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Abstract

This study is concerned with the vibration analysis of a cantilevered rectangular anisotropic plate when a concentrated
mass is rigidly attached to its center point. Based on the classical theory of anisotropic plates, the Ritz method is employed
to perform the analysis. The deflection of the plate is approximated by a set of beam functions in each principal coordinate
direction. The influence of the mass magnitude on the natural frequencies and modal shapes of vibration is studied for a
boron-epoxy plate and also in the case of a generic anisotropic material. The classical Ritz method with beam functions as
the spatial approximation proved to be a suitable procedure to solve a problem of this analytical complexity.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Within the realm of the classical theory of plates, the case of a free edge offers considerable difficulty. This is
the reason why, when dealing with vibrations problems, it is quite common to make use of the Ritz variational
method, commonly referred to as the Rayleigh—-Ritz method in the engineering literature [1,2] where one
considers the free edge as the free end of a beam and performs all the algorithmic procedures accordingly.
Readers with an interest in the history of this variational method are directed to Ref. [1]. In the present study,
a cantilever plate is considered so the previous stated procedure is followed for three edges: in one direction the
clamped-free beam is considered and in the perpendicular direction a free—free beam is considered, as
illustrated in Fig. 1.

When dealing with an anisotropic rectangular plate finding coordinate functions which satisfy the free edge
situation is exceedingly complicated (one must recall at this point that even in the case of a simply supported,
rectangular, anisotropic plate, St Venant’s method valid for an isotropic plate and also an orthotropic plate
does not yield an exact solution since the sinusoidal solution does not satisfy exactly the governing boundary
conditions), and it is necessary to make use of an approximate method to solve the problem, be it of a static or
a dynamic nature.
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The presence of rigidly attached concentrated mass is taken into account in this study since this mechanical
system is of interest in civil, naval and aeronautical engineering. Among the pertinent works on the subject one
must quote the contributions by Chiba and Sugimoto [3] who carefully analyzed a cantilevered isotropic plate
with a spring-mass system attached to it, Gorman who obtained an elegant, analytical solution for a
cantilevered orthotropic plate [4] and the work of Rossi and Laura [5] about the effect of the Poisson’s ratio
and a concentrated mass.

In the general treatment of anisotropic vibrating rectangular plates, Laura and Grossi [6] considered elastic
restraints in the edges, Laura et al. [7] studied forced vibrations of the simply supported case, Avalos et al. [§]
considered doubly connected domains also for the simply supported case, and it is worthy of note the
contribution of Grossi and Nallim [9] who studied the use of orthogonal polynomials in the application of Ritz
method in the analysis of anisotropic plates.

Table 1
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Fig. 1. Structural system under study.

First six natural frequency coefficients Q; = w;a®+/ph/Dy; for the cantilever plate of boron-epoxy composite components (Eq. (9))

) M Q, foR Q, Q Qs Qs
12 0 1.1222 3.6803 6.5669 10.2993 13.4473 19.7860
0.1 1.1222 3.5622 6.4089 9.9454 13.1223 18.6502
0.3 1.1221 3.3315 6.1284 9.3599 12.6589 16.7492
0.5 1.12204 3.11902 5.91465 8.99269 12.4164 16.1201
1 1.12188 2.69081 5.59914 8.56922 12.1706 15.6330
1 0 2.8454 10.0269 16.7404 21.7283 27.0418 35.5371
0.1 2.7695 10.0221 16.7151 18.9435 25.2615 35.3644
0.3 2.6329 10.0110 15.2794 16.8174 24.6652 35.2634
0.5 2.5136 9.9971 13.5453 16.7840 24.5221 35.2276
1 2.2719 9.9430 11.5758 16.7731 24.4113 35.1942
2 0 4.3249 15.0428 34.5083 44.0590 58.8009 71.2228
0.1 4.0124 14.5226 34.5083 42.0799 56.5735 69.6054
03 3.5534 13.9291 34.5082 39.6252 54.6370 68.3928
0.5 3.2267 13.6038 34.5081 38.3308 53.8906 67.9534
1 2.6967 13.2051 34.5079 36.8605 53.2024 67.5532
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The quantity and variability of the parameters involved in the description of the mechanical behavior
of these kinds of materials make of little interest the construction of tables of dynamical magnitudes, as it
is usual for isotropic structural elements. Consequently, just a few representative cases will be considered to
demonstrate the convenience of the procedure.

2. Approximate analytical solution

According to the classical thin anisotropic plate theory [10] the energy functional corresponding to the
vibrating system shown in Fig. 1 is given by
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Fig. 2. Modal shapes and nodal lines in the vibration of the cantilever boron epoxy—Eq. (9)—plate of A = 1 and without mass: (a) first
mode, (b) second mode, (c) third mode, (d) fourth mode, (e) fifth mode, and (f) sixth mode.
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where W = W(%, ) is the deflection amplitude of the middle plane of the plate, the D;; are the well-known flexural
rigidities of an anisotropic plate, 4 is the area of the plate plan form, p and / are, respectively, the density and the
thickness of the plate, m is the magnitude of the concentrated mass, W (X, 7,,) is the plate displacement amplitude
at the mass position (%, 7,,) and o is the natural circular frequency of the system. The rotatory inertia of the
concentrated mass is not taken into account in the present analysis. As the length of the sides of the rectangular

plate are @ and b in the X and y directions, respectively, the coordinates can be written in dimensionless form as
x==%/a,  y=7J/b,
_: A )
xm_xm/a, ym_ym/ ’

and the aspect ratio of the plate is denoted by

/lzg.

The expression of the deflection of the plate is approximated in the form of a truncated series of beam
functions X,,(x) and Y,(y):
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Fig. 3. Modal shapes and nodal lines in the vibration of the cantilever boron epoxy—Eq. (9)—plate of 2 = 1 and with a centered mass
M = 1: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode, (e) fifth mode, and (f) sixth mode.
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where X,,(x) and Y,,(y)are the characteristic functions for the normal modes of vibration of beams with end
conditions similar to the simplified expressions used for the plate at the free edges and, obviously, the same in
the case of the clamped edge.

In the x-coordinate direction the corresponding beam function is

X u(x) = cosh(k,,x) — cos(k,,x) — o [sinh(k,,,x) — sin(k,,,x)], 4)
where

__cosh(k,,) + cos(k;,)
= sinh(k,,) + sin(ky,) ’

and k,, are the roots of
cos(k,,) cosh(k,,) = —1, (5)
k,, = 1.87504, 4.694091, 7.85457,.... while
Yimm=1, Y0=2y-1,
Y.(y) = cosh(k,y) + cos(k,y) — a,[sinh(k,y) + sin(k,p)], (6)
where

_ cosh(k,) — cos(k,)
= sinh(k,) — sin(k,) ’

and k,(n>=3) are the roots of
cosh(k,) cos(k,) = 1, (7

k, = 4.730040, 7.853204, 10.995607,...

Obviously Egs. (4) and (6) do not satisfy the natural boundary conditions at the free ends, as previously
stated but this is legitimate when using the Ritz method [9].

Substituting Egs. (4) and (6) into Eq. (3) and Eq. (3) into Eq. (1) and, requiring that J(W) be a minimum
with respect to the A4,,,, coefficients:

WY _ o 2. M: n=1.2... N, ®)
aAmn

one obtains a homogeneous linear system of equation in terms of the 4,,, parameters.

Table 2
First six natural frequency coefficients Q; = w;a®+/ph/Dy; for the cantilever plate of a generic anisotropic material (Eq. (10))

2 M Q Q Q, Q Qs Qs
12 0 3.1814 4.5016 9.4651 14.8854 19.8561 22,0135
0.1 3.1339 4.4535 9.0704 14.3820 19.5741 19.9462
03 3.0339 4.3661 8.3489 13.4933 17.8342 19.8764
0.5 2.9306 4.2916 7.8027 12.9720 17.2977 19.9735
1 2.6792 4.1579 7.0228 12.4284 16.8981 19.8719
1 0 2.8285 5.5269 18.9016 20.0922 27.5157 40.076
0.1 2.7969 54113 17.5429 19.9259 26.0913 37.8911
03 2.7331 5.2054 15.2921 19.8619 24.9061 36.3225
0.5 2.6691 5.0316 13.9045 19.8441 24.4706 35.7685
1 2.5129 4.7107 12.1729 19.8294 24.0831 35.2717
2 0 2.0317 6.5626 19.7769 27.1362 58.6434 66.4141
0.1 2.0181 6.2841 18.6560 26.9542 58.3900 66.4141
0.3 1.9907 5.8201 17.2197 26.7784 57.3895 62.4533
0.5 1.9633 5.4541 16.3695 26.6940 55.8712 60.6937

1 1.8954 4.8180 15.2821 26.6001 53.3167 59.8764
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From the non-triviality condition, one can get natural frequency coefficients: Q; = w;a*\/ ph/Dyy, as
eigenvalues, and vibration modes as eigenvectors of the secular determinant.

The present study is concerned with the determination of the first six natural frequency coefficients Q; to Q¢
for the case of an anisotropic cantilever rectangular plate carrying a concentrated centered mass, and their
respective modal shapes.

3. Numerical results
The numerical determinations have been performed for two kinds of materials:

(a) a boron-epoxy component characterized by the following parameters [9]:

% =0.2130195, @ = 0.3245569, % = 0.3387559, % = 0.5120546 and % = 0.1694905,
Dy, Dy Dy Dy, 1

and )
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Fig. 4. Modal shapes and nodal lines in the vibration of the cantilever plate of a generic anisotropic material—Eq. (10)—of A =1 and
without mass: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode, (e) fiftth mode, and (f) sixth mode.



P.M. Ciancio et al. | Journal of Sound and Vibration 302 (2007) 621-628 627

(b) a generic anisotropic material for which:

%=@=%=l %=%=l (10)
Dy, D, Dy 2 Dy Dy 3

The aspect ratio A = a/b of the plate varies from % to 2, and the relation between the magnitude of
the concentrated attached mass and the mass of the plate: M = m/m, is chosen to be 0, 0.1, 0.3, 0.5

and 1.

Eq. (1) was verified for the particular isotropic case by simply making

ER® 1—v
———, Dp=vD D¢y =
0 —0) 12 =vDy, 66

For this particular case, the obtained results are in excellent agreement with those obtained by Chiba and
Sugimoto [3].

In Table 1 are shown the natural frequency coefficients for a cantilever boron-epoxy plate.

In Figs. 2 and 3 the modal shapes of vibration are shown along with the corresponding nodal lines of the
boron-epoxy plate free of mass and with a mass ratio M = 1 attached, respectively, for the case 4 = 1. In spite

Dy =Dy =

a Q,=2.5129 b Q,=4.7107
1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
C Q;=12.1729 d Q,~19.8294
N ! 1
\ 0.8 0.8
0.6 0.6
0.4 0.4
02 02
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
e Q,=24.0831 f Q=352717
0.8 0.8 0.8 VA 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 < 0.4 /
02 02 0.2 02
I\ . >
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Fig. 5. Modal shapes and nodal lines in the vibration of the cantilever plate of a generic anisotropic material—Eq. (10)—of 2 = 1 and with
a centered mass M = 1: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode, (e) fifth mode, and (f) sixth mode.
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of the central location of the concentrated mass and the boundary conditions, in general, no symmetric
behavior can be expected because of the anisotropy of the material.

The coefficients of Table 1 make evident the influence of the concentrated mass showing a decrease in
almost all the frequency values. The influence on the fundamental frequency is in general higher, as in the
isotropic case, except for the case where A = %, where this natural frequency remains almost unchanged. In
some cases, e.g., the second and sixth frequencies for A = 1 and the third frequency for 1 = 2, the values of
the coefficients remain almost unchanged. In those cases a nodal line is situated near the location of the mass
(see Figs. 2 and 3).

In Table 2 and Figs. 4 and 5 the frequency coefficients and modal shapes are shown for a cantilever plate
made of a generic anisotropic material (Eq. (10)). They were obtained in order to show the influence of the
material properties over the dynamical behavior of the plate. A surprising coincidence is that Q5 exhibits the
highest variation with the increase of the mass, for 4 = 1, in the present study for the boron epoxy plate as well
as for a generic, arbitrary material.

4. Concluding remarks

The classical, variational method of Ritz has been successfully used in the present study to obtain an
approximate, yet quite accurate, solution to a difficult elastodynamics problem. Natural frequencies and mode
shapes are obtained for a meaningful combination of the governing parameters: material properties and ratios
of the applied concentrated mass referred to the total plate mass, and different aspect radii of the plate.
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