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ABSTRACT
In this study, we compared different remote-sensing (RS)-based
land surface models (LSM) and reanalysis latent heat flux (LE)
products over different forest ecosystems. We analysed the per-
formance of three RS products, the MOD16A2, the Breathing Earth
System Simulator (BESS) model, and a combined optical-micro-
wave model (COM) in their ability to replicate eddy covariance (EC)
flux observations of LE at eight southern hemisphere forest eco-
systems and compared their results to simulated LE from the
offline LSM (GLDAS/NOAH) and a reanalysis LE dataset (MERRA).
To determine spatial uncertainties, we used the triple collocation
(TC) method, which does not require a priori knowledge of the
true LE value, at selected Australian EC locations and over an area
without in situ measurement (the Dry Chaco Forest (DCF),
Argentina). The spatial pattern of the TC results was commensur-
able with uncertainties calculated using EC observations, indicat-
ing that the TC method is a robust technique to estimate spatial
uncertainties. As global products have been validated with EC
measurement from Ozflux stations, we hypothesized and found,
using the TC model, that LE products achieve a better perfor-
mance over areas with EC from networks than over sites without
ground-based measurements and may reflect over-calibration of
models or a need for a more diverse representation of ecosystems
at flux tower networks.
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1. Introduction

To determine present and future water, energy, and carbon fluxes it is essential to
understand the different ecosystem responses to meteorology and climate. One of the
most important component of the energy budget is evapotranspiration (ET) and its
energy equivalent the latent heat flux (LE), since ET (or LE) uses more than half of the
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total solar energy absorbed by land surfaces (Trenberth, Fasullo, and Kiehl 2009). The
eddy covariance (EC) technique (Baldocchi, Hincks, and Meyers 1988) provides a tool to
estimate in situ ET at high temporal resolution necessary to examine processes, but also
at much greater spatial scales than other direct method (e.g. sap flow). However, limited
networks of EC towers globally limit quantification of ET across large areas. In special,
there are few (or none) EC towers over different Australian Savannas and South
American forests compared to their northern hemisphere contra parts.

Remote sensing (RS) is considered one of the most viable method for producing
spatially distributed global or regional ET products. Various methods have been devel-
oped using RS observations to estimate ET and LE at regional scale. Among these
models, the official Moderate Resolution Imaging Spectroradiometer (MODIS) ET product
(MOD16) drives the Penman-Monteith (PM) equation (Allen et al. 1998; Monteith 1985)
with daily meteorological reanalysis data and 8-day remotely sensed vegetation prop-
erty dynamics (MOD15 leaf area index (LAI) product). Another RS product is the
Breathing Earth System Simulator (BESS), which is a concise process-based model used
to estimate carbon and water fluxes at global scale that used a range of data streams in
MODIS atmospheric and land products with ancillary data (Jiang and Ryu 2016). These
two global products have been validated with EC measurements from Ameriflux stations
(Mu et al. 2007; Mu, Zhao, and Running 2011) and from FLUXNET network sites (Jiang
and Ryu 2016). A recently developed algorithm estimates surface conductance (Gs) using
passive microwave and optical indices (combined optical-microwave model (COM)) in
dense forest areas (Barraza et al. 2015) improving LE schemes that relied on a single
satellite product. An extended analysis in Savannas evaluated the performance of the
COM model replacing local meteorological with global meteorological data (Barraza
et al. 2017).

LE (and ET) at global to regional scales can also be simulated using land surface
models (LSMs). The Global Land Data Assimilation System (GLDAS) (Rodell et al. 2004)
provides a series of land surface states (e.g. soil moisture and surface temperature)
and fluxes (e.g. evaporation, land heat flux products) simulated by four LSMs
(Community Land Model, Mosaic, Noah, and The Variable Infiltration Capacity)
(Rosero et al. 2009; Ek 2003; Rodell et al. 2004). The most relevant limitation of
LSMs is that their strong theoretical framework can lead to greater uncertainty than
RS methods, due to a multitude of data types used as input (RS, re-analysis, etc.)
(Rosero et al. 2009).

The goal of RS and LSM products (Mu et al. 2007; Barraza et al. 2015; Rodell et al.
2004) is to estimate LE over areas without in situ measurements. Since global product
was validated over regions with a relatively good measurement network (e.g. Fluxnet EC
locations) (Mu et al. 2007), lower errors are expected to be found over this areas
compared to other ecosystems and locations non-represented at the EC network (e.g.
South America). To address the uncertainties at locations missing ground observations,
an alternative validation technique called the triple colocation (TC) method has been
proposed by Stoffelen (1998). The TC has been used to evaluate the soil moisture
(Yilmaz and Crow 2014), LAI (Fang et al. 2012), and other products, over areas without
in situ measurements. The TC method requires three uncorrelated estimates as to rank
the different products’ uncertainties without any a priori knowledge of the true value of
interest or input variables.
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In this study, we evaluated and compared the performance of LE estimates over
Southern Hemisphere Forest ecosystem with (1) in situ and (2) without ground-based
measurements. We used three RS, one LSM, and one reanalysis LE products. We tested
the hypothesis that LE products offer a better performance over areas with available EC
datasets than over sites without in situ flux measurements. Our objectives were: (1) to
estimate uncertainties of four LE products over contrasting areas using the TC model,
and (2) to compare the performance of the different LE models over EC forest sites using
in situ measurements and the TC method at ecosystems with EC observations.

2. Methodology

2.1. Study area

We divided the forest areas in two types: (1) areas with and (2) without ground LE
measurements. We analysed four EC forests ecosystems (Savannas) and one forest site
without in situ measurements (Dry Forest). We selected these sites because both
Savannas and dry forests are complex ecosystems with multilayer structures. The EC
sites (1) were: Howard Spring (12.48° S, 131.15° E), Adelaide Rivers (13.09° S, 131.12° E),
Daly River (14.16° S, 131.84° E), and Dry River (15.25° S, 132.37° E) (Table 1 and Figure 1).
These EC sites are located across the North of the Australia along a rainfall gradient of
1100 km in length known as the North Australian Tropical Transect (NATT) (Koch et al.
1995). The vegetation from north to south is dominated by Eucalyptus woodlands,
tropical Eucalyptus woodlands, and Eucalyptus open forests. The EC observations obtained
from these sites included half-hour measurements of LE and meteorological variables.
The data were assessed for quality and gap-filled using techniques described by
Restrepo-Coupe et al. (2015).

We selected a deciduous dry forest located in the Dry Chaco region (DCF) without EC
(2), the semiarid and arid Chaco region because: (1) its homogeneity, (2) the availability
of in situ meteorological measurements (e.g. precipitation and temperature), and (3)
access to passive microwave signatures characterized by low spatial resolution and LE
fluxes from the correspondent COM model. The selected area is part of the extensive
‘Gran Chaco Forest’ dry forest, one of the largest remaining tracts of Savannas in the
world and the second largest forested ecosystem outside the Amazon in South America
(Gasparri and Baldi 2013). The DCF covers an area of 176,000 km2 and includes a
significant fraction of the largest continuum of woodlands in Argentina, locally called
‘El Impenetrable’. The vegetation is dominated by dry forest trees and shrubs; scatter
natural grasslands occur in areas with sandy soils and frequent fires and recently
deforested plots are now used for soybean cultivation (Gasparri and Grau 2009).

Table 1. Description of eddy covariance flux tower forest locations used in this study. Sites are
described by their canopy height (h), measurement height (z), years of available eddy covariance
data (Years), latitude (Lat), longitude (Lon).
Code Name Lat (°) Lon (°) h (m) z (m) Years Reference

AU-Hsp Howard Springs 12.48 131.15 18.9 23 2001–11 Hutley et al. (2011)
AU-Ade Adelaire Rivers 13.09 131.12 12.5 15 2007–09 Sea et al. (2011)
AU-DaS Daly River 14.16 131.84 16.4 23 2007–11 Hutley et al. (2011)
AU-Dry Dry River 15.26 132.37 12.3 15 2010–11 Sea et al. (2011)
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2.2. Latent heat flux

In this study, we took the ET (and its energy equivalent, LE) product of three distinctly
conceptual models (RS, LSM, and reanalysis, Table 2). Two of the RS-derived LE calcula-
tions are based on the Penman-Monteith equation, the regional COM model (Barraza
et al. 2017), and the global MOD16A2 product (Mu et al. 2007); however, these two
models differ in their inputs (satellite-derived datasets) and in the method used to
estimate vegetation contribution to ET (represented by the surface conductance).
Opposite to the two RS models, the BESS product (Jiang and Ryu 2016) couples
algorithms that compute atmospheric radiative transfer, photosynthesis, and leaf and
soil energy balances by integrating a range of data streams in MODIS atmospheric and
land product with ancillary information. The GLDAS/NOAH (LSM model) is a global, high-
resolution, offline (uncoupled to the atmosphere) terrestrial modelling system incorpor-
ating ground and satellite observations in order to provide optimal simulations of global
land surface states and fluxes in near-real time (Rodell et al. 2004). Finally, the MERRA
(Reichle Rolf et al. 2011), a reanalysis dataset, is produced by data assimilation techni-
ques combining observations and modelling results. All the products were resampled to
a spatial resolution of 25 km with a temporal resolution of 8 days that extended a period
from 2002 to 2010.

2.2.1. The Combined Optical-Microwave product
The COM product (Barraza et al. 2015; Barraza et al. 2017) estimates latent heat flux (LE,
W m−2, the energy equivalent of ET) using the PM equation driven by satellite-derived
global meteorological data and an estimate of surface conductance (Gs) derived from a
multi-sensor (COM) model that uses microwave (MI) and optical (VI) satellite data. The
model assumes the 8 day microwave indices (MIs) are sensitive to canopy water content
and related to surface conductance (Gs), while optical vegetation indices (VIs) are
sensitive to leaf chlorophyll concentration and related to Gs. The COM product is
generated at a spatial resolution of 25 km and a timestep of 8 days.

2.2.2. MODIS LE product (MOD16A2)
The official MODIS LE product (MOD16A2) is based on the PM equation and uses daily
meteorological reanalysis data (air temperature, and vapour pressure deficit) and 8 day
remotely sensed vegetation structure dynamics (MOD15 LAI product) to estimate Gs and
other key environmental drivers (Mu, Zhao, and Running 2011; Mu et al. 2007).

Table 2. Description of the latent heat flux (LE) product used in this study. Where PM is Penman-
Monteith.

Product
Land
use

Spatial
resolution

Temporal
resolution Type Reference

COM Regional 25 km 8 days PM based Barraza et al. (2017)
MOD16A2 Global 500 m 8 days PM based Mu et al. (2007)
BESS Global 1 km 8 days Concise process-based

model
Jiang and Ryu (2016)

GLDAS/NOAH Global 25 km 3 h Numerical product Marshall et al. (2013)
MERRA/GMA Global 25 km 3 h Numerical product Reichle Rolf et al.

(2011)
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2.2.3. Breathing Earth System Simulator
The BESS is a concise process-based model used to estimate carbon and water fluxes
at global scale. The BESS products use MODIS Collection 6 atmosphere products
(MOD(Y)D04_L2, MOD(Y)D05_L2, MOD(Y)D06_L2, MOD(Y)D07_L2), and Collection 5
land products (MOD(Y)D11_L2, MCD12Q1, MCD15A2, MCD43B2, MCD43B3), other
satellite datasets (e.g. Polarization and Directionality of the Earth’s Reflectances,
POLDER 3 as in Chen, Menges, and Leblanc 2005), four variables from reanalysis
datasets (e.g. Surface Fluxes from NCDEP/NCAR Reanalysis 1 data (Kalnay et al.
1996), and three ancillary datasets as input data (e.g. the Köppen-Geiger global
climate classification map (Kottek et al. 2006)). Refer to Jiang and Ryu (2016) for a
comprehensive method description.

2.2.4. Global Land Data Assimilation System (GLDAS/NOAH)model and reanalysis data
We retrieved the LE product derived from the Global Land Data Assimilation System
(GLDAS/NOAH) LSM forced offline (Marshall et al. 2013) and the Modern Era
Retrospective-analysis for Research and Applications (MERRA) reanalysis data from
coupled LSMs (Schubert, Rood, and Pfaendtner 1993). The GLDAS/NOAH and MERRA
product has a 3 h temporal resolution (Rodell et al. 2004).

MERRA (Rienecker et al. 2011), maintained by NASA Global Modelling and
Assimilation Office, is the second-generation reanalysis data set, which uses the
Goddard Earth Observing System Data Assimilation System-Version 5 (GEOS-5). The
GEOS-5 includes GEOS-5 atmospheric circulation model and the grid point statistical
interpolation. MERRA implements a procedure called incremental analysis updates
(Bloom et al. 1996) to slowly converge modelled calculations towards the observations.
A key feature of this global reanalysis is that it takes advantage of a variety of recent
satellite observations to improve the estimates of earth’s energy and water cycles. The
MERRA spans the entire satellite E, from 1979 to the present. Most of the MERRA outputs
are archived hourly at its native spatial grid resolution of 2/3° × 1/2°.

2.3. Seasonal analysis

Key to understand the vegetation contribution (transpiration) to ET is to relate fluxes to
vegetation biophysical parameters. At the DCF we analysed the seasonal cycle of the mean
monthly ET as a function of mean monthly precipitation, mean monthly temperature, and
LAI. Furthermore, we simulated the monthly effect of surface conductance (Gs) on ET using
the PM equation. The Gs is in itself a function of vegetation and environmental variables,
including Ta, VPD, soil and leaf water potential, and photosynthetically active radiation; it
plays an active role in limiting ET (Allen et al. 1998; Monteith 1985). The objective of this
simulation was to understand the possible range of Gs values necessary to obtain themodel
estimated LE values. For the PM algorithmweused global meteorological data as input from
GLDAS/NOAH products with a 3-h temporal resolution (Rodell et al. 2004): air temperature,
air pressure, and wind speed. Relative humidity, and roughness lengths for momentum and
heat were obtained from the 0.5° × 0.6° (MERRA- GMAO) product (Modern-Era Retrospective
Analysis for Research and Applications) (http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl)
(Schubert, Rood, and Pfaendtner 1993). Meteorological variables were resampled to mean
monthly values.
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2.4. Triple collocation

We used the TC technique developed by Stoffelen (1998) as a tool to estimate the root
mean square error (RMSE) of the LE anomalies generated by GLDAS/NOAH (X), COM (Y),
and MOD16A2 (Z). The temporal LE anomalies were defined as the deviations of the
original time series from their seasonal climatology:

LEanomaly ¼ LEmonth � LEmean;month
� �

=LEstd (1)

where LEanomaly is the latent heat flux anomaly (LE), LEmonth is the monthly LE value,
LEmean, month is the mean monthly LE value of the time series, and LEstd is the standard
deviation of LE.

Given these three anomalies dataset, TC is based on selecting a single dataset (X) and
rescaling the other two (Y and Z) to this reference via the derivation of specific rescaling
factors, as to eliminate systematic differences in their variability. Each observation in
these three data sets differs from the hypothetical truth LE anomalies (t) based on a
linear model as

i ¼ βi t þ εið Þ (2)

where βi and εi for i = x, y, z are the TC calibration constants and errors corresponding to
GLDAS/NOAH, COM, and MODIS product (MOD16A2), respectively. The following
assumptions are required for the TC: (1) zero correlation between errors, which are
uncorrelated with each other and with the truth (t) and (2) zero error cross-correlation.
Then, we set βx equal to one and estimate the remaining calibration constants via:

β̂Y ¼ Y Z
X Z

(3)

β̂Z ¼ Y Z
X Y

(4)

where <> indicates temporal averaging, β̂Y refers to the rescaling factor of product Y

with respect to X, β̂z refers to the rescaling factor of product Z with respect to X. The
variance of the residual errors can be estimated by

σ2X ¼ X � YbβY
 !

X � ZbβZ
 !

(5)

σ2Y ¼ YbβY � X

 !
YbβY � ZbβZ

 !
(6)

σ2Z ¼ ZbβZ � X

 !
ZbβZ � YbβY

 !
(7)

Where <> indicates temporal averaging, σ2X , σ
2
Y , and σ2Z are the square-root of the

estimated error variances of X, Y, and Z dataset, respectively.
We defined the squareroot of the estimated error variances RMSE as the TC estimates.

Since these error variances are anomaly based, the estimates obtained were not
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sensitive to the absolute biases of the original time series. However, these error var-
iances are sensitive to the ability of the products to capture individual extreme events
(e.g. wet/dry). Since the GLDAS/NOAH was taken as the reference data set, all estimates
are given in GLDAS/NOAH climatology. The data chosen as the reference here was the
GLDAS LE, since we expect that this product provide benchmark water flux information
for the area. To meet the requirement of uncorrelated errors, the products need to be
mutually independent (GLDAS/NOAH and the two RS products). However, we acknowl-
edge the possibility that the errors in the different data sets can be cross-correlated, as
the used products use the same ancillary data sets, or the similar (imperfect) physics in
the RS retrieval algorithms/LSM. We selected this three datasets as the COM is based on
passive microwave and optical RS information, the MODIS LE product is solely driven by
optical RS data (MOD16A2 and BESS), and the LSM (GLDAS/NOAH) is a more complex
model. We applied the TC model to estimate uncertainties over the NATT and DCF sites.
We investigated the spatial variability in RMSEs and quantified it using the fractional
RMSE (fRMSE) to enhance the differences due to the common signal of the reference
standard deviation, where:

fRMSEX ¼ RMSEX Xð Þ
σX Xð Þ

(8)

The fRMSE was obtained by presenting the RMSE for data set X (RMSEX) using itself as
the reference (RMSEX(X)), and then dividing this by the standard deviation of X (σX Xð Þ).
Across the NATT sites we also calculated fRMSE using LE anomalies from EC measure-
ments and each product.

3. Results

3.1. Comparison of RS (COM, MOD16A2, BESS), LSM, and MERRE LE products

At the DCF there was not a significant spatial correlation of the average annual LE values
within MODIS and COM product (Figure 2). However, GLDAS/NOAH, MERRA, BESS, and
MOD16A2 products were not able to capture the spatial heterogeneity expected in the
area due to the rainfall and ecosystem gradient. The MOD16A2 and BESS products
presented similar spatial pattern (Figure 2).

The COM spatial pattern followed the precipitation and LAI gradient; we found
that these variables explained 40 and 30% of the LE model spatial variation
(p < 0.01), respectively. At the NATT area, the regional observed LE pattern was
followed by the COM and MOD16A2 model (Figures 2 and 3). Similarly, the BESS
product presented a gradient from north to south but showing lower mean LE
values than EC observations. However, LSM (GLDAS/NOAH) and reanalysis dataset
(MERRA) did not show the expected gradient. The regional distribution of mean
annual LE COM algorithm showed a similar spatial pattern to that of the MOD16A2
(coefficient of determination, R2 = 0.72, and p-value, p < 0.01) (Figure 4b). The LE
BESS product and the GLDAS/NOAH underestimated LE values. Furthermore,
GLDAS/NOAH showed a higher number of pixels with LE values lower than
40 W m−2 than the BESS product. Finally, LE MERRA product overestimated LE
COM values.
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3.2. Seasonal analysis at the dry chaco forest

We observed that all LE products followed the precipitation, LAI, and temperature
annual seasonal cycle at the DCF (Figure 5). In general, ET estimates from these products
peak in December/March when high surface net radiation drives the seasonal maximum
in potential ET. We observed significant differences between the different models
monthly LE (p < 0.001, degrees of freedom, df = 3, Kruskal Wallis).

The MOD16A2 and MERRA displayed large deviations away from COM, BESS, and
GLDAS. The effect of Gs on ET was simulated using the PM equation, meteorological data
and high, medium, and low values of Gs (Figure 6). According to simulations, to obtain
values as low as the ones presented by the MOD16A2 and BESS products (Figure 6) at
DCF the Gs should be less than 1 mm s−1. Furthermore, we evaluated the maximum
surface conductance values for DCF estimated using the COM approach and found a
range of values between 0–13 mm s−1, with the peak at 8 mm s−1.

3.3. Certainties in LE products using TC

We estimated the error between ‘true’ LE and satellite-derived LE anomalies via the TC
method. The MOD16A2 product presented more spatially homogeneous results across
Australia, while GLDAS presented a gradient of error across the NATT area (Figure 7a).
Larger errors in GLDAS seem to be found in areas of dense vegetation cover Tropical
Eucalypt Woodlands (standard error, SE = 8.07%) and Eucalypt woodlands (SE = 20.07%),

Figure 1. Regression analysis between spatial average annual LE (W m−2) estimated using the
combined optical-microwave model (COM) to MOD16A2 BESS, GLDAS/NOAH, and MERRA products
at the Dry Chaco forest (DCF). Colorbars represent pixel density.
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(Hutley et al. 2011), while COM and MOD16A2 products errors were mainly located in
coastal areas.

The spatial pattern of the TC results was commensurable with fRMSE calculated using
EC observations, as shown in Figure 7b. Compared to the fRMSE values obtained by the
TC method at NATT, we report the highest uncertainties of LE products at the
Argentinean Dry Chaco forest (Figure 8). At DCF we observed: (1) the lowest fRMSE for
COM and GLDAS LE products, (2) the highest fRMSE was obtained for the MOD16A2
product and, (3) the MOD16A2 product presented more spatially homogeneous results.

4. Discussion and conclusions

In this study, we evaluated the hypothesis that the LE products offer a better perfor-
mance over areas with EC networks than over sites without in situ flux measurements
over Southern Hemisphere forest ecosystems. The evaluated products included a LSM,
reanalysis, and satellite-derived LE. In general, in situ validation has been widely used to
analyse the uncertainties of model outputs and to ensure the accuracy of LE product
(Barraza et al. 2017; Mu et al. 2007). In situ observations provide evidence for local
validation; however, there are limitations related to this methodology: (1) error related to
spatial extrapolation and (2) ground truth activities are restricted to specific areas, thus

Figure 2. Regression analysis between spatial average annual LE (W m−2) estimated using the
combined optical-microwave model (COM) to MOD16A2 BESS, GLDAS/NOAH, and MERRA products
at the North Australian tropical transect (NATT). Colorbars represent pixel density.
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misses a high percentage of areas where the products are available. To address these
limitations we used the TC methodology, because this model provides estimations of
spatial uncertainties without the needed of in situ flux measurements.

Results show that TC is a robust spatial error estimation of LE at EC sites. The
analysis reveals clear spatial patterns over NATT. Furthermore, the spatial pattern of
fRMSE was commensurable with the one obtained using EC measurement. In general
terms, at this area larger errors in GLDAS/NOAH seemed to be restricted to areas of
large biomass, while MOD16A2 and COM errors are mainly located in coastal areas.
The last error was probably due to geolocation errors associated with satellite data
generation strategy. Notice that bias errors were not detected by a TC analyses, the
reason why the GLDAS/NOAH LE showed the lowest fRMSE. However, when we
compared EC observations with GLDAS/NOAH estimations we observed a mean
bias for GLDAS/NOAH was –30 W m−2 for the EC forest sites (see Supplemental
material, Table S1). In our previous study (Barraza et al. 2017) we found that the
COM and MOD16A2 products presented at the north of the NATT area with a mean
RMSE lower than 30 W m−2, with similar spatial patter over these EC sites. We also
calculated uncertainties using BESS product (result not shown), as expected based on
previous in situ validation (see Supplemental material, Table S1) analysis the fRMSE

Figure 3. Latitudinal gradient of LE (W m−2) along the NATT from 12° S to 15.5° S. In situ eddy
covariance method (EC) measurements of LE (W m−2) (dashed blue line), the combined optical-
microwave model (COM) (orange dashed line), MOD16A2 (yellow continuous line), GLDAS/NOAH
(green line), BESS (purple dashed line), and MERRA (blue line) models.
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estimated by TC was close to one. Similarly, Whitley et al. (2016) compared ET
estimates derived from six process-based models at the NATT area, and showed
that BESS was able to successfully capture the seasonal ET dynamics in this area.
Although, we used the most recent version of BESS product with updated MODIS LAI
product (version 6), the model underestimated LE when compared to EC
measurements.

Moreover, the TC model provides evidence of the uncertainties over the DCF where
no LE measurement was available. Based on the TC result at the DCF, the COM and
GLDAS/NOAH LE products presented the best performance (lower fRMSE than MODIS

Figure 4. Land cover map of the study areas (a) Dry Chaco forest region (DCF), Argentina, and (b)
North Australian Tropical Transect (NATT), Australia.

Figure 5. Time series of average monthly evaportranspiration (ET; mm) using the combined optical-
microwave model (COM), BESS, MOD16A2, GLDAS/NOAH, and MERRA products, monthly precipita-
tion average for the years 2002 – 2010 (mm) (blue bars), satellite-derived (MODIS) leaf area index
(LAI) and atmospheric temperature (in situ measurement) at the Dry Chaco forest (DCF).

INTERNATIONAL JOURNAL OF REMOTE SENSING 11



product). Compared to NATT results, the TC shows that MOD16A2 product presented
the highest fRMSE at DCF. Lowest errors were observed for the regional RS product
(COM) in comparison to MOD16A2 LE. Furthermore, the seasonal analysis showed that
the COM, GLDAS/NOAH, and MERRA models show higher mean monthly LE values for

Figure 6. Montly evapotranspiration (ET; mm) simulated time series as a function of canopy
conductance (Gs; mm s−1) using the Penman-Monteith equation and meteorological data at the
Dry Chaco forest (DCF). Color scale, from blue to white, represent Gs values from <4 to >20 mm s−1

with the number above the contour line.

Figure 7. Maps of fRMSE estimated from (a) triple collocation (upper row) and from (b) eddy
covariance measurements (EC) (lower row); for GLDAS/NOAH, combined optical-microwave model
(COM) and MODIS (MOD16A2) product at the North Australian tropical transect (NATT). From North
to South the EC sites are AU-Hsp. AU-Ade, AU-DaS, and AU-Dry.
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this forest, at times ET estimations were higher than precipitation. Several studies
provide evidence that the dominated vegetation over Chaco Forest (Schinopsis lorentzii,
Aspidosperma quebracho-blanco, Prosopis alba, Prosopis nigra) extract water and nutri-
ents from much greater soil depths (Jobbágy et al. 2008). MODIS and BESS ET product
presented monthly average ET values lower than mean monthly precipitation. However,
several studies show that MODIS ET product underestimated ET over areas with water-
limited ecosystems (Ramoelo et al. 2014). The overestimation of MODIS LAI absolute
values and seasonal amplitude will drive errors in the MODIS ET product. A simulation
analysis based on the PM equation showed that to estimate ET values as lowest as the
ones obtained by MOD16A2 and BESS product, the mean surface conductance should
be 1 mm s−1. At regional scale, the maximum Gs estimated using the COM model values
was between 0–13 mm s−1 with the peak at 8 mm s−1 which were similar to the ones
reported by the literature for Deciduous Forest and Savanna (Kelliher et al. 1995; Barraza
et al. 2015; Rodrigues et al. 2014).

Despite differences between RS, LSM, and reanalysis LE products (e.g. algorithms and
inputs, among others), TC results suggested that the LE products performed better over
areas within EC networks (FLUXNET, Ameriflux, OzFlux). Thus, GLDAS is a data-driven
model that used less than ideal observational data to be assimilated in the model, most
likely lowering the performance over areas like DCF. The LSM used the MODIS Land Cover
product which incorrectly classified DCF as both Deciduous Broadleaf Forest and as
grassland. Furthermore, MOD16 and BESSmodel are driven by other MODIS data products
(LAI, Land Cover, and Albedo). The global MODIS LAI and Land Cover products have not
been validated in the DCF. Over this area, the backup algorithm to estimate LAI is based on
LAI vs. NDVI relationship, introducing error in the LE algorithm. At the NATT area, the
MODIS LAI product gave reasonable estimates for LAI for most cover and land use types,
based on previous analysis over Australia (Hill et al. 2006). However, Hill et al. (2006) also
identified misclassifications of the MODIS Land Cover product over Australia. By contrast,
the COM model does not use MODIS LAI nor Land Cover products. The COM is a regional
model driven by meteorological forcing data (GMAO- MERRA reanalysis dataset and
GLDAS/NOAH) and optical and MIs. Thus as, COM uses a semi-empirical model based on
Gs- RS index regressions that require local validation. Finally, MERRA reanalysis data
resulted in the lowest performance over the two study sites (NATT and DCF). This model
assimilates numerous satellite data streams (precipitation, wind speed, radiosonde, sta-
tion, aircraft, ship, and others) using the GEOS-5 data assimilation system (Reichle Rolf
et al. 2011). The quality of the input dataset is especially important to the reanalysis land

Figure 8. Maps of fRMSE estimated from triple collocation for GLDAS/NOAH, combined optical-
microwave model (COM), and MODIS (MOD16A2) product at the Dry Chaco forest (DCF).
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surface scheme in order to derive accurate water and energy fluxes involving a land data
assimilation, which will profoundly affect the resulting LE estimates.

The existing biases between the LE estimates over areas without ground-based
measurement arise from the following major causes: (1) uncertainties in others vegeta-
tion inputs used in each model, like LAI and land cover, and (2) uncertainties in
meteorological inputs. In situ EC towers are more likely placed within homogeneous
areas in which vegetation cover, type, and structural parameters are better characterized
than adjacent areas which may be more heterogeneous and non-conforming to existing
land cover characterization schemes. This could partly explain why well-instrumented in
situ measurement sites may have resulted in better-LE estimates compared with non-
instrumented sites. Performance of the LE algorithms could be largely improved when in
situ meteorological measurements (Mu, Zhao, and Running 2011) and with a better
vegetation characterized are used; however, direct measurement of LE in the field is
expensive and difficult. Results from our inter-comparison study between available LE
models would guide future studies providing evidence about LE uncertainties over areas
with and without ground-based measurements.
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