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a b s t r a c t

In two recent works [López-García et al., J. Colloid Interface Sci. 316 (2007) 196; López-García et al., J. Col-
loid Interface Sci. 323 (2008) 146] we presented a simple modification of the standard electrokinetic
model that takes into account the finite size of ions in the electrolyte solution. In the first we presented
numerical results for the equilibrium properties while, in the second, we calculated the effect of the
excluded ion volume on the electrophoretic mobility. In the present work we first extend our previous
results incorporating a distance of closest approach of the ions to the particle surface. We then calculate
the conductivity increment and present a detailed interpretation of the mobility and conductivity incre-
ment results, based on the analysis of the equilibrium and field-induced ion concentrations and of the
convective fluid flow in the neighborhood of the particle surface. We show that the inclusion of the
ion size effect generally improves the predictions of the standard electrokinetic model: both the electro-
phoretic mobility and the conductivity increment increase. We also show that, largely due to the above-
noted extension of considering a minimum approach distance between the ions and the particle surface,
the excluded volume effect is not negligible even for weakly charged particles.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The classical description of colloidal suspensions is based on a
series of assumptions that constitute the standard electrokinetic
model: suspended particles are surrounded by a perfectly smooth
uniform surface density of fixed charge, ions can be treated as
mathematical points, and the macroscopic permittivity and viscos-
ity values remain valid at the microscopic scale up to the very sur-
face of the particle. With these assumptions, the equilibrium ion
density coincides with the Gouy-Chapman distribution, the surface
conductivity coincides with the conductivity of the diffuse double
layer, and the f potential coincides with the equilibrium surface
potential.

Despite its almost universal use, the classical model fails to pre-
dict crucial experimental trends: f potential values calculated from
experimental electrophoretic mobility, conductivity increment,
and permittivity increment data using this model usually do not
coincide with one another [1–6]. The most common way to address
these difficulties is to consider that the surface of the particle is
more complex than assumed by the model: it is either surrounded
by a thin layer where the ion density is determined by adsorption
isotherms or the particle surface is rough or hairy so that both fixed
ll rights reserved.
charges and free ions populate the surface layer [7–12]. Although
these generalizations solve some deficiencies of the classical model
[13], they usually worsen the interpretation of experimental data
for high electrophoretic mobilities [14]. Furthermore, they address
surface properties that are specific to each particular particle–elec-
trolyte solution combination, so that they include a series of
adjustable parameters.

In this and in our two previous works [15,16], we address a dif-
ferent shortcoming of the standard electrokinetic model: ions in
the electrolyte solution actually have a finite size. While the way
in which this finite size is incorporated into the equations may
vary [17,18], the corresponding correction is universal since it does
not depend on any particle property. Therefore, the ion size should
be characterized by parameters that are not adjustable.

Although previous works dealing with the finite ion size exist
[19,20], they are limited to the equilibrium solution of the Pois-
son–Boltzmann equation with plane geometry. In [15] we pre-
sented numerical results for the equilibrium properties and
spherical geometry while, in [16], we calculated the effect of the
excluded ion volume on the electrophoretic mobility. In the pres-
ent work we first extend our previous results taking into account
that the ion size not only establishes a minimum distance between
ions but also determines a minimum distance between an ion and
the surface of the particle. We then calculate the conductivity
increment and present a detailed interpretation of the mobility
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and conductivity increment results, based on the analysis of the
equilibrium and field-induced ion concentrations, and of the con-
vective fluid flow in the neighborhood of the particle surface.

We show that the inclusion of the excluded volume effect gen-
erally improves the predictions of the standard electrokinetic mod-
el: both the electrophoretic mobility and the conductivity
increment increase. We also show that, because of the above-noted
extension that incorporates a distance of closest approach of ions
to the particle surface and to ion convection, the ion size effect is
not negligible even for weakly charged particles.
Table 1
Parameter values used in the calculations except when specified otherwise.

Radius of the particle a = 100 � 10�9 m
Elementary charge e = 1.602 � 10�19 C
Absolute permittivity e = 78.54 � e0 = 6.954 � 10�12 F m�1

Boltzmann constant k = 1.381 � 10�23 J/K
Avogadro number NA = 6.022 � 1023 mol�1

Temperature T = 298 K
Number of ion species in the solution 2
Ion valences z1 = �z2 = 1
Bulk concentration of ionic species c11 ¼ c12 ¼ 0:1 M
Charge of the particle Q = 2 � 10�14 C
Reciprocal Debye length j � 109 m�1

Fluid viscosity g = 0.89 � 10�3 P
2. Theoretical model

Let us to consider a spherical particle of radius a immersed in an
infinite electrolyte solution with m ionic species. The equations
governing the steady state dynamics of this system are well
known:

(a) Nernst–Planck equations for the ionic fluxes,
(b) Continuity equations for each ionic species,
(c) Poisson equation for the electric potential,
(d) Navier–Stokes equation for a viscous fluid, and
(e) Continuity equation for an incompressible fluid.

For a hypothetic ideal electrolyte solution, this set of equations,
together with the appropriate boundary conditions, constitutes the
standard electrokinetic model [1–6]. In order to treat nonideal
solutions, the effect of the ion size constraints on the dynamics
of the system should be taken into account. If the electrolyte solu-
tion does not behave ideally and the ions are assumed to have a fi-
nite size, the density determined after subtracting the ion volume
is higher than the density determined assuming that ions behave
as point charges. This concentration difference modifies the ion
flows by increasing the concentration gradients. The ion volume
also decreases the diffusion coefficient by decreasing the mean free
path. Due to these two competing effects a correction factor ci is
introduced as a modifier of the diffusive term in the Nernst–Planck
equations for the ion flows (‘‘steric hindrance” effect [21]),

cið~rÞ~við~rÞ ¼ �Dicið~rÞr ln cicið~rÞ½ � þ zie
kT

/ð~rÞ
n o

þ cið~rÞ~vð~rÞ; ð1Þ

where ~vi; ci; zi, and Di are, respectively, the velocity, the local con-
centration (in mol per liter), the valence, and the diffusion coeffi-
cient of the ionic species i. The electric potential is represented by
means of the symbol /; and ~v is the fluid velocity. The constant e
represents the elementary charge, while k and T are, respectively,
the Boltzmann constant and the absolute temperature. Note that
the correction factor ci is known conventionally as the ion activity
coefficient accounting for the interactions with other ions and the
solvent (ci = 1 for an ideal solution).

In previous works [15,16] we presented this modified model
with the aim to identify and clarify the consequences of a single ef-
fect, namely the excluded volume of ions, which has a clear phys-
ical interpretation: the concentration of ions that builds up at
regions of high electric potential cannot exceed a given limiting va-
lue mainly determined by the hydration radius, so that the Boltz-
mann distribution breaks down. Under these conditions, a
remarkably simple distribution law can be formulated postulating
that the ion concentrations are expressed by a Langmuir-type cor-
rection for the excluded volume [22,23],

ci ¼
1

1�
Pm

i¼1
cið~rÞ
cmax

i

; ð2Þ

where cmax
i is the maximum local concentration of ionic species i

due to the finite ion size.
Here we extend our previous analysis incorporating into the
model the physical requirement that the finite ion size also estab-
lishes a distance of closest approach of the ions to the particle sur-
face, resulting from ion–particle surface interactions. Therefore, we
now assume that ions cannot come closer to the surface of the par-
ticle than their effective hydration radius, R (i.e., the ion density is
defined only for r > a + R, while the electrostatic field is defined for
all r P a). It is worth noting that the ion behavior is independent of
its charge distribution, as long as it has central symmetry. There-
fore, an ion can be represented by a sphere with a point charge
at its center, which justifies the condition that this charge cannot
come closer to the particle surface than the ion radius.

As usual, the equation system is first linearized with respect to
the applied field. The resulting equation system together with the
appropriate boundary conditions constitutes the theoretical model
considering the excluded volume effect (for further details we refer
the reader to Ref. [16]).

3. Results and discussion

The theoretical model can be numerically solved yielding the
electric potential and ion concentration profiles as a function of
the distance from the surface of the particle. The numerical calcu-
lations were performed using the network simulation method
[24,25]. The obtained results differ with respect to those presented
in [15,16] because we now include the condition that ions cannot
come closer to the surface of the particle than their own excluded
volume radius. Another difference is that in the comparison of the
various profiles calculated for different ion sizes we now keep
constant the charge of the particle rather than its surface potential.
This way of doing has the advantage of using as parameter a parti-
cle property that can be directly measured, rather than a model-
dependent property that can only be calculated. It also greatly
simplifies the interpretations. The different constant and
parameter values used in the calculations, except when specified
otherwise, are given in Table 1.

For sake of simplicity we consider a binary univalent electrolyte
and assume that cmax has the same value for both ionic species,

cmax ¼ 1
103NAV

; ð3Þ

where V is the average volume occupied by an ion in the solution
and NA is the Avogadro number. The cmax values chosen for the
graph, cmax = 0.2, 1.5, and 13 M, together with the standard model
results, correspond to effective ion radii of approximately 1.0, 0.5,
0.25 nm, and zero. These last values were calculated using Eq. (3)
with V = (2R)3, which corresponds to a cubic lattice (52% packing).
This cmax set spans the whole range of theoretically possible values
since, for cmax = 0.2 M (1.0 nm effective radius) and at the chosen
ja = 104 value, the ion concentration is saturated everywhere:
c1 = cmax/2. On the other hand, the cmax = 13 M value (0.25 nm



Fig. 1. Surface potential as a function of the fixed charge of the particle, calculated
for the indicated cmax values. Numerical results obtained using condition
ci(r < a + R) = 0 (solid lines), considering that ions can come arbitrarily close to the
particle (dash lines), standard model results (dot line), and analytical expression (4)
(solid circles). The other parameters are given in Table 1.

Fig. 2. Equilibrium electric potential profiles calculated for the indicated cmax

values while keeping constant the fixed charge of the particle. Numerical results
obtained using condition ci (r < a + R) = 0 (solid lines), considering that ions can
come arbitrarily close to the particle (dash lines), and standard model results (dot
line). The other parameters are given in Table 1.

Fig. 3. As for Fig. 2, but calculated for the equilibrium counterion concentration.
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effective radius), should be close to a typical value for a real
hydrated ion.

Fig. 1 shows the equilibrium surface potential as a function of
the particle charge (solid lines), calculated for the indicated cmax

values using the theoretical model presented in this work. Also in-
cluded for comparison are our previous results [15], obtained con-
sidering that ions can come arbitrarily close to the particle (dash
lines), as well as the standard model results (dot line). The lines
with solid circles correspond to the analytical expression

/0ðaÞ¼ Q
4pea

�kTjaðaþRÞ
eaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cmaxPm
i¼1z2

i c1i
ln 1þ

Xm

i¼1

c1i
cmax

exp �zie
kT

/0ðaÞ� Q
4pea

R
aþR

� �� �
�1

� �� �s
;
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where

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000e2NA

Pm
i¼1z2

i c1i
ekT

s
ð5Þ

is the reciprocal Debye length, which is easily deduced adding the
exclusion region near the particle surface in the expression pro-
posed in [15] for the reduced surface charge density. As can be ob-
served, Eq. (4) appears to be a good approximation for all the
considered cmax values.

For low surface charge values, numerical results obtained taking
into account the ion size but considering that ions can come arbi-
trarily close to the particle coincide with those of the standard
model, since ion saturation does not occur. However, higher sur-
face potential values are obtained when the exclusion region near
the particle surface is incorporated in the model, since the volume
charge of the double layer is shifted further away from the surface.

For high surface charge values, the excluded volume effect leads
to surface potential values that are much higher than those pre-
dicted by the standard model. As already discussed in [15], this oc-
curs because ion saturation always increases the thickness of the
double layer. While the inclusion of the condition that ions cannot
come arbitrarily close to the particle surface increases even more
the surface potential value, the change with respect to the old
boundary condition becomes negligible for very high surface
charge values, when the thickness of the saturation zone is much
higher than the effective ion radius.
Fig. 2 represents the equilibrium surface potential profiles (solid
lines), calculated assuming that ions cannot come closer to the sur-
face of the particle than their hydration radius and keeping con-
stant the surface charge of the particle. Also included for
comparison are our previous results [15], obtained considering
that ions can come arbitrarily close to the particle (dash lines), as
well as the standard model results (dot line).

As expected, the new boundary condition, ci(r < a + R) = 0, al-
ways leads to higher equilibrium potential values than the previ-
ous condition since the charge density surrounding the particle is
moved further from its surface while the total value of this charge
remains constant. Fig. 2 also shows that the new boundary condi-
tion is particularly important in the case of relatively small ions
since, under these conditions, the effect of ion saturation is weak
while the effect of the existence of a minimum separation between
ions and the surface does not vanish. Because of this same reason,
the excluded volume effect becomes nonnegligible even for weakly
charged particles.

Fig. 3 shows the equilibrium counterion concentration profiles
(solid lines), calculated using the theoretical model presented in
this work and keeping constant the surface charge of the particle.
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Also included for comparison are our previous results [15], ob-
tained considering that ions can come arbitrarily close to the par-
ticle (dash lines), as well as the standard model results (dot line).

As expected, the new boundary condition leads to two main
changes with respect to the previous condition: the equilibrium
concentration values drop to zero at a distance of a hydration ra-
dius from the surface and the counterion density extends further
away from the particle because the saturation values are not af-
fected. The apparently different behavior of the cmax = 0.2 M curve
occurs because, as already noted, the ion concentration is saturated
everywhere. Therefore, the counterion concentration remains at a
constant c0

2 � cmax ¼ 2c1 value (while c0
1 � 0) over a greater dis-

tance than plotted in Fig. 3, but eventually drops to the c0
2 ¼ c1 va-

lue (while c0
1 ¼ c1) just as the remaining curves.

Close to the particle, at distances for which the counterion con-
centrations suddenly raise from zero, the equilibrium potentials
change from being a solution of the Laplace to a solution of the
Poisson equation. This change remains almost imperceptible in
Fig. 2 since, for these distances, both the potential and the normal
electric field values are continuous. However, the solid and dash
curves corresponding to the cmax = 13 M exhibit slightly different
behaviors close to the particle surface.
Fig. 4. Field-induced counterion and co-ion concentration change profiles, calcu-
lated for the indicated cmax values while keeping constant the fixed charge of the
particle and assuming that there is no fluid flow: g ?1. Numerical results obtained
using condition ci(r < a + R) = 0 (solid lines), considering that ions can come
arbitrarily close to the particle (dash lines), and standard model results (dot lines).
The other parameters are given in Table 1.
Fig. 4 shows the field-induced counterion and co-ion concentra-
tion change profiles calculated considering that there is no fluid
convection (the fluid viscosity was set to a very high value:
g ?1). It is advisable to examine this limiting situation before
the full case where convection is taken into account.

The standard model curves (dot lines) show the familiar behav-
ior characterized by a maximum (in modulus) of the counterion
density change on the surface of the particle, then a negative
charge density layer, then a positive charge density layer, and final-
ly a broad neutral region of lowered electrolyte concentration [26].
The curves obtained using the old boundary condition (dash lines)
differ from this behavior in that both the counterion and the co-ion
concentration changes remain equal to zero across the ion satura-
tion zones, as expected. Furthermore, these changes decrease (in
modulus) when the ion size increases.

The new boundary condition has a rather weak influence on the
ion concentration change curves (solid lines). All the above-noted
features remain unaltered except that, additionally, these changes
vanish from the surface of the particle to a distance equal to the
effective ion radius, as expected.

The qualitatively different behavior of the cmax = 0.2 M curves
occurs because the ion concentration is saturated everywhere.
Therefore, dc2 for counterions must be equal and opposite to dc1

for co-ions and no neutral region outside the double layer with a
lowered electrolyte concentration is possible. Both effects are
clearly visible in Fig. 4.

Fig. 5 represents the tangential flow profile calculated over the
particle equator (h = p/2). The curve corresponding to the standard
model has the highest slope at the origin because of the extremely
high value of the counterion density close to the particle surface
(Fig. 3). However, at greater distances, it has the lowest tangential
velocity value since all the double layer charge is close to the point
where the velocity vanishes due to the adhesion condition.

The curves obtained using the old boundary condition (dash
lines) show a strong increase of the tangential velocity far from
the particle, which is due to the corresponding increase of the
thickness of the double layer (Fig. 3). At constant surface charge,
the amount of charge in the double layer is also constant but it is
spread out further away from the surface and is located, therefore,
at a greater distance from zero velocity boundary.
Fig. 5. Tangential fluid velocity profiles, calculated over the particle equator (h = p/
2) for the indicated value of cmax while keeping constant the fixed charge of the
particle. Numerical results obtained using condition ci(r < a + R) = 0 (solid lines),
considering that ions can come arbitrarily close to the particle (dash lines), and
standard model results (dot line). The other parameters are given in Table 1.
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The new boundary condition (solid lines) further increases the
fluid velocity value far from the particle, since it moves the double
layer charge even further away from the particle surface. However,
very close to the surface, the velocity is lower since there is no
charge in the first layer with a thickness of one effective ion radius.
The overall effect is particularly strong for small ions since, for
thick saturation zones, the change due to the new boundary condi-
tion becomes relatively unimportant.

It should be noted that for the extreme case cmax = 0.2 M, the ion
saturation in the whole space does not prevent the fluid flow near
the surface which, on the contrary, is particularly strong.

Fig. 6 shows the final results for the field-induced ion concen-
tration change profiles taking convection into account. The stan-
dard model curves (dot lines) show that convection increases (in
modulus) the concentration changes, as expected.

The curves obtained using the old boundary condition (dash
lines) show that the increment of convection with the ion size
(Fig. 5) is sufficiently strong as to invert their relative placement:
the ion concentration changes increase (in modulus) with the ion
size instead of decreasing as in Fig. 4.

The new boundary condition leads to an additional increment
of the fluid convection (Fig. 5) which is, furthermore, more signif-
icant for the smaller ion sizes. Therefore, the corresponding
curves (solid lines) strongly deviate now from those obtained
using the old boundary condition for small ions, and less so for
bigger ones. This leads to a nonmonotonous behavior in Fig. 6
κ

δ

δ

δ

δ

δ

κ

δ
δ

δ

a

b

Fig. 6. As for Fig. 4 but including fluid flow.
with the largest amplitude of the lowered electrolyte concentra-
tion of the neutral region corresponding to cmax = 1.5 M followed
by cmax = 13 M.

More importantly, Fig. 6 shows that due to fluid convection and
the new boundary condition, the field-induced ion concentration
changes corresponding to small ions strongly differ from the pre-
diction of the standard model. This contrasts with Figs. 1–3, which
only show small differences between the predictions of the stan-
dard model and the corresponding results for small ions, obtained
using both the old and the new boundary conditions.

Fig. 7 represents the field-induced electric potential change pro-
files, calculated keeping constant the surface charge of the particle
(the straight dash dot line corresponding to the potential of the ap-
plied field E is also included). Most notable are the almost constant
values of d/ throughout the saturation zones, which occur because
the applied field cannot change the ion concentrations in these re-
gions. Therefore, the potential changes inside the saturation zones
are only due to concentration changes outside these zones and to
the applied potential.

As can be seen, the standard model (dot line) predicts in the
considered case a negative dipole coefficient (the corresponding
potential curve approaches the applied potential line from below).
The curves obtained using the old boundary condition (dash lines)
correspond to dipole coefficients that strongly increase with the
ion size (the dipolar coefficient is still negative for R = 0.25 nm
but becomes positive for R = 0.50 nm and R = 1.0 nm). Going back
to Fig. 6, these conclusions show that the dipole moment corre-
sponding to the negative charge density close to the particle is lar-
ger than that of the positive charge density further away from the
surface in the case of the standard model and for cmax = 13 M. How-
ever, the opposite is true for cmax = 1.5 M and cmax = 0.2 M (actually
the positive charge density disappears in this last case).

The new boundary condition (solid lines) leads to even larger
dipole coefficients as compared to those obtained using the old
boundary condition. The differences are specially pronounced for
small ions, to the point that even for cmax = 13 M the dipole coeffi-
cient is already positive.

Fig. 8 represents the conductivity increment DK defined as

K ¼ K1 1þuDKð Þ ¼ K1ð1þ 3udÞ ð6Þ
Fig. 7. Field-induced electric potential change profiles, calculated for the indicated
cmax values while keeping constant the fixed charge of the particle. Numerical
results obtained using condition ci(r < a + R) = 0 (solid lines), considering that ions
can come arbitrarily close to the particle (dash lines), and standard model results
(dot line). The straight (dash dot) line corresponds to the applied potential. The
other parameters are given in Table 1.



Fig. 8. Conductivity increment DK as a function of the fixed charge of the particle,
calculated for the indicated cmax values. Numerical results obtained using condition
ci(r < a + R) = 0 (solid lines), considering that ions can come arbitrarily close to the
particle (dash lines), and standard model results (dot line). The other parameters
are given in Table 1.

Fig. 9. Dimensionless electrophoretic mobility ue as a function of the fixed charge of
the particle, calculated for the indicated cmax values. Numerical results obtained
using condition ci(r < a + R) = 0 (solid lines), considering that ions can come
arbitrarily close to the particle (dash lines), and standard model results (dot line).
The other parameters are given in Table 1.
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as a function of the fixed charge of the particle. In this expression K
and K1 are the conductivities of the suspension and of the suspend-
ing medium, respectively, u is the volume fraction occupied by the
particles, and d is the dipolar coefficient.

For very low particle charge values, both the standard model re-
sults (dot line) and the results obtained using the old boundary
condition (dash lines) converge, as expected, to the value
DK = �3/2, which corresponds to the dipolar coefficient of an insu-
lating uncharged sphere in a conducting medium d = �1/2. As for
the results obtained using the new boundary condition (solid
lines), they converge to a slightly lower value DK = �3(a + R)3/
(2a3), since, for Q = 0, the new boundary condition basically incre-
ments the particle radius by one effective ion radius.

For increasing particle charge values, the standard model re-
sults (dot line) also increase tending to the limiting value
DK � 3/4 that corresponds to d � 1/4 [27,28]. Conductivity incre-
ment values obtained using the old boundary condition (dash
lines) are always higher than those predicted by the standard mod-
el and the difference increases with the ion size. However, strong
deviations only occur for high particle charges since they are due
to the counterion saturation close to its surface (Fig. 3). On the con-
trary, the extension of the theoretical model presented in this work
leads to conductivity increment values (solid lines) that strongly
deviate from the standard model results even for low and medium
particle charges, due to the effect of the shift of the double layer
one effective ion radius away from the particle surface.

For very high particle charge values, the results obtained using
the old and the new boundary conditions coincide with one an-
other: one effective ion radius becomes negligible as compared
to the thickness of the counterion saturation zone. This behavior
means that both the ion size effect in the suspending medium
and the new boundary condition are essential to the model: the
low particle charge behavior is mainly determined by the new
boundary condition while, for high particle charges, the model
behavior is mainly determined by the ion size effect across the
double layer. It should finally be noted that the unbounded in-
crease of the conductivity increment with the particle charge is
simply due to an increment of the effective particle radius by the
thickness of the saturation zone.

Fig. 9 represents the dimensionless electrophoretic mobility de-
fined as
ue ¼
3eg

2ekT
ve

E

as a function of the fixed charge of the particle (in this expression ve

is the electrophoretic velocity). The standard model curve (dot line)
shows the familiar nonmonotonous behavior [29] (note, however,
the dependence on the particle charge rather than the f potential
and the logarithmic scale).

The results obtained using the old boundary condition (dash
lines) show a substantial increase of the mobility with the ion size
[16] due to the increment of the tangential fluid velocity (Fig. 4).
However, this increment becomes negligible for small ions and
low particle charge values when counterion saturation near the
particle surface disappears. On the contrary, the results obtained
using the new boundary condition (solid lines) show substantial
increments with respect to the standard model even for small ions
and low particle charges. This happens because the shift of the
double layer one effective ion radius away from the particle surface
does not vanish in this case. The predicted behavior opens the pos-
sibility for a theoretical interpretation of a series of experimental
mobility values that are higher than the maximum allowed by
the standard model [30].

4. Conclusion

We extend our previous works that modify the standard elec-
trokinetic model taking into account the finite size of ions in the
electrolyte solution. There we considered that the local ion concen-
tration cannot surpass a finite maximum value determined by the
ion size. Here we add the requirement that the finite ion size also
determines a distance of closest approach of ions to the particle
surface. We show that both the ion size effect in the suspending
medium and the distance of closest approach are essential to the
model: the low particle charge behavior is mainly determined by
the latter, while the former mainly determines the model behavior
for high particle charges.

While previous works dealing with equilibrium properties con-
clude that ion size effects are only significant for highly charged
particles and high electrolyte concentrations, our nonequilibrium
results show that largely due to the above-noted extension of
our previous results and to ion convection, these effects are not
negligible even for weakly charged particles. Moreover, they
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generally improve the predictions of the standard electrokinetic
model: both the electrophoretic mobility and the conductivity
increment increase. This opens the possibility for a theoretical
interpretation of experimental mobility values that are higher than
the maximum allowed by the standard electrokinetic model.

We finally wish to stress that the considered modification is
fundamentally different from other extensions of the standard
electrokinetic model dealing with the particle–electrolyte solution
interface. While suspended particles may, or may not, be sur-
rounded by a surface layer with specific properties, it is quite cer-
tain that ions in the electrolyte solution do have a finite size.
Therefore, the excluded volume effect should have a universal
character, even though the way in which the finite ion size is incor-
porated into the equations may vary. We also note that out treat-
ment does not pretend to address other limitations of the mean
field theory such as specific ion–ion interactions and correlations
[31], which would require radical changes of the theoretical model.
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