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a b s t r a c t

This work deals with the problem of estimation of biomass concentration and specific

growth rate in a biohydrogen production process. A photo-fermentation process with the

photosynthetic bacteria Rhodobacter capsulatus is considered. The reaction dynamics is

represented with a Monod law while the hydrogen production rate is modeled with

a Luedeking-Piret expression. A sliding mode observer is proposed and designed, which

gives an estimate of both biomass concentration and specific growth rate from measure-

ments of the produced hydrogen volume. The proposed observer is completely robust

against the growth kinetic model, and it presents a first-order reduced dynamics.

Numerical simulation results are presented for a batch biohydrogen production process.

Copyright ª 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction entered bulk markets mainly because of its comparatively
Hydrogen is considered a promising energy carrier as an

alternative to fossil fuels. Besides being renewable, its

combustion generates no pollution and provides an amount of

energy per unit weight higher than the energy obtained from

hydrocarbon fuels.

In the last years there has been an increasing interest in

obtaining hydrogen from biological processes (biohydrogen),

as these processes are environment friendly. Biological

hydrogen production is basically based on either bio-

photolysis, photo-fermentation or dark fermentation [1].

Diverse experiments have been carried out, using pure and

mixed cultures of microorganism, for a large variety of

substrates and under different operating conditions. Both the

hydrogen yield and the specific production rate have been

shown to be strongly dependent on the carbon source and the

physiological conditions [2]. Although the utilization of

organic wastes as substrate could help to waste minimization

and cost reduction, biohydrogen production has not yet
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high costs and low production rates.

In this work we consider a photo-fermentation process,

which has been found to be themost promising bioproduction

process due to its high substrate to product conversion yield

[3]. In such a process, a photoheterothrophic bacteria reduces

organic acids into H2 and CO2 mainly through nitrogenase

enzyme. In addition to hydrogen generation, the photo-

fermentation provides the possibility of organic waste treat-

ment at industrial scale by using mixed culture of microor-

ganisms [4].

On the other hand, photo-fermentation processes are

affected by physicochemical conditions in which microor-

ganism grows such as: C/N ratio, light intensity, temperature,

pH and operating mode [3]. Another important constraint is

that during the photo-fermentation process, only a few

measurements are available online.

In order to make progress towards an economically viable

biohydrogen production process, it is essential to apply

advanced control strategies which can optimize the process
ublications, LLC. Published by Elsevier Ltd. All rights reserved.
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and significantly improve the production rates. Since any

control strategy which can be applied will require as much

information as possible, the implementation of state

observers (or software sensors) for the estimation of those

variables which are not accesible becomes a crucial task.

In this direction, one of the earliest contributions to state

estimation in bioprocesses was proposed in [5], where

a specific growth rate estimation was performed assuming

that it is a bounded time-varying parameter. More recently [6],

proposed a high-gain state observer, while [7] proposed

a hybrid observer which combines high-gain with asymptotic

estimation properties. A special class of nonlinear observers is

that one which operates under sliding mode (SM) regime.

Particularly [8], proposed an SM observer for specific growth

rate estimation from biomass measurements. Regarding bio-

hydrogen generation, there are just a few works published

dealing with state estimation. Among them [9], presents

a model predictive control strategy using an asymptotic

observer, whereas [10] proposes a moving horizon state esti-

mator to be applied to biohydrogen process control.

This work deals with the problem of estimation of biomass

concentration and specific growth rate in a biohydrogen

production process. The photo-fermentation process with

purple non-sulfur bacteria Rhodobacter capsulatus is consid-

ered. The reaction dynamics is representedwith a Monod law,

while hydrogen production rate is modeled with a Luedeking-

Piret expression. An SM observer is designed which provides

an estimation of microorganisms (biomass) concentration

and specific growth rate from measurements of the produced

hydrogen volume. Some distinctive features of this observer

are that it presents a reduced-order dynamics and it is inde-

pendent of the growth kinetics (provided it is bounded).

The work is organized as follows. Section 2 introduces the

photo-fermentation bioprocess model and some necessary

assumptions. The SM observer for biomass concentration and

specific growth rate is described in Section 3. Section 4 pres-

ents numerical results, which are discussed in Section 5.

Finally, conclusions are given in Section 6.
2. Process model and problem statement

The following model represents the photo-fermentation

process for biohydrogen production with R. capsulatus in

a batch culture, under anaerobic condition and nitrogen-

limiting substrate [11]. Variation of biomass and substrate

concentration is expressed as:

dX
dt

¼ mðSÞX (1)

dS

dt
¼ � 1

YXS
mðSÞX; (2)

where X is biomass concentration (g L�1) and S substrate

concentration (g L�1). m(S) is the specific growth rate (h�1) and

YXS substrate on biomass yield (g g�1).

Specific growth rate is represented with a Monod law

mðSÞ ¼ mmax

S
KS þ S

; (3)
where mmax is the maximum growth rate (h�1) and KS the

substrate saturation constant (g L�1).

The specific production rate of biohydrogen is expressed

with a Luedeking-Piret model:

dP
dt

¼ a
dX
dt

þ bX: (4)

The first term in the right side of Eq. (4) takes into account

the growth associated production rate and the second term

the non-growth associated production rate. Whilst Eq. (4) was

first proposed to describe acid lactic fermentation [12], it has

also been applied to fit experimental data from biohydrogen

production with photosynthetic bacteria [13,14]. Furthermore,

modified models have been presented to take into account

inhibition effect of substrate, product and light intensity [15].

In [11] the authors consider the produced hydrogen volume as

state variable and the effect of light intensity into the growth

associated term. In this manner, regarding Eqs. (1)e(4), they

propose:

dP

dt
¼ 1

YXP
fðIÞmðSÞXþ bX; (5)

where P (mL) is the produced hydrogen, YXP the biomass on

product yield and f(I) a function of light intensity. Given a level

of light intensity I0, and using Eq. (4): a ¼ f(I0)/YXP.

In this context, the following assumptions aremade for the

development of an SM state observer:

A.1 It is assumed that the photo-fermentation process can be

properly described by Eqs. (1)e(4).

A.2 A continuous measurement of biohydrogen volume, P, is

assumed available.

A.3 The specific growth rate mð,Þ is bounded, i.e. there exists

mmax such that jmð,Þj � mmax.

A.4 State variables are bounded and positive. This can be

assumed because these variables represent concentra-

tions in the bioreactor.

Note that none of the assumptions are actually restrictive.

Hence, given the listed assumptions, the problem is to deter-

mine an estimation of biomass concentration X and specific

growth rate mð,Þ from the measurement P.
3. The proposal

3.1. SM estimation in a class of nonlinear system

Consider a class of nonlinear system that can be represented

by the following model:

dx1

dt
¼ εðx; tÞx1 (6)

dx2

dt
¼ k10x1 þ k20x2 þ k11

dx1

dt
(7)

y ¼ x2 (8)

where x1, x2 ˛Rþ, ε(x,t) is a scalar bounded function, and

kT ¼ [k10 k20] a constant vector. Then, in order to obtain
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estimates of x1 and ε(x,t) using measurement of y ¼ x2, the

following observer is proposed:

dx̂1

dt
¼ ε̂ðy; x̂Þx̂1 (9)

dx̂2

dt
¼ k10x̂1 þ k20x̂2 þ k11ε̂ðy; x̂Þx̂1 (10)

ŷ ¼ x̂2 (11)

ε̂ðy; x̂Þ ¼ M signðy� x̂2Þ (12)

where x̂1 and x̂2 are the state estimates, ε̂ðy; x̂Þ an estimation of

ε(x,t), signð:Þ the sign function and M a constant gain. It is

worth noting that the dynamics of x̂1 and x̂2 are affected by

a discontinuous term.

Let the estimation error be ~xibxi � x̂i, then for x1 and x2 we

have:

d~x1

dt
¼ εðx; tÞ~x1 þ ðεðx; tÞ � ε̂ðy; x̂ÞÞx̂1; (13)

d~x2

dt
¼ k10~x1 þ k20~x2 þ k11

d~x1

dt
: (14)

Now consider the following function of the estimation error:

fð~xÞ ¼ ~x2. Wherever

M �
��� kT~x
k11x̂1

þ x1ε

x̂1

���; (15)

the discontinuous term in
d~x2

dt
enforces that

df
dt

> 0 when f < 0; (16)

df
dt

< 0 when f > 0: (17)

Under these conditions, f vanishes (f ¼ 0) in finite time.

From then on, the discontinuous term switches at an ideally

infinite frequency constraining the state trajectory on the

surface

f
�
~x
�
¼ ~x2 ¼ 0: (18)

It is said that a sliding mode regime is established, where

the invariance condition

f ¼ ~x2 ¼ 0; (19)

df
dt

¼ d~x2

dt
¼ 0; (20)

holds [16].

Eqs. (19) and (20) imply that:

x̂2 ¼ y; (21)

k10~x1 þ k11
d~x1

dt
¼ 0: (22)

Therefore, from (22) we have the following reduced-order

dynamics for the observer error:
d~x1

dt
¼ �k10

k
~x1: (23)
11

The dynamics of ~x1 converges to zero with a time constant

s ¼ k11/k10. From the invariance condition (19)e(20), it can be

interpreted that the discontinuous signal ε̂ðy; x̂Þ behaves like

a fictitious continuous signal εeq(t) which enforces the system

to operate on fð~xÞ ¼ 0 [16]. Using (13) and (23), it follows that

εeqðtÞ ¼
�
εðx; tÞ þ k10

k11

�
~x1

x̂1
þ εðx; tÞ: (24)

Then, as ~x1/0, according to (23) we have

εeqðtÞ/εðx; tÞ: (25)

The results (23)e(25) are useful to estimate biomass

concentration and specific growth rate as we discuss in the

next subsection.
3.2. SM observer for biohydrogen production

In order to apply the previous development to the process

model (1)e(4), let x1 ¼ X, x2 ¼ P, εðx; tÞ ¼ mð,Þ, kT ¼ [b 0], k11 ¼ a

and ε̂ðy; x̂Þ ¼ m̂. With the objective of estimating biomass

concentration and specific growth rate, the following SM state

observer is proposed:

dX̂
dt

¼ m̂X̂ (26)

dP̂
dt

¼ am̂X̂þ bX̂ (27)

m̂ ¼ M signðP� P̂Þ (28)

X̂ð0Þ ¼ X̂0 (29)

P̂ð0Þ ¼ Pð0Þ (30)

where X̂ and P̂ are states of the observer which estimate X and

P respectively, m̂ the estimated specific growth rate, X̂ð0Þ > 0

and P̂ð0Þ the initial conditions, and K a constant.

Since the produced hydrogen volume P is available and

measured, the comparison P� P̂ can be done. Then the

observer is initialized with the first sample, that is P̂ð0Þ ¼ Pð0Þ.
We define the estimation error as in the previous section:

~X ¼ X� X̂; (31)

~P ¼ P� P̂: (32)

From Eqs. (1), (4), (26) and (27), it is straightforward to show

that the error dynamics results:

d~X
dt

¼ m~Xþ
�
m�M sign

�
~P
��

X̂; (33)

d~P
dt

¼ a
d~X
dt

þ b~X: (34)

Now consider the following switching function:

f
�
~X; ~P

�
¼ ~P: (35)
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Table 1 e Value of parameters describing biohydrogen
production with R. capsulatus [10,11]. (*) Units according
to expression (5).

Parameter Value Unit

mmax 0.4 h�1

KS 10 g L�1

YXS 0.7 g g�1

YXP 1 g L�1

a 5 *
b 16 *
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It can be easily verified that the relative degree of the

switching function f with respect to the discontinuous signal

signð~PÞ is equal to one, which is a necessary condition for the

existence of sliding regime [17]. The sliding domain, i.e the

region of the sliding surface f ¼ 0 where sliding mode exists

can be determined from Eq. (15).

Note that for the observer to evolve in sliding mode

towards ~X ¼ 0, M > mmax must be selected.

During sliding mode operation, the invariance condition

(19) and (20) holds, i.e:

f ¼ ~P ¼ 0; (36)

df
dt

¼ d~P
dt

¼ 0: (37)

Then,

P̂ ¼ P; (38)
a

c

Fig. 1 e Bioprocess simulation: a) biomass, b) sub
a
d~Xþ b~X ¼ 0: (39)

dt

Note that (38) implies that the estimation P̂ matches the

measured volume of biohydrogen P. Furthermore, from Eq.

(39) we have the reduced-order dynamics

d~X
dt

¼ �b

a
~X: (40)

This means that the dynamics of the biomass estimation

error converge to zero with a time constant s ¼ a/b. From the

invariance condition (36) and (37), the discontinuous signal

m̂ðtÞ behaves like a fictitious continuous signal meq(t) which

perfectly estimates m(t). The fictitious meq(t) is (see (24))

meqðtÞ ¼
�
mðtÞ þ b

a

� ~X

X̂
þ mðtÞ: (41)

Then, as ~X/0, we have

meqðtÞ/mðtÞ: (42)

Since m̂ðtÞ is discontinuous, an estimate m̂eqðtÞ of meq(t) can be

obtained by using a low-pass filter which removes the high

frecuency component of m̂ðtÞ.
4. Numerical results

Numerical simulation results for a batch biohydrogen

production process are presented in this section to illustrate

the proposed observer performance. The initial conditions

are X(0) ¼ 0.13 g L�1, S(0) ¼ 4.19 g L�1 and P(0) ¼ 0 mL [10], the
b

d

strate, c) biohydrogen, d) specific growth rate.
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Fig. 2 e Evolution of biomass X (solid) and estimated

biomass X̂ (dashed).

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 7 ( 2 0 1 2 ) 1 0 0 8 9e1 0 0 9 4 10093
batch run is 52 h. The model parameters are presented in

Table 1.

Fig. 1 shows the state evolution for the photo-fermentation

process. The initial substrate concentration is consumed by

biomass for biomass growth and product formation.

Hydrogen is produced according to model (5), with a rate

proportional to biomass concentration and biomass growth

rate.

According to Eq. (40), the error dynamics of biomass esti-

mation is stable and it asymptotically converges to zero. This

is verified by Fig. 2, where it is shown how the biomass esti-

mation effectively converges to the real biomass concentra-

tion from an initial condition X̂ð0Þ ¼ 2 g L�1 with the time

constant a/b ¼ 0.3125 h.

In turn, Fig. 3 reveals the observer potentials to estimate

the specific growth rate, as stated by (42). To this end, m̂eqðtÞ is
obtained by filtering the discontinuous specific growth rate

estimation m̂ðtÞ with a second-order low-pass Butterworth
Fig. 3 e Specific growth rate: m(t) (solid) and filtered

estimation m̂eqðtÞ (dashed).
filter with cut-off frequency of 0.5 Hz, so as to remove the

high-frequency component. As can be appreciated, after

a relatively short transient caused by the filter and the

dynamic of ~X, the signal m̂eqðtÞ satisfactorily estimates the

actual specific growth rate m(t).
5. Discussion

As was verified in the previous section, the sliding mode

regime enforces the observer to operate on the surface ~P ¼ 0.

Because of the SM reduced-order dynamics, the error ~X tends

to zero with a first-order dynamics, and then an estimation of

biomass concentration is achieved.

It is worthy to remark that the development of the

observer does not require any model (Monod, Haldane, etc.)

for specific growth rate m(t). Indeed, an upper bound mmax is

only required. This allows the utilization of the observer

without having identified the parameters of the m model.

Furthermore, the resultant observer can be applied to

any other bioprocess in which the product formation rate

can be associated to biomass growth and biomass concen-

tration, that is, when a model with the structure of (4) is

applicable.
6. Conclusions

An SM observer of biomass concentration and specific growth

rate was designed for a biohydrogen production process. The

convergence of the observer was verified by numerical simu-

lation in a photo-fermentation process with the bacteria R.

capsulatus. The proposed observer assumes no particular

model for mð,Þ, only requiring the growth rate to be bounded.

This algorithm could be employed both for online moni-

toring of the biohydrogen production process and for the

application of advanced control strategies in order to optimize

the operating conditions.
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