
Expert Systems with Applications xxx (2013) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Formalizing dialectical explanation support for argument-based reasoning
in knowledge-based systems

Alejandro J. García, Carlos I. Chesñevar, Nicolás D. Rotstein, Guillermo R. Simari ⇑
Artificial Intelligence Research and Development Laboratory, Department of Computer Science and Engineering, Universidad Nacional del Sur, Av. Alem 1253, (8000)
Bahía Blanca, Argentina
a r t i c l e i n f o

Keywords:
Knowledge-based systems
Explanation support
Abstract argumentation
Structured argumentation
Defeasible Logic Programming
0957-4174/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.eswa.2012.12.036

⇑ Corresponding author. Tel.: +54 2914595135; fax
E-mail addresses: ajg@cs.uns.edu.ar (A.J. García), cic@

ndr@cs.uns.edu.ar (N.D. Rotstein), grs@cs.uns.edu.ar (G.R

Please cite this article in press as: García, A. J
systems. Expert Systems with Applications (2013
a b s t r a c t

The concept of explanation has received attention from different areas in Computer Science, particularly
in the knowledge-based systems and expert systems communities. At the same time, argumentation has
evolved as a new paradigm for conceptualizing commonsense reasoning, resulting in the formalization of
different argumentation frameworks and the development of several real-world argument-based appli-
cations. Although the notions of explanation and argument for a claim share many common elements
in knowledge-based systems their interrelationships have not yet been formally studied in the context
of the current argumentation research in Artificial Intelligence. This article explores these ideas by pro-
viding a new perspective on how to formalize dialectical explanation support for argument-based reason-
ing. To do this, we propose a formalization of explanations for abstract argumentation frameworks with
dialectical constraints where different emerging properties are studied and analyzed. As a concrete exam-
ple of the formalism introduced we show how it can be fleshed out in an implemented rule-based argu-
mentation system.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction and motivations

The notion of explanation has received attention in different
related areas of Computer Science, such as from the knowledge-
based systems and expert systems communities (Guida & Zanella,
1997; Lacave & Diez, 2004; Ye & Johnson, 1995). An interesting
review about explanations in heuristic expert systems is given in
Lacave and Diez (2004), which offers the following appealing def-
inition: ‘‘. . .explaining consists in exposing something in such a
way that it is understandable for the receiver of the explanation –
so that he/she improves his/her knowledge about the object of
the explanation – and satisfactory in that it meets the receiver’s
expectations.’’

In the last two decades, argumentation (Bench-Capon & Dunne,
2007; Besnard & Hunter, 2008; Chesñevar, Maguitman, & Loui,
2000; Prakken & Vreeswijk, 2002; Rahwan & Simari, 2009) has
evolved as an attractive paradigm for conceptualizing common-
sense reasoning, resulting in the formalization of different
argumentation frameworks and the development of several real-
world argument-based applications. Argumentation, as a research
subarea of knowledge representation and reasoning, is of particu-
lar importance mainly because it allows to obtain conclusions from
ll rights reserved.

: +54 2914595136.
cs.uns.edu.ar (C.I. Chesñevar),
. Simari).

., et al. Formalizing dialectical
), http://dx.doi.org/10.1016/j.es
repositories containing often inconsistent, incomplete, and uncer-
tain information thus becoming suitable to handle reasoning tasks
in knowledge-based systems. During the last decades, the use of
argumentation has expanded at increasing pace, driven in part by
theoretical advances but also by successful demonstrations of a
substantial number of practical applications domains, such as legal
reasoning (Prakken & Sartor, 2002), knowledge engineering
(Carbogim, Robertson, & Lee, 2000), multiagent systems (Amgoud,
Maudet, & Parsons, 2002; Parsons, Sierrra, & Jennings, 1998), and e-
government (Atkinson, Bench-Capon, & McBurney, 2005), among
many others.

Moulin, Irandoust, Bélanger, and Desbordes (2002), present a
review of the literature of explanation systems and argumentation
systems. The authors describe the work of researchers leading to
the enhancement of the explanation capabilities of knowledge-
based and decision support systems, while other researchers
developed argumentative techniques for software systems.

They remark that ‘‘ it would be interesting for the researchers
belonging to these different communities to share their experiences
and to develop systems that take advantage of the advances gained
in each domain.’’; concluding emphatically that ‘‘ argumentation
and explanation facilities in knowledge-based systems should be
investigated in conjunction.’’ However, to the best of our knowledge,
current state of the art of argumentation research in Computer Sci-
ence, does not reflect the goal of studying these two notions of
explanation and argument together as a research goal.
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036
mailto:ajg@cs.uns.edu.ar
mailto:cic@cs.uns.edu.ar
mailto:ndr@cs.uns.edu.ar
mailto:grs@cs.uns.edu.ar
http://dx.doi.org/10.1016/j.eswa.2012.12.036
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa
http://dx.doi.org/10.1016/j.eswa.2012.12.036


2 A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx
This article represents an effort to fill this gap by providing a new
perspective on formalizing dialectical explanation support for argu-
ment-based reasoning. With that intent, we introduce the concept
of dialectical explanation that will denote d-explanation; following
the terminology of Lacave and Diez (2004), d-explanations will be
used to explain why an argument has a particular warranting status
by exposing the context under which that argument is considered
and the analysis carried out in order to obtain such status.

Hence, one of the contributions of this paper is to introduce a
formalization of d-explanations for a class abstract argumentation
frameworks where dialectical constraints are included; for this for-
malization, our presentation explores and analyzes different
emerging properties of d-explanations. As another interesting con-
tribution, the proposed explanation formalisms is also applied to
an implemented rule-based argumentation system. Thus, as we
will show below, d-explanations can enhance both abstract and
rule-based argumentation systems. In abstract argumentation,
d-explanations can be a useful tool to comprehend and analyze
the interactions among arguments that are under consideration.
On the other hand, in rule-based argumentation systems where
arguments are endowed with structure (Besnard & Hunter, 2001;
Bondarenko, Dung, Kowalski, & Toni, 1997; Chesñevar, Simari,
Alsinet, & Godo, 2004; García & Simari, 2004; Prakken, 2010;
Simari & Loui, 1992), d-explanations have the additional capability
of aiding in the understanding of how knowledge should be repre-
sented and debugging of the underlying knowledge base.

Intuitively, an argument can be seen as a piece of reasoning that
supports a claim from certain evidence. Argumentation systems
define a way for establishing which claims (or arguments) can be
accepted as warranted. In this context, abstract argumentation
frameworks (Dung, 1995) have played a major role as a way of
understanding argument-based inference, resulting in different
semantics for argumentation (Baroni & Giacomin, 2009). The goal
of an argumentation semantics is to characterize the set of argu-
ments that should be rationally accepted as justified or warranted.
However, the information about why an argument, or its claim for
that matter, is warranted remains usually hidden within the
process.

Consider for example the following scenario where an agent has
to decide about having an opera night. Bob happens to be an aficio-
nado to the opera and there is an opera show tonight (argument
Oshow). Besides, today is Bob’s birthday and he usually gets together
with friends ðOgetÞ. Bob usually goes to the opera house with
friends ðOfriendsÞ. However, today Bob’s best friend is coming with
her baby to celebrate his birthday, and is not a good idea to bring
a baby to the opera ðObabyÞ. Observe that the argument Oshow sup-
ports the claim ‘‘go to the show’’ that is defeated (or attacked) by
Oget and vice versa. The argument Oget is in turn defeated by
Ofriends (‘‘opera with friends’’), thus reinstating the argument
Oshow. Note also that the argument Obaby (‘‘friend with baby’’) de-
feats both Oget and Ofriends.

As has been mentioned, an argumentation semantics is needed
to obtain the set of accepted arguments (e.g., fObaby;Ogetg). Fig. 1
depicts a directed graph usually used for abstract argumentation
frameworks where nodes are labeled with the arguments and di-
rected edges, represented as arrows, the defeat relation. Although
the graph shows all existing arguments and how arguments defeat
other arguments, this type of graph does not explain the analysis
Fig. 1. Graph with argument labels and the defeat relation.

Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
performed to establish if an argument can be accepted. Even if
we annotate the graph telling which arguments are accepted, there
would be no indication regarding the analysis that produced the
different statuses of these arguments.

In our formalization, a d-explanation will be a structure that
shows why a particular claim (or argument) is considered war-
ranted. For instance, following the example above, the explanation
will show why Bob finally decides not to go to the opera when
faced to the described scenario. Thus, an explanation will provide
a useful tool to comprehend, analyze, develop, and debug argu-
mentation systems. In the context of the terminology used by
Lacave and Diez (2004), we explain why an argument supporting
a claim is warranted through exposing or presenting the whole
set of arguments that have been considered and how these argu-
ments are interrelated. We postulate that this information is
understandable from the receiver’s point of view, because all the
arguments considered, their statuses (i.e., defeated/undefeated),
and their interrelations are explicitly shown. This type of informa-
tion should be more satisfactory and useful for the receiver, be-
cause it contains all the elements at stake in the analysis that
supports the answer.

Recently, in Walton (2004), Walton introduced a philosophical
analysis of explanations. He states that ‘‘the purpose of an explana-
tion is to get the hearer to understand something that he already ac-
cepts as a fact’’, and that ‘‘an explanation is seen as a transfer of
understanding from a respondent to a questioner in a dialogue.’’ In
accordance with that point of view, in our approach the purpose
of an explanation is to transfer the understanding of how the war-
rant status of a particular argument has been obtained from a given
argumentation framework.

Some preliminary work related to this paper has been reported
in two workshop papers (García, Chesñevar, Rotstein, & Simari,
2007; García, Rotstein, Chesñevar, & Simari, 2009) and previously
in García, Rotstein, and Simari (2007); nevertheless, the work pre-
sented here extends them in several ways. The abstract formaliza-
tion of d-explanations is completely redefined and extended to
cope with both abstract and rule-based argumentation frame-
works. A deeper analysis of the formalism is performed and several
interesting properties are introduced. The use of the formalism is
shown through examples both in abstract frameworks and in an
implemented argumentation system.

The rest of this paper is structured as follows. Next, in Section 2
we will present the basic ideas of an abstract argumentation
framework with dialectical constraints, which includes several
concepts common to most argument-based formalisms. Section 3
introduces the formalization of d-explanations and shows several
properties. Section 4 presents a concrete reification of the proposed
abstract framework based on Defeasible Logic Programming (DELP).
Finally, Section 5 discusses related work and conclusions.
2. Abstract argumentation frameworks with dialectical
constraints

In this section we recall argumentation theories as introduced
in Chesñevar and Simari (2007) and Chesñevar, Simari, and Godo
(2005); they are built extending of an abstract argumentation
framework (Dung, 1995) with a set of dialectical constraints. This
formal construct will be used in the following section for the def-
inition of dialectical explanations (d-explanations).

It is important to note that the aim of this paper is not to
offer an alternative approach to the semantics of argumentation.
Instead, an argumentation theory provides an structure with two
slots: one for an argumentation framework and another for a set
of dialectical constraints. The focus of the paper lies in the explana-
tion formalism that will be applied to different argumentation
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx 3
systems together with a chosen associated semantics, just by
defining an appropriate set of dialectical constraints.

Abstract argumentation frameworks are formalisms for model-
ing defeasible argumentation in which some components remain
unspecified (Dung, 1995; Jakobovits & Vermeir, 1999; Rahwan &
Simari, 2009); in them an argument is considered an abstract en-
tity without any specific structure. Roughly speaking, an argument
is anything that may attack to or be attacked by another argument
(Baroni & Giacomin, 2009). Thus, formally an argumentation
framework U is a pair hArgs,Ri, where Args is a finite set of argu-
ments and R is a binary relation between arguments such that
R # Args � Args. The notation ðA;BÞ 2 R (or, equivalently, A R B)
means that A attacks B, or A defeats B (Dung, 1995).

Example 2.1. Consider the argumentation framework hArgs2.1, -
R2.1i, where: Args2:1 ¼ fA1;A2;A3;A4;A5;B1;B2; C1; C2; C3; C4; C5g
and R2:1 ¼ fðA1;A5Þ; ðA1;A3Þ; ðA2;A5Þ; ðA3;A5Þ; ðA4;A1Þ; ðB1;B2Þ;
ðB2;B1Þ; ðA2; C1Þ, ðA3; C2Þ; ðC1; C2Þ; ðC2; C1Þ; ðC1; C3Þ; ðC3; C4Þ; ðC4; C5Þ;
ðC5; C3Þg.

An argumentation framework hArgs,Ri is graphically depicted as
a directed graph; in it every node stands for an argument in Args,
and there is an arc ðAi;AjÞ whenever ðAi;AjÞ 2 R. For instance,
Fig. 2 depicts the argumentation framework hArgs2.1,R2.1i.

In the literature of abstract argumentation frameworks, several
semantics have been defined and studied (Amgoud et al., 2002;
Baroni & Giacomin, 2009; Baroni, Giacomin, & Guida, 2005;
Jakobovits & Vermeir, 1999). In particular, in this paper we will
focus on skeptical semantics for argumentation that is based on a
dialectical analysis of argumentation trees. Dialectical analysis in
argumentation involves the exploration of a search space to pro-
vide a proof-theoretic characterization of an argument-based
semantics. Dialectical proof procedures provide the mechanism
for performing computations of warranted arguments, traversing
this search space by generating tree-like structures which are
referred to as argument trees (Besnard & Hunter, 2001) or as dia-
lectical trees (Chesñevar et al., 2004; García & Simari, 2004) in
the literature.

Given an argumentation framework hArgs,Ri, to establish if one
particular argument A 2 Args is warranted, each argument B that
defeats A must be considered. It is clear that the warrant status of
Awill depend on the status of these Bs. Since each B can be also de-
feated, and its defeater can be defeated, and so on, a sequence of
arguments can arise where, apart from the last one of the
sequence, each one is defeated by the subsequent. For instance, in
Example 2.1 C5 is defeated by C4, which in turn is defeated by
C3; C1 defeats C3, andA2 defeats C1. Therefore, the acceptance status
of C5 will depend on the acceptance status of C4; C3; C1, andA2. Before
introducing argumentation theories, we will present the notion of a
sequence of defeating arguments and other auxiliary definitions.

Definition 2.1 (Argumentation line). Let U = hArgs,Ri be an
abstract argumentation framework. An argumentation line rooted
in A1 is either a singleton sequence ½A1� (A1 2 Args) or any finite
sequence of arguments ½A1;A2; . . . ;An� (n P 2), such that
ðAi;Ai�1Þ 2 R, for 1 < i 6 n. We will write LinesU to denote the set
of all argumentation lines in U.

Consider the argumentation framework hArgs2.1,R2.1i from
Example 2.1. Different argumentation lines rooted in A5 can be ob-
tained, namely: ka ¼ ½A5;A1;A4�, kb ¼ ½A5;A2�, kc ¼ ½A5;A3�,
Fig. 2. Argumentation framework hArgs2.1,R2.1i (Example 2.1).

Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
kd ¼ ½A5;A1� and ke ¼ ½A5;A3;A1;A4�. Note that although
ðA1;A5Þ 2 R2:1, in keA1 attacks A3, and hence defends A5. An infi-
nite number of argumentation lines rooted in B1 can be obtained:
k1 ¼ ½B1�, k2 ¼ ½B1;B2�, k3 ¼ ½B1;B2;B1�, k4 ¼ ½B1;B2;B1;B2�, etc.; this
is because ðB1;B2Þ and ðB2;B1Þ are members of R2.1 thus introduc-
ing a cycle in the associated graph (see Fig. 2). Argumentation lines
define a domain over which different constraints can be defined. As
such constraints are related to sequences which resemble an argu-
mentation dialog between two parties, we call them dialectical
constraints.

Definition 2.2 (Dialectical constraint). Let U = hArgs,Ri be an
abstract argumentation framework. A dialectical constraint C in
the context of U is any function C : LinesU # fTrue;Falseg. A given
argument sequence k 2 LinesU satisfies C in U when C(k) = True.

Then, as we already mentioned, an argumentation theory is de-
fined by combining an argumentation framework with a particular
set of dialectical constraints. Formally:

Definition 2.3 (Argumentation theory). An argumentation theory T
(or just a theory) is a pair (U,DC), where U is an abstract
argumentation framework, and DC = {C1,C2, . . . ,Ck} is a finite
(possibly empty) set of dialectical constraints.

Therefore, in an argumentation theory, any set of dialectical
constraints can be used (e.g., the empty set). Thus, different argu-
mentation systems can be obtained (with different semantics) by
defining the appropriate set of dialectical constraints. It must be
noted that a full formalization for dialectical constraints is outside
the scope of this work. As they may vary from one particular argu-
mentation framework to another, they are included as a parameter
in an argumentation theory.1 Below, some illustrative examples of
dialectical constraints are shown. For instance, dialectical con-
straints can be used to impose conditions on argumentation lines
to be considered rationally acceptable. Such conditions are usually
defined by disallowing certain moves which might lead to fallacious
situations. For example, it is forbidden to repeat the same argument
in an argumentation line (Example 2.2), or it is not allowed that par-
ties contradict themselves when advancing arguments (Example
2.3), or it is required that the attack relation has to be such that there
is no pair of arguments that attack each other, achieving in this way
that no argument in an argumentation line can be attacked by its
successor (see Example 2.4). Several examples follow.

Example 2.2 (Dialectical constraint Cnc: non-circularity). A dialec-
tical constraint for preventing a circular argumentation line can be
defined as follows. Consider k ¼ ½A1;A2; . . . ;An�, then Cnc(k) = True

iff n = 1 or, for each Ak in k (2 6 k 6 n), it holds that Ak does not
appear in ½A1;A2; . . . ;Ak�1�; conversely, Cnc(k) = False iff there exist
Av (2 6 v 6 n) such that Av ¼ Ai (1 6 i 6 v � 1). Thus, the function
Cnc returns True iff every argument appears only once in an
argumentation line (and false otherwise). Consider for instance the
argumentation framework hArgs2.1,R2.1i of Example 2.1. In that
case, as already remarked above, an infinite number of argumen-
tation lines rooted in B1 can be obtained, e.g., k1 ¼ ½B1�,
k2 ¼ ½B1;B2�, k3 ¼ ½B1;B2;B1�, and k4 ¼ ½B1;B2;B1;B2�. Neverthe-
less, only the first two satisfy Cnc: Cnc(k1) = True, Cnc(k2) = True, and
Cnc(k3) = False, and Cnc(k4) = False.

Example 2.3 (Dialectical constraint Cco: commitment). Consider a
line k ¼ ½A1;A2;A3; . . . ;An�; in it A3 is attacking A2 thus giving
support for A1. Therefore, A3 should not contradict A1. The same
holds for A2 and A4, and for A1 and A5. Observe that arguments
in odd positions represent supporting arguments for A1, and
that arguments in even positions represent interfering arguments
1 A similar approach is adopted in Kakas and Toni (1999), where different
characterizations of constraints give rise to different Logic Programming semantics.

explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


4 A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx
for A1 (indirect attack). A dialectical constraint can be defined to
impose that supporting (respectively interfering) arguments
should not attack each other. Consider the sets kS ¼
fAi 2 k j Ai appears in an odd position in kg and kI ¼ fAj 2 k j
Aj appears in an even position in kg. We define Cco(k) = True iff
for any pair of arguments Ak and At of kS, ðAk;AtÞ R R and for
any pair of arguments Ag and Ah of kI; ðAg ;AhÞ R R. Otherwise,
Cco(k) = False. Consider the argumentation framework hArgs2.1,R2.1i
of Example 2.1 where several lines rooted in A5 can be obtained:
ka ¼ ½A5;A1;A4� and ke ¼ ½A5;A3;A1;A4�. Note that Cco(ka) = True

and Cco(kd) = False since ðA1;A5Þ 2 R2:1.
Example 2.4 (Dialectical constraint Cprop: proper attack). Consider
the argumentation line k ¼ ½A1;A2; . . . ;An� from an argumentation
framework hArgs,Ri. We define Cprop(k) = True iff n = 1 or, for each
Ak in k (2 6 k 6 n), it holds that ðAk�1;AkÞ R R; conversely, Cprop(k)
= False iff there exist Av (2 6 v 6 n) such that ðAv�1;Av Þ 2 R;. Thus,
the function Cprop returns True if every argument in the line attacks
is predecessor but no argument in the line attacks its successor.

The definition of acceptable argumentation line corresponds to
the use of these criteria, i.e., an argumentation line will be accept-
able when complies with the constrains the theory requires.

Definition 2.4 (Acceptable argumentation line). Let T = (U,DC) be
an argumentation theory. An argumentation line k 2 LinesU is
acceptable with respect to T iff for every C 2 DC, C(k) = True.
Example 2.5. Consider the argumentation framework hArgs2.1,R2.1i
defined in Example 2.1 and the dialectical constraints Cnc and Cco of
Examples 2.2 and 2.3. Then, with these elements we can define the
argumentation theory T2.5 = (hArgs2.1,R2.1i, {Cnc,Cco}). The argumen-
tation line ka ¼ ½A5;A1;A4� is acceptable with respect to the argu-
mentation theory T2.5 because Cnc(ka) = True and Cco(ka) = True.
Observe that kb ¼ ½B1;B2� is acceptable whereas kc ¼ ½B1;B2;B1� is
not acceptable with respect to T2.5 because Cnc(kc) = False. The line
kd ¼ ½A5;A3;A1;A4� is not acceptable with respect to T2.5 since
Cco(kd) = False because ðA1;A5Þ 2 R2:1. Consider now the argumen-
tation theory T2:5b ¼ ðhfA;B; Cg; fðB;AÞ; ðC;AÞ; ðB; CÞ; ðC;BÞgi;
fCnc;CcogÞ. Here, B and C attack each other, and both attack A.
The lines ½A;B; C� and ½A; C;B� are not acceptable with respect to
T2.5b because they do not satisfy Cco. Nevertheless, ½A;B� and
½A; C� are both acceptable with respect to T2.5b.
Fig. 3. (a) Dialectical tree T A5 of Example 2.6; (b)T A5 after applying and–or
marking; (c, d) two other exhaustive dialectical trees belonging to the same
equivalence class of T A5 .
Remark 2.1. Observe that given a theory T, if an argumentation
line k satisfies Cnc then any subsequence of k also satisfies Cnc

and the same holds for Cco. The justification can be found in Appen-
dix A.

As we have stated before, in this paper we will focus on skepti-
cal semantics for argumentation that is based on a dialectical anal-
ysis of argumentation trees. Hence, we will adapt the definition of
dialectical tree (García, Chesñevar, & Simari, 1993; Simari,
Chesñevar, & García, 1994) to this abstract framework.

Definition 2.5 (Dialectical tree). Let T = (U,DC) be an argumenta-
tion theory, where U = hArgs,Ri, and let A1 be an argument in Args.
Let AccðA1Þ# LinesU be the set of all the argumentation lines
rooted in A1 that are acceptable with respect to T. A dialectical tree
for A1 in T (denoted T A1 ) is a tree of arguments from Args such
that:

1. The root of the tree is labeled with A1.
2. Let N be node of the tree labeled An, and ½A1; . . . ;An� be the

sequence of labels of the path from the root to N. Let
Attackers ¼ fB1;B2; . . . ;Bkg be the set of all the arguments such
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
that ðBi;AnÞ 2 R (1 6 i 6 k). For each argument Bi such that the
argumentation line ki ¼ ½A1; . . . ;An;Bi� is acceptable with respect
to the DC in T (i.e., ki 2 AccðA1Þ), the node N has a child Ni labeled
Bi. If Attackers = ; or there is no Bi such that ki 2 AccðA1Þ, then N is a
leaf.

Consider a dialectical tree T A1 in a theory T, and let pathsðT A1 Þ
be the set of all paths from the root of T A1 to a leaf. Observe that
every element of pathsðT A1 Þ is an acceptable argumentation line
ki ¼ ½A1; . . . ;An� w.r.t. DC in T. Also note that ki is exhaustive, in
the sense that there cannot exist an argumentation line
k0i ¼ ½A1; . . . ;An;A� acceptable w.r.t. DC in T, because in that case
An will not be a leaf in that tree.

Definition 2.6 (Exhaustive acceptable argumentation line). Let
T = (U,DC) be an argumentation theory. An argumentation line
k 2 LinesU is exhaustive with respect to T iff k is acceptable with
respect to DC in T and there is no acceptable argumentation line
k0 2 LinesU extending k.

Thus, dialectical trees can be characterized by the set of exhaus-
tive acceptable argumentation lines; this set will be called exhaus-
tive bundle set and it corresponds to all the paths from the root to a
leaf in T A1 .

Definition 2.7 (Exhaustive bundle set). Let T = (U,DC) be an
argumentation theory, where U ¼ hArgs;Ri, A 2 Args. The set
ebundleðAÞ ¼ fk1; k2; . . . ; kng of all the argumentation lines rooted
in A that are acceptable with respect to DC in T, is called an
exhaustive bundle set for A in T if and only if all ki (1 6 i 6 n) are
exhaustive.
Example 2.6. Consider T2.5 = (hArgs2.1,R2.1i, {Cnc,Cco}) (introduced
in Example 2.5). A dialectical tree for A5 is shown in Fig. 3(a).
Observe that ebundleðA5Þ ¼ f½A5;A1;A4�; ½A5;A3�; ½A5;A2�g.

Definition 2.5 shows how to build a dialectical tree. It is impor-
tant to note that the ‘‘shape’’ of the resulting tree will depend on
the order in which the subtrees are attached. Each possible order
will produce a tree with a different geometric configuration. For in-
stance, Fig. 3(c) and (d) shows two different dialectical tree that are
also associated with the bundle set ebundleðA5Þ of Example 2.6.
This observation is formalized by introducing the following rela-
tion which can be trivially shown to be an equivalence relation.

Definition 2.8. Let T be a theory, and let TreeA be the set of all
possible dialectical trees rooted in an argument A in theory T. We
will say that T A is equivalent to T 0A, denoted T A�sT 0A iff
pathsðT AÞ ¼ pathsðT 0AÞ ¼ ebundleðAÞ.

As shown in the next proposition, a dialectical tree for any argu-
ment A can be proven to be unique up to �s-equivalence.

Proposition 2.1. Let T be an argumentation theory. For any
argument A in T there is a unique dialectical tree T A in T up to �s-
equivalence.
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx 5
Proof. See Appendix A. h

Dialectical trees allow to determine whether the root node of
the tree is to be accepted (ultimately undefeated) or rejected (ulti-
mately defeated) as a rationally justified belief. A marking or label-
ing criterion provides a definition of such acceptance criterion.
Connections between defeat status assignments and extensions
in Dung’s argumentation frameworks have been firstly investi-
gated by Verheij (1996); see also Caminada (2006), Verheij
(2007) and Baroni and Giacomin (2009), Baroni, Caminada, and
Giacomin (2011) for an extensive account of labeling and the cor-
responding references. Our approach is based in similar ideas pre-
sented in García et al. (1993), Simari et al. (1994) and García and
Simari (2004). Formally:

Definition 2.9 (Marking criterion). Let T be an argumentation
theory and TreeT all the dialectical trees that can be obtained from
a theory T. Let Tree�T be the set of all the dialectical trees where
each node is marked D (defeated) or U (undefeated). A marking
criterion for T is a function marking : TreeT # Tree�T such that given
a dialectical tree T A for an argument A, it returns a marked
dialectical tree, denoted T �A, where each node of T A has been
assigned a mark D or U. The associated function rootmark :

Tree�T # fD;Ug returns the mark of the root node of T �A.
Example 2.7. A marking criterion can be defined as follows. Given
a dialectical tree, leaves are marked U. Then, for every inner node N
of the tree such that all its children have been marked, the mark for
N is D if there is at least one child of N marked as U, and the mark
for N is U if all its children are marked as D. Fig. 3(b) shows the dia-
lectical tree T A5 of Example 2.6 after applying this marking crite-
rion. This is a natural criterion for marking a tree and it
corresponds to the grounded semantics defined for abstract argu-
mentation frameworks (Dung, 1995).

The following definition captures the idea of an argument being
ultimately undefeated in an argumentation theory. In the litera-
ture, arguments that obtain that status usually are said to be ac-
cepted, justified, or warranted.

Definition 2.10 (Warrant). Let T be an argumentation theory and
marking(�) a marking criterion for T. An argumentA is a warrant for its
claim with respect to the marking criterion iff the marked dialectical
tree T �A ¼ markingðT AÞ is such that rootmarkðT �AÞ ¼ U. If an argu-
mentA is a warrant for its claim, then we will also say that its claim is
warranted (or that there is a warrant for its claim), and that the
marked dialectical tree T �A exhibits the warrant status of A’s claim.

In the following section, marked dialectical trees will be the ba-
sis of the notion of dialectical explanation in abstract argumentation
theories. We will use the marking criterion introduced in Example
2.7 in the examples.
Fig. 4. (a) Argumentation framework of Exam

Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
3. Explanations in abstract argumentation frameworks

In this work, given that an argument has obtained the status of
being warranted in an argumentation theory, the purpose of a dia-
lectical explanation will be to transfer the understanding of how an
argument obtains that status. Consequently, a d-explanation will
consist of a structure that reflects the analysis that was carried
out in order to obtain such status, and it will contain those argu-
ments and counterarguments that are considered as part of this
analysis.

Suppose that there is a known set of arguments, and we receive
the information that a particular argument in that set is warranted
whereas others are not; we may want to know why that conclusion
was drawn. For instance, consider again the opera example pre-
sented in Section 1 where argumentOshow represents ‘‘Bob is an op-
era aficionado and there is an opera show tonight’’; Oget represents
‘‘today is Bob’s birthday and he usually gets together with friends’’;
Ofriends represents ‘‘Bob usually goes to the opera house with
friends’’; and Obaby represents ‘‘today Bob’s best friend is coming
with her baby because it’s his birthday, and is not a good idea to
attend the opera with a baby’’. If a system returns the information
that Oget is a warranted argument or that Oshow is not warranted,
then we may want to know the reasons supporting that these con-
clusions were drawn.

In this section, we will define d-explanation that will provide all
the information (arguments) considered by the system for war-
ranting a claim and the analysis (dialectical trees) that has per-
formed. An argumentation theory with the arguments of the
opera scenario is introduced in the example below.
Example 3.1. Consider the set of arguments Args3:1 ¼
fOshow;Oget;Ofriends;Obabyg, where Obaby defeats (or attacks) both
Oshow and Ofriends;Ofriends in turn defeats Oget , and Oget and Oshow

defeat each other. The following defeat relation reflects these
observations R3:1 ¼ fðOget ;OshowÞ; ðOshow;OgetÞ; ðOfriends;OgetÞ;
ðObaby;OfriendsÞ; ðObaby;OshowÞg. The argumentation theory T3.1 =
(hArgs3.1,R3.1i,DC) can be defined where DC = {Cnc,Cco} are the
dialectical constraints defined in Examples 2.2 and 2.3, respec-
tively. Fig. 4 depicts (a) the graph of the argumentation framework
hArgs3.1,R3.1i and (b)–(e) the marked dialectical trees for arguments
in Args3.1. Here, the marking criterion of Example 2.7 is used.
Although Fig. 4 (a) shows all the existing arguments and the de-
feat relation defined over the set of arguments, the graph does not
show the analysis performed to state if an argument has to be ac-
cepted as warranted. For example, Oget is defeated by Ofriends but
Ofriends is in turn defeated byObaby, thus, reinstatingOget . The dialec-
tical process for warranting a claim involves finding the arguments
that either support or interfere with that claim. As we discussed in
the previous section, these arguments are connected through the
defeat relation and their interrelationships in terms of this defeat
ple 3.1. (b–e) Marked dialectical trees.

explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


6 A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx
relation, together with the dialectical constraints, can be conceptu-
alized through dialectical trees.

Remark 3.1. In the examples of this paper we will use the marking
criterion introduced in Example 2.7, akin to grounded semantics in
abstract argumentation. Using this criterion to mark a dialectical
tree, an argument mark depends on the position in which such
argument appears in an argumentation line. Since it is possible that
an argument appears in more than one argumentation line, if this
argument appears in two different lines, the mark for each
occurrence could be different.

Conceptually, an argument supports a claim by reasoning from
certain premises. The formalism for abstract argumentation de-
scribed in the previous section reduces arguments to abstract enti-
ties without any reference to the corresponding claim. However,
for concrete applications it is necessary to recover the idea that
every argument has an associated claim, accordingly we will
assume a function claimðAÞ that will provide the claim of the argu-
ment A. For instance, in the scenario described above, claimðOshowÞ
is ‘‘go to the opera’’ and claimðObabyÞ is ‘‘do not go to the opera’’. If an
argumentA is shown to be a warrant for a claim Q through the dia-
lectical tree T �A (Definition 2.10), then we will also say that Q is
warranted (or that there is a warrant for Q), and that T �A exhibits
A as a warrant for claim Q.

Remark 3.2. The notation Q will represent a claim that contradicts
the claim Q. For instance, Q can contradict Q if Q is the complement
of Q with respect to strict negation. In the opera example, if Q
represents ‘‘go to the opera’’, then Q represents ‘‘do not go to the
opera’’. That is, claimðOshowÞ and claimðObabyÞ contradict each other.
We assume that Q ¼ Q , that is, if Q contradicts Q then it also holds
that Q contradicts Q .

In the argumentation process, when a claim is being analyzed it
is necessary to consider the arguments that support the claim but
also is required to ponder the arguments contradicting it. For
instance, in Example 3.1 arguments for going to the opera and
arguments for not going to the opera should be considered to
decide whether to go or not to go. It is clear that there could be
more than one argument that supports a particular claim and also
several arguments against the same claim. Therefore, to under-
stand why an argument for a claim receives a particular status is
not enough to look at the analysis performed over the arguments
supporting the claim; it is necessary also to consider the analysis
done over the ones that contradict it.

In our approach an explanation will consist of a structure that
includes those marked dialectical trees that are considered for
establishing such status. If only one argument A for a claim Q ex-
ists, then there will be a unique tree T �A (Proposition 2.1) and this
tree will be included in the explanation of the warrant status of Q.
Nevertheless, given a claim Q there could be several different argu-
ments A1; . . . ;An supporting Q, and each Ai will generate its corre-
sponding (different) dialectical tree. Hence, in this case an
explanation will include several dialectical trees. The following
proposition establish that there is as many exhaustive dialectical
trees related to a claim Q as different arguments with Q as their
claim. Clearly, its proof is straightforward from Proposition 2.1.

Proposition 3.1. Let T be an argumentation theory and Q a claim. If
there are n arguments A1; . . . ;An for claim Q then there exist n
different exhaustive dialectical trees T �A1

; . . . ; T �An
(up to equivalences

with respect to �s as introduced in Definition 2.8).
Fig. 5. Marked dialectical trees for arguments of Example 3.2.
Proof. If there are n arguments for Q then each argument has a
unique dialectical tree (Proposition 2.1). It is clear that for each pair
of arguments Ai and Aj (1 6 i; j 6 n) the dialectical trees T �Ai

and
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
T �Aj
are different because their roots are different. Therefore, there

are n different dialectical trees. h

The following example illustrates the general case where there
are several arguments for the same claim Q and several arguments
supporting Q . Each one of these arguments will generate a differ-
ent dialectical tree and some of these dialectical trees may have
the root marked U.

Example 3.2. Consider the argumentation theory T3.2 = (hArgs3.2,
R3.2i,DC), where the set of arguments is Args3:2 ¼ fA1;A2;A3;A4;

X1;B2;F 1; C1;D1;D2; E1; E2g, the defeat relation is R3:2 ¼ fðX1;

A1Þ; ðX1;A2Þ; ðA4;X1Þ; ðB2;A2Þ; ðF 1;A3Þ; ðC1;F 1Þ; ðD1;D2Þ; ðD2;

D1Þ; ðE2; E1Þg, and the dialectical constraints DC = {Cnc,Cco} are the
ones defined in Examples 2.2 and 2.3, respectively. Assume that
claimðA1Þ ¼ claimðA2Þ ¼ claimðA3Þ ¼ claimðA4Þ ¼ a, claimðX1Þ ¼ �a,
claimðB2Þ ¼ b, claimðF 1Þ ¼ �f , claimðC1Þ ¼ �c, claimðD1Þ ¼ d,
claimðD2Þ ¼ �d, claimðE1Þ ¼ e, and claimðE2Þ ¼ �e. In this theory, there
are four arguments for claim a, one argument for claims �a;�f ; d; �d; e,
and �e, and no argument for claim f. Fig. 5 shows the marked
dialectical trees T �A1

; T �A2
; T �A3

; T �A4
and T �X1

. The root of T �A2
is

marked D, whereas the roots of T �A1
; T �A3

and T �A4
are marked U and

each one provides a warrant for claim a. Observe that the only
argument with claim �a isX1 and the root of T �X1

is marked D.
Hence, there is no warrant for �a. Fig. 6 shows the marked
dialectical trees for the arguments D1;D2; E1; E2;F 1 and C1.

A dialectical explanation for a claim Q will contain dialectical
trees for arguments that support Q and also dialectical trees for
arguments that support Q (i.e., arguments for a claim that is in
direct contradiction with Q). Observe that there can be either
several arguments for Q, only one argument for Q, or no arguments
for Q; and the same is true for Q . Hence, nine combinations arise.
For instance, it may happen that there is no argument for a claim
Q but there are several arguments for Q . In this case, although
there is no warrant for Q, there exists an explanation that will in-
clude the dialectical trees for those arguments that support Q .
Example 3.2 introduces an argumentation theory that shows some
of the combinations mentioned above.

The following definition characterizes two distinguished sets of
marked dialectical trees that will be used in an explanation.

Definition 3.1 (Dialectical tree sets). Let T = (hArgs,Ri,DC) be an
argumentation theory and Q a claim. Let T�ðQÞ ¼ fT �AjA 2
Args and claimðAÞ ¼ Qg, the sets T�UðQÞ# T�ðQÞ, and T�DðQÞ#
T�ðQÞ [ T�ðQÞ are defined as follows:

T�UðQÞ ¼ fT
� 2 T�ðQÞ j rootmarkðT �Þ ¼ Ug;

T�DðQÞ ¼ fT
� 2 ðT�ðQÞ [ T�ðQÞÞ j rootmarkðT �Þ ¼ Dg:

That is, the set T�UðQÞ includes all the dialectical trees for argu-
ments that support Q where the root is marked as undefeated.
Therefore, T�UðQÞ contains all the dialectical trees that provide a
warrant for Q. The set T�UðQÞ is empty if no warrant for Q exists.
Observe that the set T�UðQÞwill include all the dialectical trees that
provide a warrant for Q (if there are any). The set T�DðQÞ includes all
the dialectical trees for Q and Q whose roots are marked as
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


Fig. 6. Marked dialectical trees for arguments of Example 3.2.

A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx 7
defeated. That is, T�DðQÞ contains those dialectical trees that show
which arguments for Q and Q do not provide a warrant. For
instance, in Example 3.2 there are four arguments that support
claim a, and the dialectical tree of three of them are marked U
(see Fig. 5). Hence, T�UðaÞ ¼ fT

�
A1
; T �A3

; T �A4
g. Since there is only

one argument ðX1Þ that supports claim �a and its dialectical tree
is marked D, then T�DðaÞ ¼ fT

�
A2
; T �X1

g.

As stated above, the purpose of an explanation is to transfer the
understanding of how the warrant status of a particular argument
can be obtained from a given argumentation theory. Therefore, an
explanation will consist of a structure that reflects the analysis car-
ried out in order to obtain such status, and it will contain those
arguments and counterarguments that are considered by this
analysis.

Definition 3.2 (d-explanation). Let T be an argumentation theory
and Q a claim. A d-explanation for Q in T is the tuple ETðQÞ ¼
ðT�UðQÞ;T�UðQÞ;T�DðQÞÞ.

That is, a d-explanation ETðQÞ for a claim Q from a theory T is a
triplet ðT�UðQÞ;T�UðQÞ;T�DðQÞÞ, where the first component is a (pos-
sible empty) set of those marked dialectical trees from T that pro-
vide a warrant for Q. The second component of ETðQÞ is a (possibly
empty) set of marked dialectical trees that provide a warrant for Q .
Finally, the third component T�DðQÞ

� �
is a (possibly empty) set that

contains those marked dialectical trees for Q or for Q that provide
no warrant, i.e., their roots are marked D (defeated).

Example 3.3. Consider the argumentation theory T3.2 of Example
3.2 where there are four arguments (A1;A2;A3, and A4) that
support claim a and one argument (X1) that supports claim �a. The
d-explanation for claim a from T3.2 is ET3:2 ðaÞ ¼ ðfT

�
A1
; T �A3

; T �A4
g; ;;

fT �A2
; T �X1

gÞ, whereas the d-explanation for �a is ET3:2 ð�aÞ ¼
ð;; fT �A1

; T �A3
; T �A4

g; fT �A2
; T �X1

gÞ. Fig. 5 shows all the dialectical
trees of ET3:2 ðaÞ and ET3:2 ð�aÞ. Observe that the d-explanation from
T3.2 for the claim e is ET3:2 ðeÞ ¼ ð;; fT

�
E2
g; fT �E1

gÞ. The marked
dialectical trees of ET3:2 ðeÞ are shown in Fig. 6.

If the first element of a d-explanation ETðQÞ is not empty, then
there exist at least one argument that provides a warrant for the
claim Q. Below we will show that based on a d-explanation it is
possible to define the notion of answer for a query (a claim posed
to an argumentation theory). But first we will analyze some prop-
erties of the proposed formalism and we will introduce the notion
of coherent argumentation theory.

Proposition 3.2. Let T = (hArgs,Ri,DC) be an argumentation theory
and let ETðQÞ ¼ T�UðQÞ;T�UðQÞ;T�DðQÞ

� �
be a d-explanation. The sets

T�UðQÞ, T�UðQÞ, and T�DðQÞ are disjoint.

Proof. By Proposition 2.1, for each argument in the set Args there
is a unique exhaustive dialectical tree. Therefore, all the dialectical
trees for Q and for Q are different, and hence, T�UðQÞ and T�UðQÞ are
disjoint. Recall that the mark of the root of a dialectical tree is
unique by definition, and thus, the set T�DðQÞ has no trees whose
root is marked U. Therefore, T�DðQÞ and T�UðQÞ [ T�UðQÞ

� �
are dis-

joint sets. h
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
From Proposition 3.2 it holds that T�DðQÞ ¼ ðT�ðQÞ [ T�ðQÞÞn
T�UðQÞ [ T�UðQÞ
� �

. Note that in Example 3.3, the third component
of the d-explanations ET3:2 ðaÞ and ET3:2 ð�aÞ are the same, and the first
two are the same but in different order. The following proposition
shows that this situation will hold in general for explanations of
contradictory claims. Its proof is straightforward from Definitions
3.2 and 3.1.

Proposition 3.3. Let T be an argumentation theory and let Q be a
claim, then ETðQÞ ¼ ðX;Y ; ZÞ iff ETðQÞ ¼ ðY;X; ZÞ.

Proof. Since ETðQÞ ¼ T�UðQÞ;T�UðQÞ;T�DðQÞ
� �

and we assume that
Q ¼ Q , then ETðQÞ ¼ T�UðQÞ;T�UðQÞ;T�DðQÞ

� �
. h

The previous examples have shown how it is possible that some
of the components of a d-explanation could be empty. The first
component of the explanation ETðQÞ will be empty if: (a) There ex-
ist no argument for Q, or (b) All the dialectical trees corresponding
to arguments for Q are marked D. In both cases there is no warrant
for Q, but in each one the associated d-explanation is different. In
case (a) T�DðQÞ will contain no dialectical trees corresponding to
arguments for Q, whereas in case (b) T�DðQÞ will contain dialectical
trees for arguments that support Q (e.g., ET3:2 ð�aÞ ¼ ð;; fT

�
A1
; T �A3

;

T �A4
g; fT �A2

; T �X1
gÞ). The second component of ETðQÞ will be empty

if there is no warrant for Q , and the third component will be empty
when there is no dialectical tree for Q nor Q whose root is marked
D. Finally, as the next proposition establishes, observe that there
are cases where the three components can be empty, e.g.,
ET3:2 ðQÞ ¼ ð;; ;; ;Þ.

Proposition 3.4. Let T be an argumentation theory. Then
ETðQÞ ¼ ð;; ;; ;Þ iff no arguments for Q nor Q exist.
Proof. Assume that there is at least one argument for Q (respec-
tively Q) then this argument will have exactly one dialectical tree
and the root of this tree will be marked either U or D. If the mark is
U then T�UðQÞ (respectively T�UðQÞÞ will be non-empty, whereas if
the mark is D then T�DðQÞ will be non-empty. h

Observe that Definition 3.2 impose no condition over the sets
T�UðQÞ and T�UðQÞ, and thus their elements will depend only on
the particular defeat relation and the associated dialectical con-
straints of the given argumentative theory T. For instance, there
can be an argumentative theory T0 where for a claim Q, both Q
and Q are warranted from T0, e.g., consider the argumentation the-
ory ðhfA;Bg; ;i; ;Þ, where claimðAÞ ¼ Q and claimðBÞ ¼ Q . In this
theory, no argument defeats the other and therefore both argu-
ments are trivially warranted and so are their claims Q and Q . If
such a situation occurs, then T�UðQÞ – ; and T�UðQÞ – ;. In light of
this situation, we propose the following definitions, where the first
one states that an argumentative theory will be coherent when for
any claim Q, if Q is warranted then Q is not warranted.

Definition 3.3 (Coherent argumentation theory). An argumentation
theory T = (hArgs,Ri,DC) is coherent iff for any claim Q such that
there exists an argument A 2 Args with claimðAÞ ¼ Q that is
warranted, then there is no argument B 2 Args with claimðBÞ ¼ Q
that is warranted.

Answers from coherent argumentation theories are of special
importance.

Definition 3.4 (Coherent d-explanation). Given a claim Q, a
d-explanation ETðQÞ ¼ T�UðQÞ;T�UðQÞ;T�DðQÞ

� �
for Q from an argu-

mentation theory T is said to be coherent iff T�UðQÞ – ; implies
T�UðQÞ ¼ ;.
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


8 A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx
The relation between coherent theories and coherent d-
explanations is thus established.

Theorem 3.1. Let T = (hArgs,Ri,DC) be an argumentation theory. If T
is coherent, then for any claim Q its d-explanation ETðQÞ ¼ ðT�UðQÞ;
T�UðQÞ;T�DðQÞÞ is coherent.
Proof. Consider a d-explanation where T�UðQÞ – ;; then, by defini-
tion of T�UðQÞ, there exists an argument A for claim Q where the
root of T �A is marked U, and therefore A is warranted. Since T is
coherent, there will be no warranted argument B in Args such that
claimðBÞ ¼ Q . Then, for every argument B with claim Q , the root of
T �B will be marked D. Therefore, T�UðQÞ ¼ ;. h

Note that a d-explanation ETðQÞ ¼ ;; ;;T�DðQÞ
� �

where
T�DðQÞ– ; is possible and means that although there are argu-
ments for Q or Q , there is no warrant for either literal (e.g.,
ET3:2 ðf Þ in Example 3.2).

Many applications of argumentative systems (e.g., expert sys-
tems) are query-based. Therefore, it is useful to define two con-
cepts related to an explanation: query and answer for a query. For
instance, following the scenario of Example 3.1, the query ‘‘go to
the opera show’’ can be formulated and the answer for that query
should be ‘‘no’’. In our proposal, a query Q, called T-query, is a
potential claim of an argument to be found in an argumentation
theory T. Next, we will define T-answers for T-queries, in terms
of coherent d-explanations.

Definition 3.5 (T-answer). Let T be a coherent argumentation
theory and Q a T-query. Let ETðQÞ ¼ ðT�UðQÞ;T�UðQÞ;T�DðQÞÞ be a
d-explanation for Q obtained from T. The T-answer for Q is:

– YES, if T�UðQÞ – ;.
– NO, if T�UðQÞ – ;.
– UNDECIDED, if T�DðQÞ– ;, T�UðQÞ ¼ ; and T�UðQÞ ¼ ;.
– UNKNOWN, if ETðQÞ ¼ ð;; ;; ;Þ.
Proposition 3.5. Let T be a coherent argumentation theory and Q a
T-query, then the T-answer that is obtained from T is unique.
Proof. Let ETðQÞ ¼ T�UðQÞ;T�UðQÞ;T�DðQÞ
� �

be the T-answer for Q in
T. If the answer is UNKNOWN, i.e., ETðQÞ ¼ ð;; ;; ;Þ, then for Proposition
3.4 there is no argument for either Q or its complement Q and the
only possible answer is UNKNOWN. If the T-answer for the T-query Q
is YES then there is at least one argument A 2 Args with
claimðAÞ ¼ Q that is warranted, since the theory T is coherent there
is no warranted argument B 2 Args with claimðBÞ ¼ Q , i.e.,
T�UðQÞ ¼ ; and the answer cannot be NO. Analogously, exchanging
the roles of Q and Q , for the case that the T-answer is NO. In both
cases, the answer cannot be UNDECIDED nor UNKNOWN because,
depending the case, T�UðQÞ or T�UðQÞ is non empty. If the T-answer
Q is UNDECIDED, then there is no warranted argument for Q or for Q ,
therefore the T-answer cannot be neither YES nor NO; and since
T�DðQÞ– ;, the answer cannot be UNKNOWN. h

To understand why a T-query has a particular T-answer, it is
essential to examine which arguments have been considered and
the existing connections among them. It is important to note that
in argumentation systems where the proof procedure is based on
the construction of dialectical trees, d-explanations play a central
role. The d-explanations show the reasoning carried out by the sys-
tem, and they allow to visualize the support for a given answer. It
is clear that without this information it would be very difficult to
understand the returned answer.
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
Returning to Example 3.1 where arguments Oshow and Ofriends

support the claim ‘‘go to the opera’’ (go) and Obaby and Oget support
the contrary, ‘‘do not go to the opera’’ (go). The d-explanation for go
is EðgoÞ ¼ ð;; fObaby;Ogetg; fOshow;OfriendsgÞ Therefore, the answer for
go is NO and the explanation shows why all arguments that support
go were considered defeated (dialectical trees were depicted in
Fig. 4(b)–(e)). It is important to notice at this point that the exam-
ples presented are necessarily small given the space available, but
it is easy to see that as the number of arguments grows the size of
the trees will tend also to grow. The visualization of the answers
will become more important in these cases, that surely are com-
mon in real applications.

Example 3.4. Consider again argumentation theory T3.2 of Exam-
ple 3.2. Recall that the dialectical explanation for a is
ET3:2 ðaÞ ¼ ðfT

�
A1
; T �A3

; T �A4
g; ;; fT �A2

; T �X1
gÞ; then, the answer for a

is YES and the answer for �a is NO. Observe that ET3:2 ðdÞ ¼
ð;; ;; fT �D1

; T �D2
gÞ, therefore the answer for d (and also for �d) is

UNDECIDED. Finally, since ET3:2 ðhÞ ¼ ð;; ;; ;Þ, the answer for h is
UNKNOWN.

For some particular applications, a d-explanation may represent
too much information and a more concise explanation could be
needed. For instance, in order to show that there is a warrant for
a claim Q, a single marked dialectical tree whose root is marked
U can be shown. Its definition is introduced next.

Definition 3.6 (Concise explanation). Let T be a coherent argumen-
tation theory and Q a T-query. A concise explanation for Q, denoted
by CETðQÞ, is a single marked dialectical tree T � obtained as
follows:

� if the T-answer for Q is YES, then T � ¼ cðT�UðQÞÞ.
� if the T-answer for Q is NO, then T � ¼ c T�UðQÞ

� �
.

� if the T-answer for Q is UNDECIDED, then T � ¼ c T�DðQÞ
� �

.
� if the T-answer for Q is UNKNOWN, then T � is a null tree called s.

Where c is a selection function that returns exactly one element
from a set of marked dialectical trees.

The definition of c depends on a particular criterion for
selecting the most representative dialectical tree, possibly
reflecting some set of attributes characterizing the domain of
the problem. For instance, to return the tree that has less nodes,
the tree with more nodes, or the one with the longest argumen-
tation line.

If a preference criterion between arguments can be defined,
then this criterion can be used for selecting the most preferred rep-
resentative tree. For example, assume that A 	 B means A is pre-
ferred over B, then the dialectical tree whose root is best with
respect to 	 can be selected Note finally that c should be defined
in such a way that it returns a single dialectical tree, if there are
more than one tree that satisfy the adopted criterion, one of them
can be randomly selected.

Example 3.5. Consider argumentation theory T3.2 of Example 3.2
where there are four arguments (A1;A2;A3, and A4) that support
claim a and one argument ðX1Þ that supports claim �a. Recall that
T�UðaÞ ¼ fT �A1

; T �A3
; T �A4

g and T�Uð�aÞ ¼ ;, and that the T-answer for a
is YES. Consider that c selects the tree that has less nodes, then
CE3:2ðaÞ ¼ T �A4

.

4. Answers and d-explanations in DELP: a reification

The formal setup of abstract argumentation frameworks has
allowed the study of the different semantics emerging from the
interaction of arguments through the attack relation. For argumen-
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx 9
tation systems where arguments are provided an internal structure
(Besnard & Hunter, 2001; Bondarenko et al., 1997; Chesñevar et al.,
2004; García & Simari, 2004; Prakken, 2010; Simari, Chesñevar, &
García, 1994; Simari & Loui, 1992), d-explanations provide the
additional capability of aiding in the understanding of how knowl-
edge should be represented and of supporting the debugging pro-
cess of the underlying knowledge base. See Bryant and Krause
(2008) for an in-depth review of implementation of defeasible rea-
soning systems.

In this section we will demonstrate the capabilities of the for-
malism defined above by reifying the abstract concepts intro-
duced so far in our formalism. Among the possible options
above mentioned, we have chosen a well-known and imple-
mented argumentation system called DELP (Defeasible Logic Pro-
gramming). The representation language of DELP (García &
Simari, 2004) is an extension of the language of Logic Program-
ming. The system defines arguments, the notion of conflict and
defeat between arguments (attack in the terminology of abstract
argumentation frameworks), and uses a dialectical proof proce-
dure to obtain the warranted arguments. DELP is fully imple-
mented and available online (DeLP-home-page, 2007). Although
this decision is based on the possibility of experimenting directly
with the implementation to refine our research, it is possible to
apply similar constructions to any of the remaining systems
mentioned before (Besnard & Hunter, 2001; Bondarenko et al.,
1997; Prakken, 2010).

In the last years DELP has been used for knowledge representa-
tion and reasoning in different domains. For instance, in Black
and Hunter (2009) DELP was adapted and used for a Generative
Inquiry Dialogue System; in Chesñevar, Maguitman, and Simari
(2006) an argumentation recommender system based on DELP was
introduced; in Ferretti, Errecalde, García, and Simari (2007) an
application of Defeasible Logic Programming to Decision Making
in a robotic environment was proposed; in Gómez, Chesñevar,
and Simari (2008) DELP was used for the specification of scripts
for reasoning about form fields; and in Thimm and Kern-Isberner
(2008) a distributed argumentation framework using Defeasible
Logic Programming was defined.

DELP has the declarative capability of representing weak infor-
mation in the form of defeasible rules, and provides a defeasible
argumentation inference mechanism for warranting the entailed
conclusions. A defeasible rule (a 
 b) is used to represent tentative
information that may be used if nothing can be posed against it
(the rule can be read as ‘‘reasons to believe in b provide reasons
to believe in a’’). Below we will provide the essential elements of
Defeasible Logic Programming as support for the rest of the presen-
tation; the terminology involved is an extension of the used in
Logic Programming. The reader is directed to García and Simari
(2004) where full details can be found.

A DELP-program P is a set of facts, strict rules, and defeasible rules
defined as follows. Facts are ground literals representing atomic
information or the negation of atomic information using strong
negation ‘‘�’’, e.g., chicken(little) or �scared(little). Strict Rules, de-
noted L0 L1, . . . ,Ln, where L0 is a ground literal and {Li}i>0 is a
set of ground literals represent non-defeasible information, e.g.,
bird chicken or �innocent guilty. Defeasible Rules, denoted
L0 
 L1, . . . ,Ln, where L0 is a ground literal and {Li}i>0 is a set of
ground literals represent tentative information, e.g., �flies 

chicken or flies 
 chicken,scared.

When required, a DELP-program will be denoted (P,D) distin-
guishing the subset P of facts and strict rules, and the subset D
of defeasible rules (see Example 4.1). Strong negation is allowed
in the head of rules, and hence may be used to represent contradic-
tory knowledge. Given a program (P,D), contradictory literals
could be derived. Nevertheless, the set P (which is used to repre-
sent non-defeasible information) must possess certain internal
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
coherence, and therefore no pair of contradictory literals can be
derived from P.

Example 4.1. Consider the DELP-program (P4.1,D4.1) that repre-
sents the scenario introduced in Example 3.1. In this program, go,
show_tonight, birthday, baby, and friends stand for ‘go to the opera
show’, ‘there is an opera show tonight’, ‘today is Bob’s birthday’, ‘a
friend is coming with her baby’, and ‘get together with friends’,
respectively.

P4:1 ¼ fshow tonight; birthday; babyg;

D4:1 ¼
go 
 showTonight go 
 showTonight; friends

friends 
 birthday � go 
 showTonight; friends; baby

� go 
 friends

8><
>:

9>=
>;
:

The program (P4.1,D4.1) has five defeasible rules representing
tentative information, and three facts representing that there is
an opera show tonight, today is Bob’s birthday, and a friend is com-
ing with her baby. The first defeasible rule states that if there is an
opera show tonight then there is a good reason to go to the opera
house. The second defeasible rule represents that on his birthday
Bob usually gets together with friends. The third one states that,
if friends are coming, then Bob would probably stay at home. How-
ever, the fourth rule establishes that the fact that there is an opera
show tonight and being in the company of friends provide good
reasons to go to the opera. The last rule states that the situation
changes if a friend brings a baby.

In the previous section, arguments were considered as abstract
entities; however, in DELP, arguments are obtained from a particular
program, they have a concrete structure, and they must satisfy cer-
tain formal restrictions. Next, we introduce the definition of argu-
ment and then, in Example 4.2, different arguments that can be
obtained from the program (P4.1,D4.1) are shown.

Definition 4.1 (Argument structure). Let (P,D) be a DELP-program,
hA; Li is an argument structure, or simply an argument, for a literal L
obtained from (P,D) if A is set of defeasible rules (A# D) such
that: (1) there exists a derivation for L from P [ A; (2) the set
P [ A is non-contradictory (i.e., no pair of contradictory literals can
be derived); and (3) There is no A0(A that satisfies (1) and (2) (i.e.,
A is a minimal subset satisfying (1) and (2)).

As shown in Example 4.2, in DELP it is possible to build argu-
ments for contradictory literals, e.g., from (P4.1,D4.1) there are
arguments for go and �go.

Example 4.2. From the DELP-program (P4.1,D4.1) introduced in
Example 4.1 the following arguments can be obtained:

hO1; goi ¼ hfgo 
 showTonightg; goi
hO2;� goi ¼ hfð� go 
 friendsÞ; ðfriends 
 birthdayÞg;� goi
hO3;goi¼ hfðgo
 showTonight; friendsÞ;ðfriends
 birthdayÞg;goi
hO4;� goi ¼ hfð� go 
 showTonight; friends; babyÞ; ðfriends 

birthdayÞg;� goi

In DELP an argument hD;Mi attacks hA; Li if hD;Mi is a proper or
blocking defeater for hA; Li. A defeater for hA; Li is an argument
hD;Mi such that hA; Li is not preferred over hD;Mi, and L and M
are in conconflict, i.e., a pair of contradictory literals can be derived
from P [ {L,M}. A defeater can be proper (hD;Mi is preferred over
hA; Li) or blocking (neither is preferred over the other).

It is important to note that in DELP the argument comparison cri-
terion is modular, and it is possible to select the most appropriate
criterion for the domain in question. By default the system pro-
vides a syntactic criterion which extends classic specificity and in
the examples below we will use it. The criterion, called generalized
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


10 A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx
specificity (Stolzenburg, García, Chesñevar, & Simari, 2003), favors
two aspects in an argument: it prefers (1) a more precise argument
(i.e., with greater informational content), and (2) a more concise
argument (i.e., with less use of rules). Using this criterion, in Exam-
ple 4.2, argument hO3; goi is preferred over hO2;� goi (more pre-
cise), hO4;� goi is preferred over hO3; goi and hO4;� goi is
preferred over hO1; goi. Note that hO2;� goi is not preferred over
hO1; goi and vice versa. Therefore, hO2;� goi is a blocking defeater
for hO1; goi (and vice versa), hO3; goi is a proper defeater for
hO2;� goi, and hO4; goi is a proper defeater for hO3;� goi and also
for hO3;� goi.

In DELP an argumentation line will be considered acceptable
when the line satisfies Cco (commitment, see Example 2.3), Cnc

(non-circularity, see Example 2.2), and a third constraint Cbb that
we will introduce next. Consider the argumentation line
k ¼ ½A1;A2; . . . ;An�. We define Cbb(k) = False if there are three con-
secutive arguments in the line such that Ak is a blocking defeater
for Ak�1, and Akþ1 is a blocking defeater for Ak (2 6 k 6 n� 1).
Otherwise, Cbb(k) = True.

Example 4.3. Consider the arguments described in Example 4.2.
The argumentation lines ½hO1; goi; hO4;� goi� and ½hO1; goi;
hO2;� goi; hO3; goi� are acceptable argumentation lines in DELP,
whereas ½hO1; goi; hO2;� goi; hO1; goi� is not.

DELP’s marked (or labeled) dialectical trees will be depicted as a
tree where the nodes represent the arguments as triangles with
their associated labels (‘‘U’’ or ‘‘D’’), and the edges connecting them
denote the defeat relation (see Fig. 7). A bidirectional arrow edge
represents a blocking defeat, whereas a unidirectional arrow repre-
sents a proper defeat. An argument hA; Li will be pictorially
depicted as a triangle, where its upper vertex points to the conclu-
sion L, and the name of the set of defeasible rules A is associated
with the triangle itself. At the right of each node the associated
mark representing its status (‘‘U’’ or ‘‘D’’) will be shown. For in-
stance, Fig. 7 shows four marked dialectical trees obtained from
the DELP-program (P4.1,D4.1) and associated with the query go.
Two of them ðT �hO1 ;goi and T �hO3 ;goiÞ have their roots marked as ‘‘D’’,
whereas the other two ðT �hO2 ;�goi and T �hO4 ;�goiÞ have their roots
marked as ‘‘U’’. Hence, the literal ‘�go’ is warranted.

We will turn now to the consideration of explanations and an-
swers for ground queries in DELP (called DELP-queries). Later, in Sec-
tion 4.2, we will generalize explanations and answers for
schematic queries.

4.1. Queries, answers, and d-explanations in DELP

As introduced above, a DELP-query is a ground literal that DELP will
try to warrant. The dialectical process for warranting a DELP-query
involves the construction and evaluation of several arguments that
either support or interfere with the query under analysis. These
generated arguments are connected through the defeat relation
Fig. 7. Dialectical trees of Example 4.1.

Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
and are organized in dialectical trees. Observe that, given a
DELP-query Q, there could exist different arguments that support
Q, and each argument will generate a different dialectical tree. As
we will show below, the returned answer for Q will only be,
metaphorically speaking, ‘the tip of the iceberg’ of a set of several
dialectical trees that have been explored to support the resulting
answer.

To understand why a DELP-query receives a particular answer, it
is essential to consider the arguments that have been generated
and the existing connections among them. Therefore, an explana-
tion for a DELP-query Q will consist of a structure that includes those
marked dialectical trees that are considered for establishing the
warrant status of Q, that is, not only the marked dialectical trees
for arguments that support Q but also marked dialectical trees
for arguments that support Q . In DELP, Q means the complement
of Q with respect to strong negation ‘‘�’’ (i.e., �a ¼� a and
� a ¼ a). Based on the formalism presented in the previous section,
below we will introduce DELP’s corresponding notions of dialectical
tree sets and DELP-d-explanations as particular cases of Definitions
3.1 and 3.2 respectively.

Definition 4.2 (DELP dialectical tree sets). Let P be a DELP-program
and Q a DELP-query. Let T�ðQÞ ¼ fhA0;Qi; . . . ; hAn;Qig be the set of
all arguments for Q from P, and T�ðQÞ ¼ fhB0;Qi; . . . ; hBm;Qig the
set of all arguments for Q from P. The sets T�UðQÞ# T�ðQÞ, and
T�DðQÞ# T�ðQÞ [ T�ðQÞ are defined as follows:

T�UðQÞ ¼ fT
� 2 T�ðQÞ jMarkðT �Þ ¼ Ug,

T�DðQÞ ¼ fT
� 2 ðT�ðQÞ [ T�ðQÞÞ jMarkðT �Þ ¼ Dg.

In DELP, given an argument A there is a unique associated dialec-
tical tree, therefore, a similar result to Proposition 3.2 holds: given
a DELP P and a query Q, the sets T�UðQÞ, T�UðQÞ, and T�DðQÞ are
disjoint. Thus, it also holds that T�DðQÞ ¼ ðT�ðQÞ [ T�ðQÞÞn
ðT�UðQÞ [ T�UðQÞ).

Definition 4.3 (DELP-d-explanation). Let P be a DELP-program and Q
a DELP-query. A DELP-d-explanation for Q from P is the tuple
EPðQÞ ¼ ðT�UðQÞ;T�UðQÞ;T�DðQÞÞ.

That is, a DELP-d-explanation EPðQÞ for a claim Q from a DELP-pro-
gram P is a triplet where the first component is a (possibly empty)
set of marked dialectical trees from P that provide a warrant for Q.
The second component of EPðQÞ is a (possibly empty) set of marked
dialectical trees that provide a warrant for Q , whereas the third
component (T�DðQÞ) is a (possibly empty) set that contains the
marked dialectical trees for Q or for Q that provide no warrant,
i.e., their roots are marked D (defeated).

Example 4.4. Consider the DELP-program P4:1 of Example 4.1. The
DELP-queries ‘go’ and ‘�go’ have the following DELP-d-explanations:

EP4:1 ðgoÞ ¼ ð;; fT �hO4 ;�goig; fT
�
hO1 ;goi; T

�
hO2 ;�goi; T

�
hO3 ;goigÞ;

EP4:1 ð� goÞ ¼ ðfT �hO4 ;�goig; ;; fT
�
hO1 ;goi; T

�
hO2 ;�goi; T

�
hO3 ;goigÞ.

Fig. 7 shows all the marked trees included in these explanations.
Observe that the d-explanation EP4:1 ðsleepÞ ¼ ð;; ;; ;Þ.

Propositions 3.3 and 3.4 also hold for DELP-d-explanations, that
is, given a DELP-program P and a DELP-query Q:

� EPðQÞ ¼ ðX;Y ; ZÞ iff EPðQÞ ¼ ðY;X; ZÞ, and

� EPðQÞ ¼ ð;; ;; ;Þ iff there are no arguments for Q nor Q .The cor-
responding proofs for DELP are straightforward from Definitions
4.2 and 4.3, following analogous steps as the ones used for Prop-
ositions 3.3 and 3.4.
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx 11
Recall that a d-explanation is coherent if T�UðQÞ – ; implies
T�UðQÞ ¼ ; (Definition 3.5). That is, given a query Q that is war-
ranted, there cannot be warranted arguments that support Q .
The following proposition shows that DELP-d-explanations have
the same property.

Proposition 4.1. DELP-d-explanations are coherent.
Fig. 8. Dialectical trees of Example 4.5.
Proof. Given a DELP-program P, there cannot be warrants for a
query Q and for Q . Hence, according to Definition 3.3 DELP is
coherent. Therefore, by Theorem 3.1 DELP-d-explanations are coher-
ent. h

Since DELP-d-explanations are coherent, the answers for DELP-
queries can be defined in a similar way as T-answers. In DELP, the
answer to a query Q is YES when Q is warranted, NO when Q is war-
ranted, UNDECIDED if neither Q nor Q is warranted, and UNKNOWN when
there is no argument for Q. Next, we will define DELP-answers for
DELP-queries in terms of a DELP-d-explanation.

Definition 4.4 (DELP-answer). Let P be a DELP-program and Q a
DELP-query. Let EPðQÞ ¼ T�UðQÞ;T�UðQÞ;T�DðQÞ

� �
be a DELP-d-

explanation for Q. The DELP-answer for Q is:

– YES, if T�UðQÞ – ;.
– NO, if T�UðQÞ – ;.
– UNDECIDED, if T�DðQÞ– ;, T�UðQÞ ¼ ; and T�UðQÞ ¼ ;.
– UNKNOWN, if EPðQÞ ¼ ð;; ;; ;Þ.

In DELP strict and defeasible rules are ground. However, follow-
ing the usual convention introduced in Lifschitz (1996), we will
use ‘‘schematic rules’’ with variables. Each schematic rule repre-
sents several ground rules where variables are replaced (instanti-
ated) by ground elements. To distinguish variables, as usual, an
initial uppercase letter is used.

Example 4.5. Consider the DELP-program (P4.5,D4.5) where ‘flies’ is
abbreviated as ‘f’:

P4:5 ¼

birdðXÞ  chickenðXÞ
chickenðlittleÞ
chickenðtinaÞ
scaredðtinaÞ
birdðrobÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

; D4:5 ¼
f ðXÞ 
 birdðXÞ
f ðXÞ 
 chickenðXÞ; scaredðXÞ
� f ðXÞ 
 chickenðXÞ:

8><
>:

9>=
>;

As mentioned before, a DELP-query is a ground literal and argu-
ments are built using ground rules. From the program (P4.5,D4.5)
the following three arguments can be obtained (where ground in-
stances of schematic rules were used):

hA1; f ðtinaÞi ¼ hff ððtinaÞÞ 
 birdðtinaÞg; f ððtinaÞÞi,
hA2;� f ðtinaÞi ¼ hf� f ðtinaÞ 
 chickenðtinaÞg;� f ðtinaÞi, and
hA3; f ðtinaÞi ¼ hff ðtinaÞ 
 chickenðtinaÞ; scaredðtinaÞg; f ðtinaÞi.

Here, hA2;� f ðtinaÞi defeats hA1; f ðtinaÞi and hA3; f ðtinaÞi
defeats hA2;� f ðtinaÞi. Observe that the DELP-d-explanation for
DELP-query ‘f(tina)’ is ðfT �hA1 ;f ðtinaÞi; T

�
hA3 ;f ðtinaÞig; ;fT

�
hA2 ;�f ðtinaÞigÞ, and

therefore, the answer for this query is YES (Fig. 8 shows the marked
dialectical trees). Note that the DELP-d-explanation for ‘�f(tina)’ is
ð;; fT �hA1 ;f ðtinaÞi; T

�
hA3 ;f ðtinaÞig; fT

�
hA2 ;�f ðtinaÞigÞ, whose answer is NO. Final-

ly, observe that the answer for ‘walks(tina)’ is UNKNOWN, because no
argument could be formed for that query.

Note that from the point of view of a knowledge engineer of
knowledge programmer, DELP-d-explanations give a global idea of
the interactions among arguments within the context of a query.
Thus, DELP-d-explanation can also be used as a debugging tool while
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
programming: whenever an unexpected answer is obtained, the
programmer can resort to these explanations to detect errors in
the program. It might also happen that the answer appear to be
correct but the explanation will reveal a mistake in the knowledge
representation. For instance, if in Example 4.5 the rule ‘‘f(X) 

chicken(X)’’ is mistakenly used instead of ‘‘�f(X) 
 chicken(X)’, there
will be no argument either for �f(little) or �f(tina). Similar prob-
lems may arise in case a literal is misspelled (e.g., ‘‘chickem’’ or
‘‘chickn’’ instead of ‘‘chicken’’). In these situations, explanations
can help the debugging task by showing that some expected argu-
ments are missing or that some unexpected arguments arise.

In the first part of this section we have considered DELP-d-
explanations for ground queries (e.g., go, �f(tina) or bird(little));
nevertheless, sometimes is useful to have a more general type of
query. With that in mind, we will introduce schematic queries that
allow variables and represent a set of individual queries. For in-
stance, in Example 4.5, instead of submitting several ground que-
ries (f(tina), f(little), f(rob), etc.), to know ‘‘if it is warranted that
some individual flies’’, a single schematic query can be used. Below,
we will extend the notions of DELP-d-explanations and DELP-answers
for this new type of query.

4.2. Schematic queries and generalized DELP-d-explanations

A schematic query is a literal that has at least one variable; it
represents the set of DELP-queries that unify (in the Logic Program-
ming sense (Lloyd, 1987)) with it and only have constants from the
program signature. For instance, in the DELP-program of Example
4.5, the schematic query f(X) will refer to f(tina), f(rob), and f(little).
To accommodate this possibility, we will extend the definition of
DELP-d-explanations to include schematic queries. Observe that
the schematic query f(X) actually has infinite terms that unify with
the variable X; however, all queries with terms that are not in the
program signature (e.g., f(mac) in Example 4.5) will produce an UN-

KNOWN answer and therefore an empty explanation. Thus, the set of
instances of a schematic query that will be considered for generat-
ing a generalized DELP-d-explanation will refer only to those in-
stances of DELP-queries that contain constants from the program
signature.

Schematic queries give us the possibility of asking more general
questions than ground queries do. Now, we are not asking whether a
certain piece of knowledge can be believed, but we are asking if
there exists an instance of that piece of knowledge (related to an
individual) that can be warranted in the system. This could lead to
a more complex form of reasoning as we may pose a query, gather
the warranted instances, and continue the reasoning process with
the individuals involved in these warrants. Thus, an explanation
for a schematic query will contain the explanations for the elements
of the set of individual DELP-queries that it represents.

Definition 4.5 (Generalized DELP-d-explanation). Let P be a DELP-
program and Q a schematic query. Let {Q1, . . . ,Qn} be all the ground
instances of Q with respect to the signature of P. Let EPðQiÞ be the
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


12 A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx
DELP-d-explanation for Qi (1 6 i 6 n) from program P. Then, the
generalized DELP-d-explanation for Q in P is GEPðQÞ ¼
fEPðQ1Þ; . . . ; EPðQnÞg.

Observe that a DELP-d-explanation (Definition 4.3) is a particular
case of a generalized DELP-d-explanation, where the set GEPðQÞ is a
singleton. Consider for instance the DELP-program (P4.5,D4.5) and
suppose that we want to know whether or not from this program
it can be warranted that a certain individual does not fly. If we
make the query for �f(X), the answer is YES, because there is a war-
ranted instance: �f(little). The supporting argument is:
hB1; � f ðlittleÞi ¼ hf� f ðlittleÞ 
 chickenðlittleÞg; � f ðlittleÞi. Note
that the answer for the schematic query f(X) is also YES, but with
a different set of warranted instances: f(tina) and f(rob). The sup-
porting argument for instance ‘X = rob’ is the undefeated argument:
hC1; f ðrobÞi ¼ hff ðrobÞ 
 birdðrobÞg; f ðrobÞi.

The generalized DELP-d-explanation for f(X) from
P4:5 ¼ ðP4:5;D4:5Þ is:

GEP4:5 ðf ðXÞÞ ¼ fðfT
�
hA1 ;f ðtinaÞi; T

�
hA3 ;f ðtinaÞig; ;; fT

�
hA2 ;�f ðtinaÞigÞ;

ð;; fT �hB2 ;�f ðlittleÞig; fT
�
hB1 ;f ðlittleÞigÞ; ðfT

�
hC1 ;f ðrobÞig; ;; ;Þg:

The dialectical trees of GEP4:5 ðf ðXÞÞ are shown in Fig. 9.
Consider a schematic query Q(X) and a DELP-program P. Suppose

that Q(X) represents five (ground) DELP-queries: Q(a), Q(b), Q(c),
Q(d), and Q(e). As the reader may have noticed from the example
above, it may happen that from P the answer for Q(a) is YES, the an-
swer for Q(b) is NO, the answer for Q(c) is YES, the answer for Q(b) is
UNDECIDED, and the answer for Q(a) is NO. Next, we define the answer
for a schematic query taking into consideration the individual an-
swers for each ground instance.

Definition 4.6 (DELP-answer for a schematic query). Let Q be a
schematic query and P be a DELP-program. Let {Q1, . . . ,Qn} be all the
ground instances of Q w.r.t. the signature of P. The answer for the
schematic query Q is:

� YES, if there exists an instance Qi 2 {Q1, . . . ,Qn} such that the
answer for the DELP-query Qi is YES (i.e., T�UðQiÞ– ;).
Fig. 9. Dialectical trees assoc

Fig. 10. Dialectical tree

Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
� NO, if for every instance Qi 2 {Q1, . . . ,Qn}, the answer for Qi is NO,
(i.e., T�UðQ iÞ– ; for all Qi).
� UNDECIDED, if there is no instance Qi 2 {Q1, . . . ,Qn} such that the

answer for the DELP-query Qi is YES, and there exists an instance
Qk 2 {Q1, . . . ,Qn} such that the answer for Qk is UNDECIDED.
� UNKNOWN, if {Q1, . . . ,Qn} = ;

Consider, for example, that for a given program P the following
answers are obtained for these ground literals: p(a) YES, p(b) NO, p(c)
UNDECIDED, t(a) NO, t(b) NO, and t(c) UNDECIDED. Therefore, the answer
for p(X) is YES, and the answer for t(X) is UNDECIDED.

Example 4.6. Consider the DELP-program P4:6 ¼ ðP4:6;D4:6Þ

P4:6 ¼

adultðpeterÞ
adultðannieÞ
unemployedðpeterÞ
studentðannieÞ

8>>><
>>>:

9>>>=
>>>;
; D4:6 ¼

carðXÞ 
 adultðXÞ
� carðXÞ 
 unemployedðXÞ
� carðXÞ 
 studentðXÞ

8><
>:

9>=
>;
:

From (P4.6,D4.6) the following arguments can be built:

hN 1; carðannieÞi ¼ hfcarðannieÞ 
 adultðannieÞg; carðannieÞi;
hN 2;� carðannieÞi ¼ hf� carðannieÞ 
 studentðannieÞg;� carðannieÞi;
hP1; carðpeterÞi ¼ hfcarðpeterÞ 
 adultðpeterÞg; carðpeterÞi; and

hP2;� carðpeterÞi ¼ hf� carðpeterÞ 
 unemployedðpeterÞg;� carðpeterÞi:

Using the adopted comparison criterion, hN 1; carðannieÞi and
hN 2;� carðannieÞi are blocking defeaters of each other and the same
situation occurs for hP1; carðpeterÞi and hP2;� carðpeterÞi.

The generalized DELP-d-explanation for ‘car(X)’ is:

GEP4:6 ðcarðXÞÞ ¼ fð;; ;; fT �hN 1 ;carðannieÞi; T
�
hN 2 ;�carðannieÞigÞ;

ð;; ;; fT �hP1 ;carðpeterÞi; T
�
hP2 ;�carðpeterÞigÞg:

Fig. 10 shows the mentioned dialectical trees. The explanation
shows that neither ‘car(annie)’ nor ‘�car(annie)’ are warranted,
and the same holds for ‘car(peter)’ and ‘�car(peter)’. Therefore, there
are no warranted arguments and the DELP-answer for the schematic
query car(X) is UNDECIDED.
iated with GEP4:5 ðf ðXÞÞ.

s of GEP4:6 ðcarðXÞÞ.

explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx 13
4.3. Implementation details

A prototype implementation of generalized DELP-d-explanation
has been developed, integrated with two different implementa-
tions of DELP. One of these implementations is available online
(DeLP-home-page, 2007). There, DELP-d-explanations are generated
and written into an XML file. It is clear that the translation from d-
explanation to XML is rather trivial and therefore, it is not included
here.

DELP-d-explanations were also used in the implementation of a
DELP-server (García, Rotstein, Tucat, & Simari, 2007). A DELP-server
is a reasoning service that can be consulted simultaneously by sev-
eral agents from different remote hosts. The server receives queries
and, along with the answers it returns a DELP-d-explanation in XML
format. Therefore, software agents may parse DELP-d-explanations
in order to use this information for their own purposes (e.g., show
the explanation to a user, inspect which knowledge was used for
obtaining the answer, etc.). Thus, DELP-d-explanations are repre-
sented in such a way that they are useful to both humans and soft-
ware agents.
5. Conclusions and related work

Recommender systems (Ricci et al., 2011) represent an interest-
ing field where the need for improved explanation facilities has
been recognized. In Friedrich and Zanker (2011) explanations in
recommender systems are characterized by two properties. First,
an explanation should give information about the recommenda-
tion. Second, they should be aligned with the design objectives of
the system; these objectives are analyzed in Tintarev and Masthoff
(2011). An important goal, already highlighted here, is reassuring
the user about the recommendation by providing information
about the rationale behind it; this information should be given in
such a way that the user can validate the mechanism that pro-
duced the recommendation.

In the work presented here, we have addressed the problem of
providing explanation capabilities to argumentation systems. As
stated in the introduction, this is an important and yet undevel-
oped field in the area of argumentation in Computer Science. Our
focus was put on argumentation systems based on a dialectical
proof procedure, and we have defined dialectical explanations for
both, abstract argumentation frameworks and a Logic Program-
ming based argumentation system that is implemented.

One of the contributions of this paper is to introduce a formal-
ization of d-explanations for abstract argumentation frameworks
with dialectical constraints; for this formalization, different prop-
erties were proposed and analyzed. We have shown that in ab-
stract argumentation, d-explanations are a useful tool to
comprehend and analyze the interactions among arguments that
are under consideration. As another contribution, the proposed
explanation formalism was applied for providing explanation
capabilities to Defeasible Logic Programming (DELP). Hence, the an-
swer for a query can be explained in terms of the interactions of all
the arguments that DELP considered to give that answer. From the
user point of view, the answer for a query is explained presenting
the whole set of dialectical trees related to the query, and from a
DELP programmer point of view, explanations give a global idea of
the interactions among arguments within the context of a query.
Using these characteristics, DELP-d-explanation can be also used as
a debugging tool while programming: whenever unexpected
behavior arises, the programmer can use this type of explanations
to detect errors in the program.

An empirical analysis about the impact of different types of
explanations in the context of expert systems is given in Ye and
Johnson (1995). The typology there described includes: (1) trace:
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
a record of the inferential steps that led to the conclusion; (2) jus-
tification: an explicit description of the rationale behind each infer-
ential step; (3) strategy: a high-level goal structure determining the
problem-solving strategy used. From this typology, the authors
claim that – through their empirical analysis – the most useful type
of explanation is ‘‘justification’’. We contend that the type of expla-
nations we propose correspond to both the ‘‘justification’’ and the
‘‘strategy’’ types; that is, we are giving not only the strategy used
by the system to achieve the conclusion, but also the rationale be-
hind each argument, which is clearly stated by its role in the dia-
lectical tree.

A thorough survey relating explanation and argumentation
capabilities can be found in Moulin et al. (2002). The authors are
mainly concerned about negotiation/persuasion, and interactive/
collaborative explanations and they discuss interesting issues
about the integration of explanation and argumentation; for in-
stance, whether the same knowledge base can be used to generate
both explanatory and argumentative information. As it was shown,
in our proposed approach, we extract all the information from the
given knowledge base (e.g., the DELP-program) to return both kinds
of information.

We also agree with (Moulin et al., 2002), in that ‘‘argumentation
and explanation facilities in knowledge-base systems should be inves-
tigated in conjunction’’. Therefore, we propose a type of explanation
that attempts to fill the gap in the area of explanations in argument
systems. As it was shown in the examples given in our proposal,
our approach provides a higher-level explanation in a way that
the whole context of a query can be revealed.

Our approach handles d-explanations within argumentation
systems through a graphical representation of dialectical trees.
Visualization in argumentation has been addressed by Schroeder
(2000). In that paper, the objective is to provide a visual tool that
does not require the reader to understand logic to be able to follow
the argumentative process shown by the system. To achieve this,
they use an animated argumentation space: arguments are intro-
duced one by one in the process to allow for a more comprehensive
visualization. They also allow to see this space in a static manner.
Both ways give the user the possibility to navigate the space at will,
or in auto-pilot mode. Every element taking part of the argumenta-
tion process is represented graphically: conflicts are highlighted
and arguments are tagged with the role they are playing in the
whole process. Schroeder (2000) uses argumentation trees in a
similar way as we do, although we focus on their applicability to
model explanations (that is, we are concerned with providing the
whole context corresponding to the query). As stated in Section 4.3,
a d-explanation can be represented in XML, therefore explanations
can be represented in such a way that they can be used by both hu-
mans and software agents. Since the translation from a d-explana-
tion to XML is rather trivial we have not included it in the paper.
Appendix A. Proofs

This appendix includes proofs and auxiliary definitions that are
used in the proofs.

Remark 2.1. Observe that given a theory T, if an argumentation
line k satisfies Cnc then any subsequence of k also satisfies Cnc. The
same holds for Cco.

(a) Consider first Cnc. Let ka ¼ ½A1;A2; . . . ;An� be an argumenta-
tion line such that Cnc(ka) = True. Suppose that a subsequence of
ka; ku ¼ ½Ai;Aiþ1; . . . ;Aiþk� (0 6 i 6 n� k) is such that Cnc(ku) = False.
Hence, there must be an argument Ap (i 6 p 6 iþ k) such that
Ap 2 bkucp�i. Then, since ku is a subsequence of ka, it holds that
Ap 2 bkacp�1, and thus, since Ap also belongs to ka then Cnc(ka) =
False, which contradicts our initial hypothesis.
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036


14 A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx
(b) Consider now Cco. Let kb ¼ ½A1;A2, . . ., An� be an argumenta-
tion line such Cco(kb) = True. Suppose that a subsequence of kb,
ku ¼ ½Ai;Aiþ1; . . .Aiþk� (0 6 i 6 n � k) is such that Cco(ku) = False.
Hence, there must be a pair of arguments Ap and
Aq ði 6 p; q 6 iþ kÞ such that fAp;Aqg# kuS or fAp;Aqg# kuI , and
ðAp;AqÞ 2 R. Then, Ap and Aq both belong to kbS or they both be-
long to kbI, and therefore, Cnc(kb) = False, contradicting our initial
hypothesis.

A.1. Auxiliary terminology and properties used for the proof of
Proposition 2.1

Let k ¼ ½A1;A2; . . . ;An� be an argumentation line. We will write
jkj = n to denote that k has n arguments and that the length of k is n.
Then k0 ¼ ½A1;A2; . . . ;Ak�will be called an initial argumentation seg-
ment in k of length k, k 6 n, denoted bkck. When k < n we will say
that k0 is a proper initial argumentation segment in k. We will
use the term initial segment to refer to initial argumentation seg-
ments when no confusion arises. Given an argumentation line
½A1;A2; . . . ;An�, every subsequence ½Ai;Aiþ1; . . . ;Aiþk�
(1 6 i 6 n� k) is also an argumentation line. In particular, every
initial argumentation segment is also an argumentation line. Let
k and k0 be two argumentation lines in T. We will say that k0 extends
k in T iff k = bk0ck, for some k < jk0 j, that is, k0 extends k iff k is a prop-
er initial argumentation segment of k0.

Definition 5.1 (Bundle set). Let T be an argumentation theory and
A an argument in T. A set SA ¼ fk1; k2; . . . ; kng of argumentation
lines rooted in A, that are all acceptable with respect to T, is called
a bundle set for A in T if and only if there is no pair ki; kj 2 SA such
that ki extends kj. If every argumentation line in SA is exhaustive,
then SA is called an exhaustive bundle set for A in T.

Next, we will define mappings which allow to re-formulate a
bundle set SA as a dialectical tree T A and vice versa.

Definition 5.2 (Mapping T). Let T be an argumentative theory, and
let SA be a bundle set of argumentation lines rooted in an argument
A of T. We define the mapping T : }ðLinesAÞ n f;g ! TreeA as
TðSAÞ¼defT A, where LinesA is the set of all argumentation lines
rooted in A, TreeA is the quotient set of TreeA by �s, and T A
denotes the equivalence class of T A.
Proposition 5.1. For any argument A in an argumentative theory T,
the mapping T is a bijection.
Proof. The mapping is well-defined. If TðSAÞ ¼ T A – T 0A ¼ TðS0AÞ
then there must differ in at least one branch. That implies that
there is at least one of the acceptable argumentation lines in SA
that it is different from one of the acceptable argumentation lines
in S0A. Thus, SA – S0A.

The mapping is surjective. Clearly, given a T A the set of all
paths from its leaves to the root is a set S of argument lines that
satisfies Definiton 2.7.

The mapping is injective. Let us assume that TðSAÞ ¼ T S0A
� �

but
SA – S0A. Then there is at least one argumentation line that belongs
to SA that does not belong to S0A (or the other way around). That
argumentation line will produce a branch in the TðSAÞ that will not
appear in T S0A

� �
. Therefore, the assumption cannot hold and

SA ¼ S0A. h

As the mapping T is a bijection, so that we can define also the
inverse mapping S¼def T

�1 which allow us to determine the accept-
able set of argumentation lines corresponding to an arbitrary dia-
lectical tree rooted in an argument A. In what follows, we will
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
use indistinctly a set notation (an acceptable bundle set of argu-
mentation lines rooted in an argument A) or a tree notation (a dia-
lectical tree rooted in A), as the former mappings S and T allow us
to go from any of these notation to the other.

Proposition 2.1. Let T be an argumentation theory; for any argument
A in T there is a unique dialectical tree T A in T (up to an equivalence
with respect to �s as introduced in Definition 2.8).
Proof. Let us assume that for a given argument A there exist two
different exhaustive dialectical trees T A and T 0A, i.e., T A – T 0A.
Equivalently, given that Sð�Þ is injective, SðT AÞ ¼ SA –
S T 0A
� �

¼ S0A, that is, SA and S0A are two different sets of exhaustive
argumentation lines rooted in A. Since T A and T 0A are both exhaus-
tive dialectical trees rooted in A, SA and S0A each must contain all
the exhaustive argumentation lines rooted in A (Definition 2.5).
Therefore, SA ¼ S0A and TðSAÞ ¼ TðS0AÞ, that is, T A ¼ T 0A contradict-
ing the initial assumption. Thus, given an argument A in T its
exhaustive dialectical tree it is unique. h
References

Amgoud, L., Maudet, N., & Parsons, S. (2002). An argumentation-based semantics for
agent communication languages. In Proceedings of the 15th ECAI, Lyon, France
(pp. 38–42).

Atkinson, K., Bench-Capon, T. J. M., & McBurney, P. (2005). Multi-agent
argumentation for edemocracy. In Proceedings of the third European workshop
on multi-agent systems, Belgium (pp. 35–46).

Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation
semantics. The Knowledge Engineering Review, 26(4), 365–410.

Baroni, P., & Giacomin, M. (2009). Semantics of abstract argument systems. In I.
Rahwan & G. R. Simari (Eds.), Argumentation in artificial intelligence (pp. 25–44).
Springer Verlag. ISBN: 978-0-387-98196-3.

Baroni, P., Giacomin, M., & Guida, G. (2005). SCC-recursiveness: a general schema
for argumentation semantics. Artificial Intelligence, 168(1-2), 162–210.

Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence.
Artificial Intelligence, 171(10–15), 619–641.

Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments.
Artificial Intelligence, 1:2(128), 203–235.

Besnard, P., & Hunter, A. (2008). Elements of argumentation. MIT Press.
Black, E., & Hunter, A. (2009). An inquiry dialogue system. Autonomous Agents and

Multi-Agent Systems, 19(2), 173–209.
Bondarenko, A., Dung, P., Kowalski, R., & Toni, F. (1997). An abstract, argumentation-

theoretic approach to default reasoning. Artificial Intelligence, 93(1–2), 63–
101.

Bryant, D., & Krause, P. (2008). A review of current defeasible reasoning
implementations. The Knowledge Engineering Review, 23(03), 227–260.

Caminada, M. (2006). On the issue of reinstatement in argumentation. In M. Fisher,
W. van der Hoek, B. Konev, & A. Lisitsa (Eds.), JELIA. Lecture notes in computer
science (Vol. 4160, pp. 111–123). Springer.

Carbogim, D., Robertson, D., & Lee, J. (2000). Argument-based applications to
knowledge engineering. The Knowledge Engineering Review, 15(2), 119–149.

Chesñevar, C., & Simari, G. R. (2007). A lattice-based approach to computing
warranted belief in skeptical argumentation frameworks. In Proceedings of 20th
international joint conference on artificial intelligence (IJCAI 2007), Hyberabad,
India.

Chesñevar, C., Simari, G. R., Alsinet, T., & Godo, L. (2004). A logic programming
framework for possibilistic argumentation with vague knowledge. In UAI 2004,
Banff, Canada (pp. 76–84).

Chesñevar, C., Maguitman, A., & Loui, R. (2000). Logical models of argument. ACM
Computing Surveys, 32(4), 337–383.

Chesñevar, C., Maguitman, A., & Simari, G. R. (2006). Artificial intelligence
applications and innovations. In Argument-based user support systems using
defeasible logic programming. IFIP Series (pp. 61–69). Springer.

Chesñevar, C., Simari, G. R., & Godo, L. (2005). Computing dialectical trees efficiently in
possibilistic defeasible logic programming. Springer Verlag, pp. 158–171.

DeLP-home-page. (2007). Web page: <http://lidia.cs.uns.edu.ar/delp>.
Dung, P. (1995). On the acceptability of arguments and its fundamental role in

nomonotonic reasoning and logic programming and n-person games. Artificial
Intelligence, 77(2), 321–358.

Ferretti, E., Errecalde, M., García, A. J., & Simari, G. R. (2007). An application of
defeasible logic programming to decision making in a robotic environment. In
LPNMR. LNAI (Vol. 4483, pp. 297–302). Springer.

Friedrich, G., & Zanker, M. (2011). A taxonomy for generating explanations in
recommender systems. AI Magazine, 32(3), 90–98.

García, A. J., Chesñevar, C. I., & Simari, G. R. (1993). Making argument systems
computationally attractive. In Actas XIII conf. internacional de la sociedad chilena
para ciencias de la computación, La Serena, Chile.
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://lidia.cs.uns.edu.ar/delp
http://dx.doi.org/10.1016/j.eswa.2012.12.036


A.J. García et al. / Expert Systems with Applications xxx (2013) xxx–xxx 15
García, A. J., Chesñevar, C. I., Rotstein, N. D., & Simari, G. R. (2007). Abstract
presentation of dialectical explanations in defeasible argumentation. In First
international workshop on argumentation and non-monotonic reasoning (ArgNMR
07) (pp. 17–32).

García, A. J., Rotstein, N. D., & Simari, G.R. (2007). Dialectical explanations in
defeasible argumentation. In ECSQARU (pp. 295–307).

García, A. J., Rotstein, N. D., Chesñevar, C. I., & Simari, G. R. (2009). Explaining why
something is warranted in defeasible logic programming. In IJCAI 2009 workshop
on explanation-aware computing (ExaCt 2009).

García, A., Rotstein, N., Tucat, M., & Simari, G. R. (2007). An argumentative reasoning
service for deliberative agents. In KSEM. LNAI (Vol. 4798, pp. 128–139). Springer.

García, A. J., & Simari, G. R. (2004). Defeasible logic programming: an argumentative
approach. Theory and Practice of Logic Programming, 4(1), 95–138.

Gómez, S. A., Chesñevar, C. I., & Simari, G. R. (2008). Defeasible reasoning in web
forms through argumentation. International Journal of Information Technology &
Decision Making, 7, 71–101.

Guida, G., & Zanella, M. (1997). Bridging the gap between users and complex decision
support systems: the role of justification. In Proceedings of the 3rd IEEE international
conference on engineering of complex computer systems (pp. 229–238).

Jakobovits, H., & Vermeir, D. (1999). Dialectic semantics for argumentation
frameworks. In ICAIL (pp. 53–62).

Kakas, A., & Toni, F. (1999). Computing argumentation in logic programming.
Journal of Logic Programming, 9(4), 515–562.

Lacave, C., & Diez, F. J. (2004). A review of explanation methods for heuristic expert
systems. The Knowledge Engineering Review, 19(2), 133–146.

Lifschitz, V. (1996). Foundations of logic programs. In G. Brewka (Ed.), Principles of
knowledge representation (pp. 69–128). CSLI Publications.

Lloyd, J. W. (1987). Foundations of logic programming (2nd ed.). New York: Springer-
Verlag.

Moulin, B., Irandoust, H., Bélanger, M., & Desbordes, G. (2002). Explanation and
argumentation capabilities: towards the creation of more persuasive agents.
Artificial Intelligence Review, 17(3), 169–222.

Parsons, S., Sierrra, C., & Jennings, N. (1998). Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8, 261–292.

Prakken, H. (2010). An abstract framework for argumentation with structured
arguments. Argument & Computation, 1(2), 93–124.

Prakken, H., & Sartor, G. (2002). The role of logic in computational models of legal
argument – a critical survey. In A. Kakas & F. Sadri (Eds.), Computational logic:
logic programming and beyond (pp. 342–380). Springer.
Please cite this article in press as: García, A. J., et al. Formalizing dialectical
systems. Expert Systems with Applications (2013), http://dx.doi.org/10.1016/j.es
Prakken, H., & Vreeswijk, G. (2002). Logical systems for defeasible argumentation. In
D. Gabbay & F. Guenther (Eds.), Handbook of philosophical logic (pp. 219–318).
Kluwer Academic Publishers.

Rahwan, I., & Simari, G. R. (2009). Argumentation in artificial intelligence. Springer.
Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (Eds.). (2011). Recommender systems

handbook. Springer.
Schroeder, M. (2000). Towards a visualization of arguing agents. Future Generation

Computer System, 17(1), 15–26.
Simari, G. R., Chesñevar, C. I., & García, A. J. (1994). Focusing inference in defeasible

argumentation. In IV Iberoamerican congress on artificial intelligence
(IBERAMIA’94), Venezuela.

Simari, G. R., Chesñevar, C. I., & García, A. J. (1994). The role of dialectics in
defeasible argumentation. In International conference of the Chilenean computer
science society (pp. 111–121).

Simari, G. R., & Loui, R. P. (1992). A mathematical treatment of defeasible reasoning
and its implementation. Artificial Intelligence, 53, 125–157.

Stolzenburg, F., García, A., Chesñevar, C. I., & Simari, G. R. (2003). Computing
generalized specificity. Journal of Non-Classical Logics, 13(1), 87–113.

Thimm, M., & Kern-Isberner, G. (2008). A distributed argumentation framework
using defeasible logic programming. In Proceedings of the 2nd international
conference on computational models of argument (COMMA’08) (pp. 381–392). IOS
Press.

Tintarev, N., & Masthoff, J. (2011). Designing and evaluating explanations for
recommender systems. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.),
Recommender systems handbook (pp. 479–510). Springer.

Verheij, B. (1996). Two approaches to dialectical argumentation: admissible sets
and argumentation stages. In J. -J. Meyer, & L. van der Gaag (Vol. Eds.),
Proceedings of the eighth Dutch conference on artificial intelligence (NAIC’96),
Utrecht, The Netherlands (pp. 357–368).

Verheij, B. (2007). A labeling approach to the computation of credulous acceptance
in argumentation. In M. M. Veloso (Vol. Ed.), IJCAI (pp. 623–628).

Walton, D. (2004). A new dialectical theory of explanation. Philosophical
Explorations, 7(1), 71–89.

Ye, L. R., & Johnson, P. E. (1995). The impact of explanation facilities on user
acceptance of expert systems advice. MIS Quarterly, 19(2), 157–172.
explanation support for argument-based reasoning in knowledge-based
wa.2012.12.036

http://dx.doi.org/10.1016/j.eswa.2012.12.036

	Formalizing dialectical explanation support for argument-based reasoning  in knowledge-based systems
	1 Introduction and motivations
	2 Abstract argumentation frameworks with dialectical constraints
	3 Explanations in abstract argumentation frameworks
	4 Answers and δ-explanations in DeLP: a reificat
	4.1 Queries, answers, and δ-explanations in DeLP
	4.2 Schematic queries and generalized DeLP-δ-exp
	4.3 Implementation details

	5 Conclusions and related work
	Appendix A Proofs
	A.1 Auxiliary terminology and properties used for the proof of Proposition 2.1

	References


