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Proopiomelanocortin (POMC) neurons in the hypothalamus
are direct targets of the adipostatic hormone leptin and con-
tribute to energy homeostasis by integrating peripheral and
central information. The melanocortin and �-endorphin neu-
ropeptides are processed from POMC and putatively core-
leased at axon terminals. Melanocortins have been shown by
a combination of pharmacological and genetic methods to
have inhibitory effects on appetite and body weight. In con-
trast, pharmacological studies have generally indicated that
opioids stimulate food intake. Here we report that male mice
engineered to selectively lack �-endorphin, but that retained
normal melanocortin signaling, were hyperphagic and obese.

Furthermore, �-endorphin mutant and wild-type mice had
identical orexigenic responses to exogenous opioids and iden-
tical anorectic responses to the nonselective opioid antago-
nist naloxone, implicating an alternative endogenous opioid
tone to �-endorphin that physiologically stimulates feeding.
These genetic data indicate that �-endorphin is required for
normal regulation of feeding, but, in contrast to earlier
reports suggesting opposing actions of �-endorphin and
melanocortins on appetite, our results suggest a more com-
plementary interaction between the endogenously released
POMC-derived peptides in the regulation of energy
homeostasis. (Endocrinology 144: 1753–1760, 2003)

PROOPIOMELANOCORTIN (POMC) neurons in the hy-
pothalamic arcuate nucleus (Arc) contribute to energy

homeostasis by integrating peripheral and central informa-
tion related to caloric balance and metabolism (1–5). These
neurons are direct targets of the adipostatic hormone leptin,
receive afferent signals from the medullary dorsal vagal com-
plex, and project to other hypothalamic and brainstem nuclei
that control feeding and autonomic responses (1, 2, 4, 5).
POMC is processed stoichiometrically to melanocortins and
�-endorphin, and both classes of neuropeptides are puta-
tively coreleased at axon terminals (6). The role of melano-
cortins in the regulation of appetite and metabolism has been
recently defined by pharmacological and genetic methods
(7–11); however, the actions of endogenously released �-
endorphin in energy homeostasis have not been characterized.

Pharmacological studies have generally indicated that opi-
oids stimulate food intake (12, 13), opposite to the anorectic
effect of melanocortins. However, it is impossible to mimic
the actions of individual endogenous opioid pathways by
pharmacological manipulation. �-Endorphin has a relatively
high affinity for the �, �, and � subtypes of opioid receptors
(14), and exogenously applied �-endorphin can act at sites
where it is not normally released, but that are the targets of
other opioid peptide signaling pathways. Conversely, ap-
plication of subtype-selective opioid receptor antagonists
will interfere with multiple endogenous peptide signaling
pathways. For these reasons we chose to differentiate the
effects of �-endorphin on food intake from other endogenous

opioid peptides, such as enkephalin and dynorphin, by ge-
netic removal of �-endorphin.

Materials and Methods
Mice

We generated �-END�/� and �-END�/� mice either from heterozy-
gous �-END�/� mating pairs or from homozygous �-END�/� or
�-END�/� mating pairs. Mice were genotyped by PCR as described
previously (15) and were N10 congenic to the C57BL/6J strain (The
Jackson Laboratory, Bar Harbor, ME). The transgenic (Tg) rescue ex-
periments were carried out in N5 congenic C57BL/6J animals; Tg2 was
previously termed phal*, and Tg13 was previously termed pomc*27 (16,
17). The compound Mc4r�/�/�-END�/� mice were generated by mating
Mc4r�/� males (8) (N3 C57BL/6J) and �-END�/� (N10 C57BL/6J) fe-
males. Mice were housed under constant temperature in murine specific
pathogen-free animal facilities with ad libitum access to water and rodent
chow pellets (5% fat, 19% protein, and 5% fiber by weight; 3.4 g/kcal).

Experimental animals

All mice were housed in animal rooms dedicated to use by the Tg
facility and located within the Department of Comparative Medicine. All
procedures conformed to USPHS guidelines and were approved by the
institutional animal care and use committee.

Growth curves, carcass analysis and dual energy x-ray
absorptiometry (DEXA) scan

Mice were weighed weekly from weaning at 3 wk of age. At age 5
months mice were euthanized, and liver, spleen, kidney, heart, testis,
and all fat pads were removed and weighed. A portion of the inguinal
fat pads was placed in 4% paraformaldehyde, then dehydrated, em-
bedded in paraffin. Fifteen-micrometer-thick sections were stained with
hematoxylin and eosin. The percent body fat was determined by ana-
lyzing the carcass composition of mice by DEXA (PIXImus mouse den-
sitometer, Lunar Corp., Madison, WI).

Abbreviations: Arc, Arcuate nucleus; CNS, central nervous system;
DEXA, dual energy x-ray absorptiometry; icv, intracerebroventricular;
NPY, neuropeptide Y; POMC, proopiomelanocortin; Tg, transgenic.
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Food intake measurements

Mice were housed individually at 5 wk of age. They had ad libitum
access to water and food pellets (5% fat, 19% protein, and 5% fiber; 3.4
g/kcal) provided in wire cage tops. Food was weighed daily, and av-
erage daily intake was calculated from consecutive measurements over
7 d after a 10- to 14-d acclimatization period to individual housing.

Oxygen consumption measurements

Oxygen consumption was determined for multiple animals simul-
taneously by indirect calorimetry using an Oxymax system (Columbus
Instruments, Columbus, OH) as previously described (10).

Plasma insulin, glucose, leptin, and T4 measurements

Mice were killed after a 16- to 20-h fast (fasted) or after ad libitum
access to food (fed), and trunk blood was collected. T4, insulin, and leptin
levels were determined by RIA (Linco Research, Inc., St. Charles, MO)
from sera. Glucose levels were measured from blood using a Basic One
Touch glucometer (Lifescan, Johnson & Johnson, Milpitas, CA). All
blood samples were obtained in the fed state from 5-month-old mice
unless otherwise stated.

Glucose tolerance test

Mice were fasted for 16 h and then given an ip injection of 2 g/kg
glucose. Glucose levels were determined from tail bleeds at 0, 15, 30, 45,
60, 90, 120, 150, and 180 min.

Insulin sensitivity test

Mice were fasted for 16 h and then given an ip injection of 0.75 U/kg
insulin. Glucose levels were determined from tail bleeds at 0, 30, 60, and
90 min.

Immunocytochemistry

Mice were perfused with 4% paraformaldehyde, and hypothalamic
(24-�m thick) and pituitary (12-�m thick) sections were prepared for
immunostaining as described previously. A rabbit polyclonal antibody
to �-endorphin (18) was diluted 1:5000 in 1 mg/ml BSA (fraction V) and
0.3% Triton X-100 in PBS for incubation with free-floating hypothalamic
sections. The �-endorphin antibody was used in the same buffer at
1:1000 for staining slide-mounted pituitary sections. After washing the
sections and incubating with biotinylated goat antirabbit IgG (Vector
Laboratories, Inc., Burlingame, CA), the reaction product was visualized
with an ABC Elite kit (Vector Laboratories, Inc.) and diaminobenzidine,
followed by a methyl green counterstain.

�-Endorphin RIA

�-Endorphin levels were measured in both the hypothalamus and
pituitary using a rat �-endorphin RIA kit (Phoenix Pharmaceuticals, Inc.,
Belmont, CA). The tissue was prepared as described in the manufac-
turer’s instructions.

Intracerebroventricular (icv) injections

A 27-gauge stainless steel cannula was surgically placed into a lateral
ventricle of anesthetized mice as described previously (9). The mice were
allowed to recover for at least 1 wk. Neuropeptide Y (NPY; 1.5 �g;
Peninsula Laboratories, Inc., Belmont, CA), 0.5 �g �-END (gift from Dr.
A. Parlow), or saline in a 1.5-�l volume was injected through the cannula.
Naloxone (10 mg/kg) or 0.9% saline vehicle was given ip 15 min before
the icv injection. Food intake was measured each hour for 3 h after the
injection. This short time period within the light phase of the animals’
diurnal cycle was inadequate to reveal the basal difference between
genotypes that was primarily evident during nocturnal feeding bouts.

Naloxone effects on food intake

Mice were fasted for 24 h and then given an ip injection of 10 mg/kg
naloxone or 0.9% saline. After 15 min, food was returned, and food
intake was measured for 1 h.

Statistics

Statistical analyses were performed using PRISM (GraphPad Soft-
ware, Inc., San Diego, CA) or StatView (SAS Institute, Inc., Cary, NC).
Growth curves, insulin sensitivity, and glucose tolerance tests were
analyzed using a two-factor ANOVA with time as the repeated measure.
All other data were analyzed using t test or ANOVA, followed by
Bonferroni/Dunn post hoc analysis for paired group comparisons.

Results
Male mice lacking �-endorphin (�-END�/�) are
significantly heavier and have greater adiposity than
wild-type (�-END�/�) male mice

To examine the effect of �-endorphin deficiency on weight
homeostasis we weighed both �-END�/� and �-END�/�

mice over time. These growth curves demonstrated that male
�-END�/� mice weighed significantly more than male
�-END�/� mice, starting at 4 wk of age and continuing into
adulthood [two-way repeated measures ANOVA: significant
main effect of genotype (P � 0.001), time (P � 0.0001), and
genotype � time interaction (P � 0.0001); df of genotype �
1, time � 9, genotype � time � 9; F values: genotype � 16.6,
time � 1213, genotype � time � 4.5; n � 15–20; Fig. 1A]. In
contrast, the weights of female �-END�/� mice differed only
transiently from those of female �-END�/� mice between
4–8 wk of age (P � 0.05, by t test at each time point; n �
10–11; Fig. 1A). Body length and the weights of various
organs, such as liver, spleen, kidney, heart, and testis, were
not changed in either sex of �-END�/� mice (data not shown).
However, both the inguinal/gonadal and retroperitoneal/
perirenal white fat stores of male �-END�/� mice were 2-fold
heavier than those of male �-END�/� mice (P � 0.01, by t test;
n � 8), whereas intrascapular brown fat was not altered (Fig.
1B). Furthermore, male �-END�/� mice had 50% greater total
body fat as measured by DEXA scan (P � 0.05, by t test; n �
8; Fig. 1C), and histological examination suggested hyper-
trophy of the adipocytes (Fig. 1D). The fat stores of female
�-END�/� mice were not increased (data not shown). An
identical sexually dimorphic phenotype with equivalent or
greater male pattern obesity was observed in �-END�/� mice
crossed onto either a 129S6/SV (6 months old: �-END�/�

33.9 � 2.1 g, n � 8; �-END�/�, 49.6 � 1.9 g, n � 13) or outbred
Swiss albino background. These data indicate that the de-
velopment of obesity in �-endorphin-deficient mice is inde-
pendent of the known genetic predisposition of C57BL/6
mice to gain excessive weight and adipose mass.

Male �-END�/� mice have increased food intake, but no
overt change in basal metabolic rate

To determine the underlying mechanism for the increased
weight and adiposity of the �-END�/� mice, we examined
both their food intake and their basal metabolic rate. The
average daily food intake of 7- to 8-wk-old male �-END�/�

mice was significantly increased compared with that of
�-END�/� males (P � 0.05, by t test; n � 8; Fig. 1E). To
determine whether the increased feeding was due to atten-
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uated �MSH biosynthesis or signaling, we generated com-
pound homozygote mice lacking both �-endorphin and the
MC4 receptor, the primary receptor mediating the anorec-
tic effects of �MSH. The average daily food intake of �-
END�/�/Mc4r�/� mice was significantly higher than that of
either �-END�/�/Mc4r�/� or �-END�/�/Mc4r�/� mice (P �
0.05, by t test; n � 6–8; Fig. 1E). �-END�/�/Mc4r�/� mice
were also significantly heavier than �-END�/�/Mc4r�/� mice
between 4 and 9 wk of age [two way repeated measures
ANOVA: significant main effect of genotype (P � 0.05) and
time (P � 0.005); df of genotype � 1, time � 3; F values:
genotype � 6.78, time � 109.4; n � 7]. The weights of the mice
(grams) were: at 4 wk: �-END�/�/Mc4r�/�, 17.6 � 1.3;
�-END�/�/Mc4r�/�, 21.5 � 0.7; 7 wk: �-END�/�/Mc4r�/�,
27.7 � 1.1; �-END�/�/Mc4r�/�, 31.9 � 0.9; and 9 wk: �-END�/�/
Mc4r�/�, 36.5 � 1.0; �-END�/�/Mc4r�/�, 39.0 � 1.0. The dif-
ference in weights was not significant after 10 wk of age, prob-
ably due to the large metabolic defect seen in the Mc4r�/� mice
that overshadowed the additive genotype effect on food intake.

In contrast to the augmented food intake, there were no
significant differences between �-END�/� and �-END�/�

mice in their basal metabolic rate, as measured by oxygen
consumption or respiratory quotient (Fig. 1F), or serum T4
levels (�-END�/�, 3.9 � 0.1 ng/ml, n � 8; �-END�/�, 3.5 �
0.4 ng/ml, n � 7). These data are consistent with our pre-
vious findings that the basal core temperature and activity
levels of the �-END�/� and �-END�/� male mice were also
not significantly different (15, 19).

�-END�/� mice are hyperinsulinemic and hyperleptinemic
and have altered glucose homeostasis

Previous studies have suggested that �-endorphin plays a
role in the regulation of insulin and glucose homeostasis (20,
21). We therefore examined insulin and glucose homeostasis
in �-END�/� mice. We found that 5-month-old �-END�/�

male mice had elevated basal insulin levels [Fig. 2A; one-way
ANOVA F(3,17) � 7.17; P � 0.05 for �-END�/� fed mice

FIG. 1. Weight, fat mass, food intake, and oxygen consumption of �-END�/� and �-END�/� mice. A, Growth curves of sibling male and female
�-END�/� and �-END�/� mice reared by �-END�/� parents (n � 11–24) (male mice, P � 0.001 for genotype, by repeated measure ANOVA).
B, Weights of inguinal/gonadal (IG), retroperitoneal/perirenal (PR), and intrascapular brown (BR) fat pads in male �-END�/� and �-END�/�

mice (n � 8; *, P � 0.01, by t test). C, Body fat percentage from DEXA scan analysis of male �-END�/� and �-END�/� mice (n � 8; *, P �
0.05, by t test). D, Morphology of inguinal fat from male �-END�/� and �-END�/� mice. Scale bar, 50 �m. E, Average daily food intake of
�-END�/�/Mc4r�/�, �-END�/�/Mc4r�/�, �-END�/�/Mc4r�/�, and �-END�/�/Mc4r�/� male mice (n � 6–8; *, P � 0.05 compared with
wild-type mice; #, P � 0.05 compared with all other groups, by t test). F, Oxygen consumption in �-END�/� and �-END�/� mice. All data are
expressed as the mean � SEM.

Appleyard et al. • �-Endorphin in Food Intake and Energy Balance Endocrinology, May 2003, 144(5):1753–1760 1755



compared with �-END�/� fasted mice; P � 0.05 for
�-END�/� fed mice compared with �-END�/� fed mice and
�-END�/� fasted mice) and exhibited an attenuated hypo-
glycemic response to insulin administration [Fig. 2B; two
way repeated measures ANOVA: significant main effect of
genotype (P � 0.01) and time (P � 0.001); df of genotype �
1, time � 2, genotype � time � 2; F values: genotype � 8.8;
time � 5.1, genotype � time � 1.0; n � 8]. Furthermore, male
�-END�/� mice were not able to clear glucose as efficiently
as �-END�/� mice in a glucose tolerance test (Fig. 2C; two-
way repeated measures ANOVA: significant main effect of
genotype (P � 0.005), time (P � 0.0001), and genotype � time
interaction (P � 0.001); df of genotype � 1, time � 12, ge-
notype � time � 12; F values: genotype � 13.7, time � 141.0,
and genotype � time F � 3.4; n � 6–7], although basal fasted
and postprandial glucose levels were normal. In contrast, the
nonobese female �-END�/� mice had normal glucose toler-
ance tests (Fig. 2D). However, nonobese male �-END�/�

mice at 4 wk of age had normal glucose and insulin levels
(weight: �-END�/�, 19.4 � 0.5 g, n � 6; �-END�/�, 19.6 �
0.4 g, n � 5; glucose: �-END�/�, 143 � 4.9 mg/ml, n � 6;
�-END�/�, 141 � 11.8 mg/ml, n � 5; insulin: �-END�/�,
0.7 � 0.1 ng/ml, n � 6; �-END�/�, 0.8 � 0.1 ng/ml, n � 5).
These results suggest that the modest hyperinsulinemia in
adult males is probably secondary to the increased fat mass
rather than due to a direct effect of the loss of �-endorphin.
Examination of the levels of the adipostatic hormone leptin
showed that adult male �-END�/� mice were also hyper-
leptinemic (�-END�/�, 3.9 � 0.7 ng/ml, n � 9; �-END�/�,
8.3 � 0.9 ng/ml, n � 10; P � 0.01, by t test) consistent with
their increased adiposity.

Tissue-specific Tg rescue of �-endorphin in �-END�/� mice

To determine which site of �-endorphin release was re-
sponsible for the obesity phenotype in �-END�/� mice, we
used a tissue-specific Tg rescue approach (Fig. 3A). Tg2 con-
tains 2 kb of the mouse Pomc promoter previously shown to
be sufficient to express the gene in the pituitary, but not the
central nervous system (CNS; Refs. 16 and 17). In contrast,
Tg13 has all the regulatory elements of the mouse Pomc gene
required for Tg expression in the pituitary and CNS (3, 16).
Both constructs have an in-frame oligonucleotide insertion in
exon 3 that disrupts the biological activity of �MSH and
ACTH (Fig. 3A). The two strains of Tg mice were crossed to
�-END�/� mice, and progeny were examined by immuno-
histochemistry. Tg2 rescued �-endorphin expression only in
pituitary anterior lobe corticotrophs and intermediate lobe
melanotrophs, whereas Tg13 restored accurate cell-specific
�-endorphin expression in both lobes of the pituitary and Arc
neurons (Fig. 3B). The �-endorphin content in the pituitary
(combined anterior and neurointermediate lobes) was re-
stored to wild-type levels by both transgenes (�-END�/�,
257 � 19 ng/gland, n � 5; �-END�/�, �0.16 ng/gland, n �
6; Tg2/�-END�/�, 197 � 8 ng/gland, n � 5; Tg13/�-END�/�,
276 � 42 ng/gland, n � 4). The levels of �-endorphin in
�-END�/�, Tg2/�-END�/�, and Tg13/�-END�/� mice were
not statistically different from each other. Tg13 also restored
quantitatively normal levels of hypothalamic �-endorphin in
all rescued mice, whereas �-endorphin remained undetect-

FIG. 2. Insulin and glucose homeostasis in �-END�/� and
�-END�/� mice. A, Insulin levels in male �-END�/� and �-END�/�

mice in the fed and fasted states (n � 5–6; *, P � 0.05 compared with
�-END�/� fasted mice; #, P � 0.05 compared with �-END�/� fed mice
and �-END�/� fasted mice, by one-way ANOVA). B, Insulin sensi-
tivity test in male �-END�/� and �-END�/� mice (n � 8; P � 0.01
for genotype, by repeated measure ANOVA). C, Glucose tolerance test
in male �-END�/� and �-END�/� mice (n � 6); P � 0.005 for geno-
type, by repeated measure ANOVA). D, Glucose tolerance test in
female �-END�/� and �-END�/� mice. All data are expressed as the
mean � SEM.
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able in four of five hypothalami examined from the Tg2
rescued mice, consistent with the immunohistochemical data
(�-END�/�, 484 � 61 pg/hypothalamus, n � 5; �-END�/�,
�160 pg/hypothalamus, n � 7; Tg2/�-END�/�, �160 pg/
hypothalamus, n � 4; Tg13/�-END�/�, 387 � 27 ng/hypo-
thalamus, n � 4). The one other Tg2/�-END�/� mouse had
levels of immunoreactive �-endorphin just above RIA sen-
sitivity, possibly due to trace contamination of the hypotha-
lamic block by a fragment of the underlying pituitary inter-
mediate lobe.

Tg rescue of �-endorphin to sites in the CNS is required for
the full rescue of the obesity phenotype

Re-expression of �-endorphin to the pituitary by Tg2 par-
tially rescued both the body weight and fat pad weights of
�-END�/� mice (Fig. 3, C–E). However, re-expression of �-
endorphin to the pituitary and CNS by Tg13 completely
normalized body weight and fat mass of the �-END�/� mice
(Fig. 3, C–E), suggesting that both central and pituitary �-
endorphin expressions contribute to energy homeostasis
[one way ANOVA: body weights (n � 6–15): F(3,38) � 22.7,

FIG. 3. Tg rescue of �-endorphin expression restores body and fat pad weights of 5-month-old male �-END�/� mice. A, Structure of Pomc
transgenes. Tg2 is a 10.2-kb genomic fragment that contains the entire transcriptional unit of the mouse Pomc gene and 2 kb of 5�- and 3�-flanking
sequences. Tg13 is a 27-kb genomic fragment that contains the entire transcriptional unit of the mouse Pomc gene and 13 kb of 5�- and 8 kb
of 3�-flanking sequences. Both constructs have an in-frame 33-bp heterologous sequence (arrow) inserted into a blunted NcoI site in exon 3 that
disrupts the coding sequence for ACTH and �MSH by the addition of 11 amino acids (CLSLSSLLSRM), but does not alter the processing or
sequence of the carboxyl-terminal �-endorphin. The boxes indicate exon sequences and the black-shaded regions indicate untranslated
sequences. B, Immunocytochemical localization of �-endorphin in the pituitary (left) and Arc (right) of �-END�/�, �-END�/�, and �-END�/�

mice expressing the Tg2 or Tg13 transgene. The arrows indicate �-endorphin-immunoreactive pituitary corticotrophs and melanotrophs and
hypothalamic neurons. IL, Intermediate lobe; III, third ventricle. Scale bars, 200 �m for pituitary sections; 50 �m for Arc sections. C, Body
weights (n � 6–15; by one-way ANOVA: *, P � 0.001 compared with both �-END�/� and �-END�/�/Tg13; # P � 0.01 compared with �-END�/�,
�-END�/�, and �-END�/�/Tg13 mice). D, Weights of inguinal/gonadal (IG) fat pads (n � 6–15; by one-way ANOVA: *, P � 0.01 compared with
both �-END�/� and �-END�/�/Tg13). E, Weights of retroperitoneal/perirenal (PR) fat pads (n � 6–15; by one-way ANOVA: *, P � 0.001
compared with both �-END�/� and �-END�/�/Tg13; #, P � 0.05 compared with �-END�/�, �-END�/�, and �-END�/�/Tg13). All data are
expressed as the mean � SEM.
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P � 0.001 for �-END�/� mice compared with �-END�/� mice,
P � 0.001 for Tg13/�-END�/� compared with �-END�/�

mice, P � 0.01 for Tg2/�-END�/� compared with �-END�/�,
�-END�/�, and Tg13/�-END�/� mice; inguinal fat pad
weights (n � 6–15): F(3,38) � 11.6, P � 0.001 for �-END�/�

mice compared with �-END�/� mice, P � 0.001 for Tg13/�-
END�/� compared with �-END�/� mice, P � 0.01 for Tg2/
�-END�/� compared with �-END�/� and Tg13/�-END�/�

mice; retroperitoneal/perirenal fat pad weights (n � 6–15):
F(3,38) � 11.9, P � 0.001 for �-END�/� mice compared with
�-END�/� mice, P � 0.01 for Tg13/�-END�/� compared
with �-END�/�, P � 0.01 for Tg2/�-END�/� mice compared
with �-END�/� and �-END�/� mice].

NPY, �-endorphin, and naloxone effects on food intake in
�-END�/� mice

We next examined whether the response of �-END�/�

mice to food intake stimulated by opioids or NPY was al-
tered. �-Endorphin injected icv stimulated an equivalent in-
crease in food intake in wild-type and �-END�/� mice (Fig.
4A). Interestingly, the orexigenic effects of NPY were slightly
increased in male �-END�/� mice (Fig. 4B), but were unal-
tered in female �-END�/� mice, consistent with their normal
weight and feeding behavior (data not shown). NPY-stim-
ulated food intake was inhibited equivalently by the nonse-
lective opioid antagonist naloxone in both genotypes (Fig.
4B). Both 10 and 1 mg/kg (data not shown) naloxone atten-
uated NPY-induced food intake. These doses were used be-
cause they have been shown previously to attenuate food
intake (22–25). Naloxone has also been shown to decrease
food intake after 24-h food deprivation (23, 26, 27). We there-
fore tested whether this refeeding was altered in �-END�/�

mice. However, naloxone inhibited feeding to the same ex-
tent in previously food-restricted �-END�/� and wild-type
mice (Fig. 4C).

Discussion

The main finding of this study was that mice lacking the
endogenous opioid peptide �-endorphin have a sexually
dimorphic obesity phenotype, present in only male mice. The
increased adiposity of �-END�/� mice appears to be due to
changes in caloric intake and not energy utilization. Further-
more, the effect of the opioid antagonist naloxone on food
intake is unchanged in �-END�/� mice, suggesting that an
alternative endogenous opioid tone physiologically stimu-
lates feeding.

Our results also suggest that the effects of �-endorphin on
food intake are independent of �MSH, which is proposed to
be coreleased with �-endorphin from POMC neuronal ter-
minals (6). �MSH is a potent anorexigenic peptide that plays
an important role in energy homeostasis through actions
primarily at the MC4 receptor (8). Here we report that the
increase in food intake seen in mice lacking the MC4 receptor
and that in mice lacking �-endorphin are additive, as the
food intake of male mice lacking both �-endorphin and the
MC4 receptor was significantly greater than that of Mc4r�/�

mice. Together with our previous observations of normal
tissue content of �MSH in �-END�/� mice (15), these data
make it unlikely that the obesity phenotype of the �-END�/�

mice is due to changes in �MSH biosynthesis or MC4 re-
ceptor signaling. We did not generate mice lacking both
�-endorphin and the MC3 receptor, as the phenotype of MC3
receptor knockout mice is significantly different from that of
the �-endorphin-deficient mice described here and shows a
reversed sexual dimorphism (10, 11). It is therefore unlikely
that the obesity phenotype of �-END�/� mice is due to
changes in �MSH biosynthesis or MC3 receptor signaling.

POMC is expressed in both the Arc and the caudal nucleus
of the solitary tract of the brainstem (28), two regions im-
plicated in energy homeostasis (1, 4, 13). However, �-endor-
phin is also synthesized and released from the pituitary into
the circulation, where it can act on peripheral sites to po-

FIG. 4. Effects of �-endorphin, NPY, and naloxone on food intake in
male �-END�/� and �-END�/� mice. A, Cumulative intake of food
during a 3-h period after icv injection of either saline or 0.5 �g �-
endorphin 15 min after an ip injection of either saline or 10 mg/kg
naloxone (n � 6–10; *, P � 0.05 vs. saline, no effect of genotype, by
t test). B, Cumulative food intake during a 3-h period after an icv
injection of either saline or 1.5 �g NPY 15 min after an ip injection
of either saline or 10 mg/kg naloxone (n � 10–15; *, P � 0.01 vs.
saline-treated �-END�/� mice; #, P � 0.01 vs. saline-treated
�-END�/� mice and P � 0.05 vs. NPY-treated �-END�/� mice, by t
test). C, Food intake during a 1-h period after a 24-h fast and 15 min
after an ip injection of either saline or 10 mg/kg naloxone (n � 6–10;
*, P � 0.05 vs. saline, by t test). All data are expressed as the mean �
SEM.
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tentially alter energy homeostasis (1, 4, 13, 17). Our results
suggest that re-expression of �-endorphin to its central sites
of release is required to fully rescue the obesity phenotype.
The mechanism by which re-expression of �-endorphin to
the pituitary only partially rescues the obesity is not clear.
However, it may reflect either a contribution of circulating �-
endorphin on peripheral sites of action or transport of �-
endorphin across the blood-brain barrier and subsequent
activation of central opioid receptors (29).

The obesity phenotype seen in the �-END�/� mice appears
somewhat paradoxical, as exogenous opioid agonists have
previously been shown to increase food intake, potentially by
modulating the rewarding aspects of food (12). Indeed, we
also found that exogenous �-endorphin stimulated food in-
take in both �-END�/� and �-END�/� mice despite the obe-
sity resulting from the selective genetic deficiency of endog-
enous �-endorphin. However, a critical difference between
the pharmacological and genetic manipulations of opioid
action is that genetic ablation removes �-endorphin signaling
from its physiological site of release only. As discussed in the
introduction, this effect is impossible to mimic by pharma-
cological approaches. Therefore, the genetic removal of �-
endorphin may reveal an anorectic effect of the peptide.
Alternatively, the apparent discrepancy between the phar-
macology and this genetic study could reflect the different
effects of opioid agonists on short- and long-term food in-
take. Opioid agonists have been shown to increase short-
term food intake; however, they do not increase long-term
food intake (30, 31). Therefore, the genetic removal of �-
endorphin may reveal a long-term anorectic action of the
peptide compared with potential short-term orexigenic ef-
fects of this peptide.

Alternatively, removal of �-endorphin from the hypothal-
amus may disrupt normal signaling and lead to an increase
in orexigenic tone. Indeed, there was a very mild increase in
NPY-stimulated food intake in male, but not female,
�-END�/� mice. However, the nonspecific antagonist nal-
oxone attenuated NPY-induced food intake to the same de-
gree in both �-END�/� and �-END�/� mice, suggesting that
an endogenous opioid peptide other than �-endorphin is
required for the opioid-dependent actions of NPY. Consis-
tent with this idea of an alternative opioid tone involved in
the orexigenic effects of opioids, naloxone also attenuated
food intake after food deprivation to the same extent in both
�-END�/� and �-END�/� mice. It is also possible that this
endogenous opioid tone is a consequence of compensatory
increases that occur due to the removal of �-endorphin, al-
though we have no direct evidence for altered enkephalin or
dynorphin expression in �-END�/� mice.

Recent evidence from our laboratory demonstrated that
male mice lacking �-endorphin have reduced levels of op-
erant responses (e.g. lever presses) for food reinforcers when
maintained under ad libitum feeding conditions, but not
when food-restricted (32). These data suggest that �-endor-
phin modulates the hedonic value of food independently of
energy homeostasis and support a role for endogenous �-
endorphin in the rewarding aspects of food intake. Together
with the data presented here, these results imply multiple
actions for �-endorphin in the regulation of food intake.
However, as male mice lacking �-endorphin are hyperphagic

and mildly obese, the overriding effect of the genetic removal
of �-endorphin under ad libitum access to food appears to be
an increase in orexigenic tone despite a reduction in the
hedonic value of food intake.

�-Endorphin has been proposed to produce its feeding
effects predominantly through activation of the � opioid
receptor (33), although it has affinity for �, �, and � opioid
receptors. No compensatory changes have been detected in
the levels of �, �, or � opioid receptors in �-END�/� mice (34,
35). Interestingly, MOP�/� mice have a sexually dimorphic
obesity phenotype markedly similar to that of �-END�/�

mice (Kieffer, B., unpublished observations). The fact that
deficiencies in either the endogenous opioid ligand �-
endorphin or in the � opioid receptor cause such similar
weight phenotypes indicates that the obesity, although
milder than that associated with some other monogenic syn-
dromes, reflects a real alteration in physiological function
due to loss of the �-endorphin tone. Although the sexually
dimorphic nature of the weight phenotype observed in
�-END�/� mice remains to be fully explored, it is consistent
with previous studies showing that the expression and ef-
fects of �-endorphin are sexually dimorphic (36–39).

In conclusion, �-END�/� male mice have increased weight
and adiposity that appear to result primarily from increased
food intake. Our results suggest the endogenous opioid �-
endorphin has an unexpected anorexic effect in regulating
energy homeostasis. Furthermore, these data implicate an
alternative endogenous opioid system in some of the orexi-
genic effects of opioids previously attributed to �-endorphin.
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