (together with coupling and sig-
nal) an essential ingredient in this process, the Q -factor exhibits a
maximum as a function of η. The role of the noise is thus twofold:
on one hand it is an essential ingredient for the phenomenon to
occur and on the other, there is an optimal noise intensity for
maximal coherence, as in the phenomenon of double stochastic
resonance [50].

The numerical results can be better interpreted and quantita-
tively accounted for with reasonable accuracy by considering the
NEP of a two-cell reduced model. At variance with the antiphase-
coupled activator case, a NEP for the full four-dimensional space
cannot be easily found. In the single neuron case, reduction to the
slow manifold at NEP and dynamical equation levels turn out to
be equivalent. Reassured by this result, we confined our descrip-
tion to the two-dimensional space of the slow manifolds, in which
a NEP follows straightforwardly. Although this procedure poses se-
vere limitations on the dynamics, the fact that all the fixed points
that organize it lie in this subspace make it suitable to calculate
barrier heights.

By analyzing the dependence of the potential barriers on the
amplitude of the external signal, we have shown that the dynamics
can be explained in terms of noise-sustained transitions between
attractors. We remark that all the activations are noise-induced
and correspond to global decrease of the NEP.

As it occurs for related phenomena (e.g. coherence resonance
in coupled FHN systems [8]), our results are expected to depend
on both temporal and spatial noise correlations. The NEP approach
would be useful even in those cases, since dynamics driven by
space-correlated or colored (Ornstein–Uhlenbeck) noises can in
principle be described in terms of a suitable NEP [51].
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